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This module builds on your existing knowledge of complex numbers to begin
the study of functions of a complex variable, which holds many surprises. The
first two problem sets continue the theme with the introduction of stereographic
projection and problems involving the standard tool of using the complex expo-
nentiation function and moving to real and imaginary parts. A complex variable
can be viewed as a single variable and so the definition of differentiability of a
real function extends to a complex one. However, at the same time it partakes
of the nature of two variable functions in that the limit must exist through all
directions of approach and the result is that complex differetiablity is very de-
manding in that the real and imaginary parts of the function must be linked
through the Cauchy-Riemann equations, which are the subject of Set 3.

Contour integration, which the student will have seen in the context of vector
functions, is introduced in Set 4 but the special nature of integration in the
complex plane is explored through the Cauchy integration formula of set 5.

Since all differentiable functions of a complex variable are analytic and can
be represented by series, the topic of series arise often in the problem sets,
including Set 6, where the complex logarithm function is also introduced. In Set
7 we study functions that are not analytic but can be represented by series that
allows for negative powers of the complex variable z, the so-called Laurent series.
In Set 8 the emphasis is on the Cauchy Residue theorem and its application in
calculating integrals, including sometimes results for integrals along the real
line. In Set 9 there is a variety of further problems making use of the techniques
that have been introduced while Set 10 introduces the celebrated Riemann zeta
function and some of its remarkable properties are to be found there.



Solutions and Comments for the Problems

Problem Set 1

1. Using the |z|> = 2Z and the additive and multiplication properties of
conjugation the LHS can be written as

(21 + 22)(Z1 + 22) + (21 — 22)(Z1 — 22)
= 2121 + 2221 + 2122 + 2222 + 2121 — 2122 — 2221 + 2222
=2(2121 + 22%9) = 2(|z1)? + |22[?).
2. Write z = x + 4y and the equation becomes
az+az+b = a(z+iy)+a(z—iy)+ih = (a—a)z+a(v—iy)+ih = (a—a)z+i(a+a)y+ih
= 2ilm(a)z + 2iRe(a) +ih =0
= Az +By+C=0

where A = 2Im(a), B = 2Re(a) and C = h.
3. In general the technique is to write # = 252 and y = %% and simplify.
Here we see however

f(z) =22(1 —y) +i(2® —y* +2y)
= 2z + 2yi + i(x? — y? + 2xyi)
=2(z +1iy) +i(z + iy)?

o f(z) =i2% 4 22,

A +i)(z+iy) = (x—y) +i(z+y)

so Re((1+1)z) =2 —y > 0, which is to say y < x. The region is the half plane
in the complex plane strictly below the line y = .

5. The line L runs between N = (0,0,1) and w = (z,y,0) so that a typical
point on L has the form

(‘Tvya O) + t((oa 07 1) - (Ia Y, 0))
= [(1 = t)z, (1 — )y, 1), —00 < t < 0o}

6. The coordinates of W in terms of ¢ therefore satisfy
Il=(1-0)22+ (1 —t)%* +1* = (1 —t)*|w]® +

=1-t2=(1-t)?|w?



Since ¢ # 0 as |w| # oo we arrive at

2(lw? +1) = 2tjw* + |w|* =1=0

e 2w|? £ Aw[* — 4wt +4  |w]? -1
B 2(Jw]2 +1) w241

Since
lw|? — 1 2

lw2+1  Jw?+1

we find that he coordinates of W for w = x + iy are therefore

2x 2y |w|? — 1
w2 +1" w2+ 1" w2 +1

W:(Il,IQ,Ig):( ) (].)

7. Given W = (z1, 22, x3) we may find w by setting ¢ = x5 in the equation
of L to get
T 1T + 1
w=x+1i1y = ! + 2 _n m2.
1-— I3 1-— I3 1-— I3

PW,W') = (21 — 27)* + (22 — 25)* + (x5 — 24)?
= (2] + 23 +23) + (2 + 2P + 2) — 2212 — 2207, — 2w32)
=2 — 2(z1 2] + ol + T374).
9. We may write (1) also as

_(w—i—w i(w — w) |w|2—1)
CMwPP D w21 w2+ 1

Continuing the calculation:

(w+)(w' + ) + (w—®)(w —w') + (jw’ = 1)(jw'[* —1)

ORI =2 (e + D+ 1)

|w]? + [w']? + [ww'|? + 1 — ww' — ww' — ww' — ww’ —)

=2( @+ [P+ )

_ 2( ww' + ww' + ww’ — ww' — |ww' |2 + |w|? + |w'|? —1)
(14 w?) (1 + [w'[?)
w4+ W) —ww —ow')  A(ww + w'w — ww — ww')
(14 [w2)(1 + |w'?) (1 + [w*)(1 + w']?)
o Aw—w)(w—w) 4w — w'|?
(L4 w) (T + |w2) (14 Jw?) (1 + |w]?)
= d(W, W) = 20w = w]

