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Solutions and Comments for the Problems

Problem Set 1

1. Let t1, t2 be the times of the walk and the 
y
le ride respe
tively. Sin
e

d = vt we get two expressions for the distan
e, those being d = 4t1 = 12t2,
when
e t1 = 3t2. We also have t1 − t2 = 1

6 hours. Hen
e 3t2 − t2 = 1
6 ⇒ t2 = 1

12
hours. Therefore the distan
e is 12× 1

12 =1 mile.

Comment The di�
ulties with this problem is that the student needs to

introdu
e his or her own symbols to stand for the quantities that are the subje
t

of the equations that are impli
it in the information o�ered. The other sour
e

of mistakes is in 
onfusing the units involved as the speeds are in miles per hour

and the times are in minutes. You need to work with one time unit or the other.

If you don't, false fa
tors of 60 will emerge in your answer. This kind of mistake


an be dete
ted by asking yourself whether your answer looks sensible given the

fa
ts of the problem. A moment's thought will reveal that you must have made

a slip somewhere. The problem is simple enough to argue other ways: the bike

is 3 times as fast as walking so when the bike arrives, the walker has

2
3 of the

journey to go and that takes 10 minutes. Hen
e the walking time is 10× 3
2 = 15

minutes: in

1
4 hour, the walker travels

1
4 × 4 = 1 mile.

2. Speed from X to Y is 35, from Y to X is 25 km/hr. Let t1, t2 denote the
respe
tive times of outward and homeward journeys. Then 35t1 = 25t2 ⇒ t2 =
7
5 t1. Also t1+ t2 = 2, from whi
h we see by substitution that

12
5 t1 = 2 ⇒ t1 = 5

6
hours. The distan
e from X to Y is thus:

5

6
× 35 =

175

6
= 29

1

6
km.

3. As you set out you will �rst meet the �ve trains travelling towards you that

have already left London and you will also meet the next �ve that leave while you

are travelling (the �nal one will just be pulling out as you arrive), so the answer

is 5 + 5 = 10. If the journey took two hours, this would double the number of

trains leaving per unit of travel time and you would meet 2× (5+5) = 20 trains
going the other way.

Comment These 
al
ulations explain why you always meet surprisingly many

trains going the other way, whi
h makes you wonder why it often turns out that

you have to wait so long for the next train when you are standing on a 
old

station platform. It applies to all kinds of tra�
�there always seem to be

lots of 
ars and pedestrians going past you in the opposite dire
tion. Another

similar sour
e of 
onfusion is that although a 
ar may roll o� the assembly line

every two minutes, it does not follow that it takes two minutes to assemble a


ar. It may take many hours, it is just that hundreds are simultaneously being

assembled at on
e, with them all being at di�erent stages of produ
tion at any

given moment.
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4. The relative speeds of the trains is 25 + 25 = 50mph so the 
ollision will

o

ur in 1 hour, in whi
h time the �y will have �own 50 miles.
5. Di�erentiating x2 + y2 = 25 with respe
t to time t using the Chain Rule

gives:

2xẋ+ 2yẏ = 0 ⇒ ẏ =
(

− x

y

)

ẋ.

When x = 4, y = 3, ẋ = 2 (given), so that y|x=4 =
(

− 4
3

)

(2) = − 8
3 m/se
.

6. Solve

2m0 =
m0

√

1− v2

c2

⇒
√

1− (v2/c2) =
1

2
⇒ v2

c2
=

3

4
⇒ v =

√
3

2
c.

Comment And so the mass doubles as its velo
ity approa
hes 87% of the

speed of light.

7. We have

x(t) = A sinnt+B cosnt ⇒ ẋ(t) = An cosnt− Bn sinnt

⇒ ẍ(t) = −An2 sinnt−Bn2 cosnt = −n2x(t).