[(L+ [ew]?) (1 + Jw'[2)]2



10. As |w'| — cowe have W/ = N = (0,0,1) and so

d*(W,N) =2 + 23 + (z3 — 1)* = 23 + 25 + 23 — 203 + 1 = 2(1 — a3);

lw|? — 1 2
ow aE [w2+1 1+ |w?
2
S AW N) = 2
(1+ |w?)=

Problem Set 2

27mi

1. The roots of 2" — 1 = 0 have the form e = e so the least value of n
for which this is true satisfies % = % so that n = 20.
2. Now for z =z + iy

1
7
For Im(z) = 0 we have either that sinhy = 0 < y = 0 in which casecosh(0) =1,
cosx = \% & x = 2nm £+ 7 or sinz = 0, so that cosz = £1, coshy = $%.

However, since coshy > 1 for all y, there are no such solutions. Hence the
solution set is

cosz = cosx coshy — ¢sinxsinhy =

{z:x—l—iyEC:x:Qnﬂ'ig,y:O,nEZ}.

3. Let z = x + 7y so that

1 T — 1y T
R - ) = R = =
(2) (x2+y2) x2+y2 ¢
1., 9 1 1+ 4c?
= _— = 1 -_
(@ 20) Ty + 4c2 4c2 7
which is the equation of a circle centred at (%, 0) with radius %\/ 1+ 4c2.
4& 5. Put z = e ZCOS%’F +isin27”. Then
n—1
1-—2" 1-1
k
N 1—-=2 1—2
k=0
Since zF = ™" = cos %T’T + isin %Tﬂ we obtain by first taking first the real,

and then the imaginary parts of the previous equality that

n—1 n—1
2k 2k

E cos =L — 0 = E cos—wz—l, and
n n

k=0 k=1



k=0 k=1
6 +1 1
z ik
z":(l—kz)”é( )n—l 1+ ===
z
1
= 2= —3ma (1§]€§7’L—1)
e n —1
N 1 e cos EZ — jgin £T
e (e —em W) 2isinkm 2i sin T
s km . km
sin =T + ¢ cos ot 1 . km
=—n " —__—(1+icot—);
—2sin %’r 2 ( n )
and in particular Re(z) = —1, so all n — 1 solutions lie on that line.

7. Following the hint we note that for 2 = = + iy that z + Z = 2R(2) and
since 22 < 22+ y? and |z| > 0 it follows from R(2)? < |z|? that R(z) < |z|. Now
replacing z by 2@ in the equality z + Z = 2R(z) we obtain

2W + 2w = 2R(2w)

(z—|—w)2 = z4+w(izF+w) =(z+w)(zZ+w)
= 27 4 20 + wZ + ww < |2* + 2|z[|w] + [w]* = (|2] + [w])*;

where the inequality comes from Question 7. Taking square roots of both sides
then gives the Triangle Inequality:

2+ w| < 2] + [w].

9. Let us write

o= 2722 then
zZ9 — 21
23— 20 = p(ze — 21) (2)
zz3—z1=23—22+22—21 = (1 + p)(22 — 21) (3)

Substituting (2) and (3) in the given equality and cancelling the common factor
of |22 — 21]? gives
1+ pl* =1+ |p?
= (1+p)(1+70)=1+pp=p+a=2R(u)=0.
Therefore ;o = i for some S € R, which is the result required.

10. Let z = = + ic where ¢ € R is a constant, so that z represents a line
parallel to the real axis. Then

sin z = sin(x + ic) = sinx cosh ¢ + i cos z sinh ¢



Write u = sinz(cosh¢) and v = cosz(sinh ¢). Then

u? v?

= 1'
. )
cosh?c  sinh®c¢

giving an ellipse in the wwv-plane, centred at the origin with semiminor axis
lengths of cosh ¢ in the u-direction and |sinh ¢| in the v-direction.
For a line parallel to the Imaginary axis we take z = ¢ + iy so we have

sin z = sin(c + iy) = sin ccosh y + i cos csinh y,
writing u = (sinc) coshy and v = (cos¢) sinh y we obtain:

u? v?

2

sinf¢  cos?c

which is the equation of a rectangular hyperbola centred at the origin with
asymptotes given by v = %(cot ¢)u.

Problem Set 3

1.
f(z) =22 = (z +iy)?* = (¢ — y*) + 2ayi
= u(z,y) = a” —y*, v(z,y) = 2ay.
2. We have
0 0 0 0
u(z,y) =2° —y* = a_z =2z, a_Z = =2y, v(z,y) =2y = 3_2 =2y, 3_: = 2z.
Oou Ov Ou ov
S == x;—:—y:——
or Oy oy Or
= f'(z) = 2z + 2yi = 2(x + iy) = 22.
f(z) =" =" = %W = e"(cosx + isiny)
= u(z,y) = €” cosy, v(z,y) = e’ siny.
4.
ou . ov Ou o . ov
— =e¢"cosy=—, — = —e’siny = ——
ar  © Y Oy’ Oy c 4 Ox
= f'(2) = e cosy +ie” siny = €*.
3.

3:—|—iy_3:2+y2 _332—|—y2 _ZI2_|_y2

1 1 T —1y x Ly
flz) =~



= u(w,y) = (2,9) = ———

21y’ T2
6.
ou (2 +y*)(A) - (2x)z Yy —a?
or (22 4 y2)? (2% 4 y?)?
ov (@ +y*)(-1) - (—y)2y) _ y*—2®  Ou
oy (2% +y?)? (224922 Ox
du  (0)(=* +y%) —2y(x) 2ay
gy (@4 (@t +y?)?
v (0)@*+y?) - Q2e)y 2y Ou
dx (2 +y?)? S (@ +y?)? oy
2_ .2 9 2
L=t P )
(@* +y2)? (2% +y?)? ((z +iy)(z —iy))?
- 1 1
o (w+iy)2 22
Hence for f(z) = 27! we have f/(z) = —2~2.
7. f(z) =% = a—iyso that u(z,y) = x and v(x,y) = —y. Then 3% = 1 while
g—Z = —1, so the first equation is violated and so f(z) = Z is not differentiable.
Comment The second equation does happen to hold however as: g—z =0=
v l
~gv

T
8. We have by the Cauchy Riemann equations that

%u 0 (80) 0%v

- 8_y - 0xdy

-~ %u _ 8 ov) _ 8%
0z?  Ox and 53 ( ) o

— 9y\ oz ~ Oyox

and so by equality of mixed partial derivatives, the sum of these two terms
vanishes.

9. First
ou 0%u ou 0%u %u  0%u

Hence u(z,y) is harmonic. We require v(z,y) to satisfy the Cauchy-Riemann
equations so we put

ov O

_7_114: — = — 2
9y ox 2 -2y =v(x,y) =2y -y + o(x)

for some ¢(x) to be determined. Then by the second equation we obtain:

% =¢'(z) = _Ou —(—22) =2z = ¢(z) = 2> +c.

w(ry) =22 —y? + 2y +c



10. z = re? = rcosf +irsind. Hence u(r,0) = rcosf and v(r,0) = rsin6.
Then
U v l1ov 1 ou
o = cosf, 20 = rcosf = pirv Rl -rcosf = cosf = 9
v . Ju . 1ou 1 . o, Ov
o= sin 6, 5= —rsing = 7 Rl (—rsind) =sinf = o
Problem Set 4
1. On C we have |z|] = 1. Using the standard parametrization z = e

(0 <t <27) we get dz = ie' dt and so

27
/ |z|dz = / 1-dedt = [e"]2™ = e*™ — 1 = 0.
c 0
2. On C we have Re(z) = cost = (e — e~) so we obtain:
/ Re(z)dz = & [Z7 (e e )eit dt = & [77 (e + 1) dt
c

iet g et 1 1 1
_ N o — = — 0] = ~ + mi — = = i,
gl T =gl e gy Ol =g g =
3. On C we have Z = e~" s0 we obtain:

27 o
/ zZdz = z/ e et dt = 2.
C 0

4. Parametrize the circle by z(t) = zo + pe' (0 <t < 2r). Then % = jpe’t
and the integral becomes

27 27
/ (peut)n . ipeit dt = ipn—i-l / ei(n—i—l)t dt
0 0

. 1 ; 2 pn+1 ;
_ n+1 nt _ 2t _ 0 =0.
5. If on the other hand n = —1 in the previous problem our integral becomes

2m
/ 1dt = 2mi.
0

6. Our parametrization this time is z(¢t) = e (0 < ¢ < Z). On C, |z| =1 s0
we get

™

/ St dt = [¢]
0

O wly

= (cosg —|—ising) — (cos0 +isin0)



=0+4)—(1+0)=i-1

7. Parametrizing the two line segments separately: in the first segment
z(t) = 1—1t, (0 <t < 1) so that dz = —dt and in the second z(t) = it
(0 <t <1)sodz =idt. Hence we obtain:

1 1
/|z|dz:—/ |1—t|dt+z’/ ]t
C 0 0

=0 2 i 1 -1
—[ D) +25}0—[(0+§)_(§+0)— B

8. f(2) = |z] = /22 + y2s0 that u(z) = (22 + 4?)? and v(y) = 0. Hence

g—; #* g—; so the CR equations are not satisfied.