8. We have A sinnt + B cosnt = R cos(x − α) where R =
√
A2 +B2

and we may put α = tan−1
(

B
A

)

. Hen
e the interval of motion has endpoints

±
√
A2 +B2

. The maximum �rst o

urs when x = α = arctan(B
A
). The mini-

mum �rst o

urs when x = α+ π = arctan
(

B
A

)

+ π.
9. The nearest thing to a `straight line' is the path ABH , where B is on

the rim of the glass and is su
h that the line ABH has no kink in it. This has

length L given by

L2 = 42 + 32 = 25,

so that L = 5 in
hes.

10. After the passing of midday, up to and in
luding midnight, the dire
tion

of the hands 
oin
ide on 11 o

asions (yes, 11, not 12) all equally spa
ed in time,
and so

12
11 = 1 1

11 hours elapse between two su

essive 
oin
iden
e of dire
tion.

Comment Alternatively, the minute hand runs at 1 
y
le/hour while the

hour hand runs at

1
12 
y
les/hour. The �rst time t in hours when the minute

hand `laps' the hour hand is when t = 1 + 1
12 t, whi
h gives

11
12 t = 1, whi
h is

to say that t = 12
11 hours. A third `hare and tortoise' approa
h will draw you

into a problem involving summing an in�nite geometri
 series. See my book

Mathemati
s for the Curious (Oxford University Press, 1998).

Problem Set 2

1. From v = u + at we get v2 = (u + at)2 = u2 + a2t2 + 2uat. From

s = 1
2at

2 + ut we get 2as = a2t2 + 2uat; substituting this into the previous

equation then results in v2 = u2 + 2as.
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2. Use s = 1
2at

2 + ut and put u = 0, t = 20 and s = 500 to obtain

500 =
a

2
(20)2 ⇒ a =

2× 500

400
= 2 · 5m/se
2.

3. We use v2 = u2 + 2as, where here a = 1, s = 50 and u = 0 giving

v2 = 2 · 1 · 50 = 100, so that v = 10m/se
.
Comment This question was put to a team on University Challenge who got

it wrong - it's not easy to see through a 
al
ulation involving a square root when

you are put on the spot!

4. The average speed in m/se
 of the 
heetah is

u+ v

2
=

6 · 20 + 23 · 1
2

= 14 · 65

and so the ground 
overed is 3 · 3× 14 · 65 = 48 · 35m.
5. We have u = 7 · 7, a = −9.81 and at the top of the toss, v = 0. Hen
e the

maximum height s rea
hed by the ball is given by

02 = (7 · 7)2 − 2(9 · 81)s ⇒ s =
(7.7)2

2(9 · 81) = 3 · 02m.

6. Put s = 0 in s = 1
2at

2 + ut and dividing through by t (t = 0 is the trivial
initial solution) we obtain

u− 1

2
gt = 0 ⇒ t =

2u

g
=

2(7 · 7)
9.81

= 1 · 57 se
.

7. Putting s = 0 and t = 6 in s = 1
2at

2 + ut gives u − 3g = 0 ⇒ u = −3g.
Maximum height o

urs when v = 0 and so from v = u+at we obtain t = −u

−g
=

3g
g

= 3; at whi
h point we have

s =
1

2
g(32)− (3g)(3) =

9

2
g − 9g = −9

2
g = (−4.5)(−9.81) = 44.1m.

8. From the �rst formula we get

t =
x

V cosα

so that

y = (V sinα) · x

(V cosα)
− 1

2
g
( x2

V 2 cos2 α

)

= x tanα− gx2 sec2 α

2V 2
.

9. Applying the equation of Question 8 we get

y = x tan 45◦ − gx2z sec 45◦

2(30)2
= x− 10

√
2
2
x2

2× 900
= x− x2

90
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⇒ y′ = 1− x

45
.

The horizontal 
omponent is 30 sin 45◦ = 15
√
2ms−1

. Given that x = 30, then
y′ = 1 − 30

45 = 1
3 = tan θ. The dire
tion of travel is thus tan−1(1/3) above the

horizontal. Repla
ing 30m by 50m we get y′ = 1 − 50
45 = − 1

9 so that the angle

is tan−1(19 ) below the horizontal.