9. Since 22 + 2 = z(z + 1) we use partial fractions to write the integrand as
é + zfl. By the cover-up method we get on putting z = 0 in 3;:15 gives that
_ 5 3245 3(=1)45 _
A= orT e =—— = —2. Hence our

integrand f(z) = 2 — Z27. This is analytic everywhere except the first term

fi(z) = 2 is not defined at z = 0 and the second fa(z) = —% at z = —1.
Using the result of Question 5 and the Principle of Deformation we now obtain:

5—61225/ %25-27T=107Ti.
|z

c < |=1 z

2d d
/ Z=2/ Y 9. 9r —ami
cz+1 lo+1|=1 %

/ 3§+5dz:107ri—47ri:6ﬂ'i.
c 2tz

= b and putting z = —1 in gives B =

Similarly

10. An anti-derivative of 2 sinh 22 is %cosh 2% s0 we get

cosh9 — cosh 1

[ cosh zz]?z = 5

[(cosh(—9) — cosh(—1)] =

N =
N =

Problem Set 5

1. €52 fails to by analytic at z = 0, which is inside the circle. Put f(z) =
cosz and zyp = 0. By the Cauchy formula we then obtain:

dz

0) = — -
JO) =55 | cosz 75

Ccos z . )
é/ dz = 271 - cos 0 = 2mi.
C z



2. Note that Zfil =G +i§§z_i), which is defined and analytic everywhere
except z = +i. For the first circle, only z = —i is in the circle |z +i| = 1 so set
2
f(z) = Z= and zp = —i. The Cauchy formula then gives:

fo=gm [

T J iy 2 — 0 2t
2 . 2 .
z°dz —1 —2mi
= = omi- (=) _ =2
lo+il=1 27+ 1 —1—1 —21
3. This time only z = i lies inside or on the circle |z —i| = 3 so put

f(z)= zz—jz and zg = i. By the formula we get:

1 2 d
1) = 5= =
27 lo—il=3 2+ 1 2z —1
N 22 dz o2 —2mi
— =27 - = =—7
lo—ij=1 2% + 1 i+ 21

2

4. We may re-write the integral as

1.2
ZZ
———dz.
/lzl—l (z—3)

Now z = % lies within the circle C' and the integral is in the form of the

derivatives formula, with f(z) = é and n =1, 2o = 5. Applying that formula
then gives
2
1 1 =
! 4
-) = — _— d .
f(2) 21 |z|=1 (Z—%)2 :

Now f’(z) = £ so that f'(3) = ;. Hence

22 2m .1 2wt mWi
_—_— d = — "z = = —,
/z_l PEEE PR A Vel

5. We have z = 0 lies within the circle so set f(z) = cosz, n =1 and 2z = 0.
Then f/(z) = —sin z and by the derivatives theorem:

-
/ 8% gp = 2T £(0) = —27i - sin 0 = 0.
|z|=1 z 1!
6. Again z = 0 lies in the circle. This time set f(z) = e, n=2and z = 0.
Then f'(z) = 322¢* and f”(z) = 6ze* + 9z%* = 3¢* (22 + 3z%). By the
derivatives theorem we obtain:

3

e omi s N
/z_l ?dz = T - 3e (2Z—|—3Z )z:O = 0.

10



7& 8. Since w = z+1 we have z = w—1 and so 4—6z = 4—6(w—1) = 10—6w
and 222 —32+1=2(w—-1)2-3(w—-1)+1=2w? —4w+2—-3w+3+1=
2w? — Tw + 6 = (2w — 3)(w — 2). Hence

4—6z 10 — 6w 5— 3w A B

3211 Gu-3)w-2 (@-Dw-2) w3 w-2

by the cover-up rule

5- 9 5-6
A=5—=-1,B=—5=-2
5_2 2—5
5 — 3w 1 2 % 1
3 =3 + = 5— + -
w-Bw-2 3w 2w 1 Zw -2
Hence for lw| < § we have — 2 =1+ 2w+ (3w)? + - while for |w| < 2 we
have 15 T T =1+%24+(2)2+. Therefore
5— 3w 202 w — 2 i
(w=(w=2) ;(3(3111) +(35)") ;J((g) +(5)"w", Yw; [w]| < 5. Hence
4—62 > 9 11 1 3
CyC Ry )" )" n" <=,
57 3t 1 ;((?) + (MDY e+ 1] < 5

Comment This final series has centre —1 and radius of convergence of %
This approach via partial fractions and geometric series is much quicker than
directly deriving the series by differentiation.