10. The equation of Question 8 gives

y = x tanα− 3x2

8h
(1 + tan2 α).

At (h, h/8) this gives:

3 tan2 α− 8 tanα+ 4 = (3 tanα− 2)(tanα− 2) = 0,

whi
h has solutions tan−1(2/3) and tan−1 2.

Problem Set 3

1. Using F = ma we get F = 2× 103 × 2 · 5 = 5× 103N.
2. We have ẍ = a say so that ẋ = at as ẋ = 0 when t = 0. But ẋ = 36km/hr

= 36000
60×60 = 10m/se
 when t = 10 so that 10 = 10a, whi
h is a = 1m/se
2. Hen
e

F = ma = 2× 103 × 1 = 2× 103N.
3. Taking the downward dire
tion as positive and let the for
e on the s
ales

be denoted by F . The net for
e on the person in the positive (upward) dire
tion
is then, by Newton's 3rd law,

F −mg = mf ⇒ F = m(g + f).

4. Let B denote the balloon's buoyan
y. The net for
e on the balloon is

then B −m1g = m1f and hen
e B = m1(g + f).
5. The buoyan
y of the balloon in un
hanged but its mass is now m1 −m2

and so the net for
e F on the balloon is F = B − (m1 −m2)g upwards, and so,

using the result of Question 4:

F = B − (m1 −m2)g = m1(g + f)− (m1 −m2)g = m1f +m2g.

Hen
e the new a

eleration equals

for
e

mass

= m1f+m2g
m1−m2

.

6. Let the y-axis be dire
ted verti
ally upwards and let the unknown height

by h and put t = 0 when the stone is dropped. We have ÿ− g so that ẏ = c− gt
say. Sin
e ẏ = 10 when t = 0 we have c = 10. Hen
e ẏ = 10 − gt and so

y = k + 10t− 1
2gt

2
. But y = h when t = 0 and so k = h;

∴ y = h+ 10t− 1

2
gt2.
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Now y = 0 when t = 8 and so substituting a

ordingly we obtain

0 = h+ 80− 32g ⇒ h = 32g − 80 ≈ 233 · 9m.

7. Let B denote the buoyan
y for
e a
ting on the balloon and the eje
ted

ballast be m. By Newton's 2nd law we have initial and �nal equations:

Mg −B = Mf1, B − (M −m)g = (M −m)f2;

adding these equations gives mg = Mf1 + (M −m)f2 and so

m =
M(f1 + f2)

g + f2
.

8. Thrust of the air
raft in Newtons is 2 · 5 × 105 + 6× 103t. By Newton's

law

2 · 5× 105 + 6× 103t = 105ẍ

⇒ ẍ = 2 · 5 + 0 · 06t ⇒ ẋ = 2 · 5t+ 0 · 03t2 (as ẋ = 0, when t = 0)

and so sin
e ẋ = 180km/hour = 180×1000
60×60 = 50m/se
 at the required time t we

obtain

⇒ 50 = 2 · 5t+ 0 · 03t2 ⇒ t =
−2 · 5±

√
6 · 25 + 6

0 · 06
and it is the positive root that is relevant, giving us

t =
−2 · 5± 3 · 5

0 · 06 =
100

6
=

50

3
se
onds.

9. We put y-axis verti
ally downwards and set y = 0 and ẏ = 0 when t = 0
(when obje
t was dropped). Let y = h denote the level of the window sill.

Equation of motion is ÿ = g ⇒ ẏ = gt ⇒ y = 1
2gt

2
. Let the respe
tive times

when obje
t rea
hes the top and the bottom of the window by t1and t2when
y = h− 2 and y = h respe
tively. Then

h− 2 =
1

2
gt21 ⇒ t1 =

√

2(h− 2)

g

h =
1

2
gt22 ⇒ t2 =

√

2h

g
.