9 & 10. Cross-multiplication gives:

B B
z:(ez—l)(l—l—Blz—F—z—F Rk L )
2! 3!
52 3

z B
=z2=(z —I—g—ky—l— )(1+B1z+7z +--)

B By Bs
=>z=z+ 1z+2' —l—?z—i—

1 B> 4, Bs
Fo (P Bi A 225

2! TN
1 By
ﬂ“z+Bﬂ—w§z+ )+
1 By B; 1 Bs By B 1 By By By, By 1

2 2 1 3 2 1 4 3 2 1

= Bi+= e il —)...
e (Brt o)+ (G4 )2 (e T gt (g Y Ty )

Hence equating coefficients now gives By + l = 0 so that By = —%. Next
%:i—émmmeﬁﬂaza M+———yw1ﬁzmm =t —
0) = 30

11



Problem Set 6

1. Writng u,, to denote the nth term of the series we get

Upgr, (L +ntt v 1+ V12412 V2
2 = | Tl =1l = =5 <!
Un 27t (144" 2 2 2 ’

and so the series converges (absolutely).

2. Putting z + 1 = 0 so we get that the centre is z = —1. Again taking the

absolute value of the ratio of successive terms gives and bounding it strictly by
1 gives:

32(n+1)(1 +Z)3(n+1)
327 (1 + z)3" | =B+2)% <1

1 1
= (1 -2 < —.
G+2)P <542l < 52
Hence the radius of convergence is —=

3. Centre is z = 0. As for the radius of convergence we put

Zn

|(n—|—2)5”+1z”+2| |z(n—|—2)| N .
= —asn — 00.
(n 4 1)5n+2zn+l 5(n+1) 5
Hence the series converges if % < 1, so the radius of convergence is 5.
4.
Zny1p (41Dl 140" (n+1)
‘ ‘_‘ nlen—i-l 1+Z n+1 ‘ ‘

\ 00,
e(l+1)
so the series diverges.

5. ,
oL0g(2) — nlz|+iArg(2) _ ,inlz| iArg(2)

= |Z|61Arg(2) =

2

Log(i) = Ini| +iArg(i) =0+if = in

2
Log(1l+ i) = In|l + 4| + iArg(1 +i)= In(v2) +iT = 1 In2 +iZ

Log(—i) = In| —i| + iArg(—i) = 0+ i(_g) m

Log(4i) = In |4i] + iArg(4i) = 2In2 + iZ.

7. Clearly both sequences approach the limit ce’™ = —a < 0. Now

Log(an) = Log(ae!™ %) = In|a| 4 i(r — L)y > Ina+im;

12



however
Log(byn) = Log(aei™ i) )=In|a|+i(—m + Ly > Ina—ir.

8. Here we have u(r,0) = In(r) and v(r,0) = 6
1
ur(r,0) = =, ug(r,8) =0, and
T
v (r,0) =0, ve(r,0) = 1;

and so recalling the formulae from Question 10 Set 3, we see that the CR
equations in polar form, which are:

ou 10v Ov 1@

ar  rde or  rof

are satisfied, remebering that v(r,0) here is only differentiable for r # 0 and
—T <0 <.
9.
log(z122) = In |21 22| + iarg(z122)

=In|z1| 4 In |22| + i(argz1 + arg(z2))
= (In[z1] + iarg(z1)) + (In 22| + i arg(22))
= log(z1) + log(z2).
Similarly
log (z—;) = ln‘i—;‘ +iarg (z—;)

—In (%) +i(arg(z1) — arg(z2))

= (Infz1] +iarg(z1)) — (In(|22] + i arg(z2))
= log(z1) — log(22).

10. Here we have z; = —2i and z9 = —i:

log(z1) = log(—2i) =In2+ z(—g + 2nm), n € Z,

log(z2) = log(—i) = i(—g +2n7), n € Z;

noting that z120 = (—2i)(—4) = 242

= —2, we compare this to
log(z122) = log(—2) =In2+i(m + 2nw), n € Z

and so we we see that log(z122) = log(z1) 4+ log(z2) as the arg term in both cases
runs over all odd integer multiples of =. However

Log(z1) =In2 —iF, Log(z2) = —i7,

13



Log(z122) = Log(—2) = In2 + i,

and so
Log(z1) + Log(z2) = In2 — im # Log(z122).

Problem Set 7

1 1 1
= =2(1 2. ...
z—22 z(1-2) z( tetsite)
b et = 3 2 <
— z z e e — z z .
< n=-—1 7
2.
3—z 3—z 3—z 9. 4 om . 9 '
e T R (1427424 427"+ ), with |22 <1 & 2] < 1
3 1 2.3 4_ 5 6_ 7 : .
= —2—;+3—z+3z —2°432%—2°+3x°—2z"'+- - -, so centre is 0, radius of convergence 1.
z
3. Put w=2z2—1sothat z=w+ 1. Then
r 1 B 1
1—22 (1-21+2)  ww+?2)
1
-5 1 w w w
2 - v N2 (N2
1 1w w? . w
:—%—i—z—g—l—l—(j—---,prov1ded|§|<1<:>|w|<2.;
1 1 z—1 (2—12 (z—=1)"
= =— —— — (D), |z—1] < 2.
1(z) 2--1) 1 8 16 HED ot

4 -7. By partial fractions f(z) = (7 — =) and f(z) is not defined
at z = —1 and z = £24. This gives three regions to consider defined by the
inequalities (i) |z| < 1 (ii) 1 < |2] < 2 (iii) |2| > 2. Overall 1-+z =3 o(=1)men,
when |z| < 1 and

I % 1 22 2t 28 z2n

R - (1L 2 (1) ) 2.
1+22 142 1 + o (P ), for 2] <

(i) For |z] < 1 both of these series converge, so



n=0 n—=
1111 1, 1, 11,
=G 5t Gy s (5ot

(ii) For 1<|z|<2 , the series for 4Jr%is valid but not the one for Fll Instead
we use
1 1 1 1 1 1

- — 21— 44— 2 4., provided L <14 |z] > 1.
10+ D z( St st ), provided || |z]

Hence in region (ii) we have a proper Laurent series:

F&) = g D) = s S (-1

n=0 n=0

While for region (iii) the Laurent series for ﬁ is valid but we will need the

. . 1
COI“I'eSpOIIdlIlg series for 112"

1 1 Z"" 2\n
_— = — —1 niZ .
z2(1—|—;i2) 22 n:O( ) (z)
Summing the two series gives for this region:

1 2 1 3 1 17
5z 5z2  5z3 Bzt 55 526

f(z) =

8. f(z) = <5£% is singular at zo but is analytic otherwise. The pole at
zo = 0 is of order 4 so

d471

Res.—of(2) = iz ((2 = 0)*¢%#) [.=o

1 .
= QE(COS 22)|2=0 = 6 23 sin2z|,—o = 0.
9. Here f(z) = % has a pole of order 2 and z = —1 and a simple pole

at z = 2. For the latter case put P(z) = 224+ 11z+1and Q(2) = (2+1)?(2—2) =
2% — 3z — 2 to find

2
Res:—2f(2) = gy = “5a|op = 5 = 3.

Using the formula for a pole of any order we get
2—1 2
Resz:71f(z) = (2_11)! ' —ddz271 ((Z + 1)2 ' (Zz+41r)_121(zztl2))’22_1

7£(22—|—112+1)‘ 7(22—42—23)‘ —_18
T dz z—2 z==1 " (z —2)2 z=—1" 9



10. f(z) = sec z is singular when cos z = 0, which is when z = nm+7 Vn € Z.
Now Q(z) = cos z has Q’'(z) = — sin z, which is not zero at any of these singular
points so the poles are simple. Putting P(z) = 1 and Q(z) = cos z then gives

_ 1 }
|z:nﬂ'+% T —sinzlz=nr+3%

==+1

Resz:mr+% f(z)= 5/((2))

according as z = 2nm + 5 or z = (2n 4+ 1)7 + .

Problem Set 8

22 —2i22 —2=062(:2-2iz2—1)=0& 2(2—i)*>=0
S z=0o0rz=1.

Hence f(z) has zeros at z = 0 and z = i; f/(2) = 322 —4iz — 1, f"(2) = 62 — 4.
Then f/(0) = —1 # 0 so that f(z) has a simple zero at zo = 0. And f'(i) =
—34+4—1=0but f(i) =6i+4 # 0 so that f(z) has a zero of order 2 at .
2. tanz = 0 & sinz = 0 & 2z = nw (n € Z). Next, f/(z) = sec? 2z so
f'(nm) = 45 # 0 so that all the zeros nr of f(z) are simple zeros.
3.

z 1 z
& =m—1=1 71
so that f(z) has a simple pole at each of z = 1, each of which lie inside of C.
Putting P(z) = z and Q(z) = 22 — 1 so that Q'(z) = 2z. Hence
Resz:%f(z) =Z =1= Resz:_%f(z).

2z lz=3

/ dz _am L 1y m
c422—1 4 ‘2 2/ 27

4. cosz =0 z=mnm+ 7, (n € Z). None of these zeros lie inside of C, so

by Cauchy’s theorem [, edz —

5. The integrand sin(z*) is analytic inside C so that fFR sin(22) dz = 0.

6. The integrand f(z) is singular only at z = 1, which lies inside I'g and
(z — 1)f(2) is not singular at z = 1, which is therefore a simple pole. The

required residue is

=

Hence

22
by = lim —— = —e¢
z—1 1
ez2
= dz = —e
rgt—=%

16



7. Here f(z) has singularities at +1, and both these points lie within the
contour I'g. Now
sin(z — 1) . sin(z—1) 1 1 1

lim = lim - lim =1-===,
=1 (z—=1)(z+1) =2=1 z—1 2o1z+1 2 2

so that z = 1 represents a removable singularity of f(z). On the other hand,

) sin(z — 1) sin(—=2) 1 .
| 1)- = = —sin2
Z_l)IT_ll(Z +1) CrlGe=1) = 5 sin and so
i -1 1
/ smgzi) dz = —sin2.
Tr z¢—1 2

M M
/F|F(z)|dz < o mR= 10

since the length of the arc I is 7R. Then

lim /|F(2)|dz:O:> lim [ F(z)dz=0.
R—oo Jp R—oo Jp
9. If z = Re'?,

110 P L . S S
~ IROe®9 1 = JR69] 1 R6—1 — RO

if R is sufficiently large (R > 2), so we take M =2, k = 6.

Comment Note we used the inequality |21 +zo| > |21| — | 22| with z; = R6e%%
and zo = 1.

10. Let C be the closed contour consisting of the line from —R to R followed
by traversing the semicircle I' centred at 0 of radius R above the real axis. The
roots of 26 4+ 1 are z = e*7/6 where k = 1,3,5,7,11 and these all represent
simple poles of 25 + 1 and the only ones inside of C' are when k = 1,3,5. The
respective residues are, (using L’Hopital’s Rule)

im 1

1
li —e6)—"— )= lim —— = ~¢~ 6
o (=) 77) i 5E T 5¢
i3m 1 1 ™
lim ((z—e 5 ) )= lim = —e 7
2o 8T 26 +1 g 6256
107 1 1 1 s
lim ((z—esT) 5 ) li == e =
z— 5z 241 oG 6z 6
dz . 1 57 i __ 257 2T
?gczﬁ [ =2miGleT T e T reTe ) =5




Taking the limit as R — oo and using the result of Question 9 then gives:

/OO de. 2w
b +1 37

Problem Set 9

1.
of 1,0 .0 .
Frie 5(% +za—y)(u+w)
1 .
= 5((“1 —vy) +i(uy +vg))
but by the Cauchy-Riemann equation, u, = v, and u, = —v, so that % =
2.
1,0 0
R i) =-(1+0-0+1)=1;
355 i)t = 5140041 =1

1,0 .0 )
5(@ +la—y)($ —1iy) =

N~ N

(140+0+1)=1.

3. The function zsin z is analytic throughout C and, integrating by parts,

we find the anti-derivative F'(z) = —zcosz + sinz in any simply connected
domain containing the curve . The parametric representation of the curve y(t)
is = Ze (—m <t <0). Then a = me~ 2 = —7 is the initial point of the

0

curve (th lower limit of integration) and b = S = Z is the upper limit. Hence

/zsinzdz = (—zcosz—i—sinz)iz%g =0+4+1)—-(0-1)=2.
y

4. The points a and b both belong to the interior of 7, so we can apply
Cauchy’s theorem for multi-connected domains to obtain:

I:/V(z—a)gfz—b)”:[m ((ZZ__bi)_nndz—i—/%%dz:h—i-Ig

where v, and 3 are contours around the points a and b respectively.
Now by the Cauchy integral formula we get

21 dnl 2mi (2n —2)! 1
f=—— —p)" g = -1 n—1 .
ks Gl ] R AR A Py R
and in exactly the same way we get
2mi 1 (2n—2)! 1
I,———(—1)"! . :
Q(n—l)!( ) m—11 (b—a21

18



Therefore I = I; + I, = 0.
5. In this case b lies outside of v so that I = f,ya and so by Question 2:

211 n_
=Gt

(2n — 2)! 1
(n—11 (a—b2—1

6. The integrand is now analytic inside and on the boundary of v so by the
CIF we have that I = 0.

7. The points of singularity of the integrand are +3i. The contour 7 is a
circle of radius 2 centred at —2i so only —3i is interior to 7. Therefore we may
take f(z) = 1/(z — 3i) and from the CIF we obtain:

1 — 31 1 1
/ 2dz :/ [z 31) dz:27ri[—,} g = 2mi— =T
4 +9 5 z+ 3 z— 3 FTT —61 3

8. The integrand has a pole of order 4 at the point z = —2 interior to the
circle |z + 1| = 2 so the CIF gives

_ 2mi &3

. i)
= T@(Slnzﬂz:fQ = —g cos 2.

9. Use the McLaurin series for cosine:

> n22n 22 4
s =) D g Tyt
n=0
. - n " 1 z 22
:>cos\/E—Z(—) )l = _E_FI_...,
n=0

Comment The potential ambiguity in the |/ sign is inconsequential here as
cosine is an even function.
10. Now
4 -2y =042+ (y— 1) =1
2
x
& —1)? =1

so 7 is an ellipse centred at (0,1) with z-axis [—3, 3] and y-axis [0,2]. The
denominator of the integrand is (z + i)?(z — i)?. The singularities are at +i of
which only ¢ lies within +. Hence apply the CIF with f(z) = (Ze_k—l)Q and zg = i.

Hence
™z

I =2mif'(2) = 27Ti[(26+7i)2]/|z:i
o mem (24 1)? — 2™ (2 + 1) _
= 27T’L{ (Z+Z)4 ]Z:’L

= 2ﬂi[€ﬂz(w)]z:i

(z +1)3

19



i — 2
~8i )=

= 2mie™( e™ (1 — ).

ro] 3

Problem Set 10

1. n® = eIn™)s g4 that

k!
k=0
=1 2 (In(n)s)* | 1
=)= —=> 0 )
n=1 n=1 k=0
2.
1 1 =1 1 1 1
1——)'= = =1+ —+ 5+ F. 4
( ps) 1_1%5 kzzopsk ps p2s p38 ()

3. Consider the expansion of IT,(1 — #)’1 that comes from replacing each
term in the product by the corresponding series as in (8). We get the sum
of the reciprocals of all prime products, each raised to the power s. By the
Fundamental theorem of arithmetic, each positive integer n® occurs once and
(by uniqueness) once only as a denominator term so we conclude:

1 1
m,(1-— =)= — =
P10 =3 e =)
= 1 1 1
— 1—s — j— -« — J— J—
(1=2"79)¢(s) = (1 =2 ) (L 55 + 55 ++7)
1 1 1
=(1+—+ — R N ¥ (i T
I+ s+t (25+4S+65+ )
1 1 > 1
1 = - = - = _ n+l_—
Sl ets et ;( 1) —
1 > 1
. — _1 n+1_
2.C(s) T n§:1( ) e

and since the series on the right converges for all s such that R(s) > 0, we see
that this formula defines a function that extends {(s) to all values of s to the
right of the imaginary axis (except 1).
5.
2 2

o0
z z 1 22 Z ( 22 )k
n2m2 — 22 p2p2 1 _ 2. p2p2 e n2n2’

n2m2

20



Hence from the Euler identity:

X2 X2 o o 00 1 5 2k+2
zootz =1- 22 n2n2 (Z (H) )=1- 22(2 n%”)w%”)
n=1 k=0 k=0 n=1
o0 oo
1 Z2k
=1-23 3 =)
k=1 n=1
6.
. cos z e +e7®) €241 2iz N ize?® — iz
zcotz =z =z - —— = 2 = — -
sin z %(ezz _ efzz) 6212 -1 e?zz -1 e?zz —1
az(e*® —1) 2iz 2iz
T e2iz +€2iz_1 _zz+e2iz_1'

7. By Question 9 Set 5 we have 2= = Z;OZO BZ—’fk, so applying this to the

e*—1
result of the previous problem we obtain:

X By(2iz)*
zcotz =1z + Z —
k=0
and since Bp =1 and By = —% we have by Question 5:
. By(2iz)k = 22k
zeotz =1+ ZT =1- ZZC(Zk)ﬁ.
k=2 k=1

8. Equating the coefficients of 22* we get that for all integers k& > 1:

Boy22ki2k 2((2k)

(2k)! g2k
- (_1)k+122k7.r2k32k
9. i
Z (kjl)Bj =0,By=1
j=0

and so By + G)Bl = 0 whence B; = —%. (However Bgyy1 = 0 for all &k > 1.)

Next 3 5
By + (1>B1 + (2)32 =0

3 1
=1—=-+4+3B=0= By = —;
2+ 2 2 6

4 4 4
By + (1)31 + (2>Bz+ (3>Bg =0

21



=1-24+1+B3=0= B3 =0;

5 5 )
By + (1)314— <2>B2+ <4>B4—0

:>1—g+16—0+5B4:0
—6+15—-10 1
30 T30
(—1)k+192k 2k By, ©
2(2k)! '
From (9) we have for k =1, and for k = 2:

= By =

= ((2k) =

i I @) = (-1)%2'7'B, 167" !
ot N 2(4!) ~2(24)(30)  90°
10. s
C(s) =2(2m)*~! sin(;)l"(l —s)C(1—-s),R(s) <1
Putting s = —2k in the functional equation we see that the factor sin(%) =

sin(—km) = 0 so that ¢(—2k) = 0.

Comment The negative even integers are known as the trivial zeros of the
zeta function. The more interesting ones are the ones in the criticial strip
0 < R(z) < 1: the celebrated Riemann hypothesis is that all these zeros have
R(z) = 1.

On the other hand taking s = —2k + 1 we obtain:

C(=2k + 1) = 2(27) 22 sm(W)r(%)qzm
_ F(Qk)(—l)k+122k+lﬂ'2k32k B (_1)k+1r(2k)B2k
- 92k+212k+2 - 472 :

22