Thus

1

12
= t1 − t1 =

√

2h

g
−
√

2(h− 2)

g

and we are asked to �nd h. Square and multiply by g:

g

144
= 2h− 2

√

4h(h− 2) + 2(h− 2)
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⇒ 2
√

4h(h− 2) = 4h− 4− g

144
; square again:

16h2 − 32h = 16h2 − 8h(4 +
g

144
) + (4 +

g

144
)2

⇒ 8g

144
h = (4 +

g

144
)2 ⇒ h ≈ 30 · 36m.

Comment Alternatively, it is qui
ker to use an average speed argument as

follows. The mean speed of the obje
t as it passes the window is 2/(1/12) =
24m/se
, whi
h will be attained at the window's midpoint, M . The time t taken
to fall to M satis�es gt = 24 so that t = 24

g
. The average speed of the obje
t

as it falls to M is 24/2 = 12m/se
. Hen
e the distan
e h− 1 fallen to rea
h M
satsi�es

h− 1 = 12t =
12× 24

g
⇒ h = 1 +

288

g
;

and so h = 1 + 288
9·81 = 30 · 36m.

10. As a fun
tion of time your velo
ity is 40− t while that of the other 
ar
is 30t. You will gain on the other 
ar up to the point when your speeds mat
h,

whi
h is to say 40− t ≥ 30, that is t ≤ 10. Measuring from your initial position,

the positions of your 
ar and the other are respe
tively 40t− 1
2 (1)t

2
and 50+30t.

When t = 10 these return the same value of 350m, so that you do just 
at
h

the 
ar.

Comment Alternatively, solve when the positions of yourself and the other


ar 
oin
ide: 40t − 1
2 t

2 = 50 + 30t so that t2 − 20t + 100 = (t − 10)2 = 0.
Hen
e you 
at
h the 
ar at t = 10 but do not pass, for if you did, the other 
ar

would eventually pass you again as you are de
elerating, but there is no se
ond

solution to the quadrati
.

Problem Set 4

1. By Newton's law and Hooke's law, mg = λx0

l
so that λ = mgl

x0

Newtons.

2. Writing ω =
√

λ
ml

we 
onsider the homogeneous equation ẍ + ω2x =

0. The 
hara
teristi
 roots of this equation are ±ωi, whi
h yields the general

solution x(t) = A cosωt+B sinωt or equivalently x(t) = C cos(ωt+ε) (A,B,C, ε

onstants). Our equation (1) has the form ẍ + ω2x = g and so its general

solution has the form x(t) = C cos(ωt+ε)+k for some 
onstant k. Substituting
a

ordingly gives ω2k = g so that

k =
g

ω2
=

gml

λ
=

gmlx0

mgl
= x0.

Hen
e our general equation of motion is

x(t) = C cos(ωt+ ε) + x0.
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3. We apply the initial 
onditions to our solution:

ẋ(0) = 0 ⇒ −ωC sin(ω(0) + ε) = 0 ⇒ ε = 0;

a = C cos(ω(0)) + x0 ⇒ C = a− x0;

and so our solution is

x(t) = (a− x0) cos(ωt) + x0, where ω=
√

λ
ml

. (1)

4. The period of this solution is

2π
ω

and the frequen
y is the re
ipro
al of the

period:

ω
2π . The maximum extension d of the spring �rst o

urs when ωt = π

2 ,

whi
h is to say at t = π
2ω and that maximum is a− x0 +x0 = a. In other words

the maximum extension 
orresponds to the intial position from whi
h the mass

is released.

5. Writing v for ẋ we have by the Chain rule that v dv
dx

= dv
dx

dx
dt

= dv
dt

= ẍ.
We therefore may write (1) as

ẍ+ ω2x = g ⇒ v
dv

dx
+ ω2x = g

⇒
ˆ

v
dv

dx
dx =

ˆ

(g − ω2x) dx

⇒ 1

2
v2 = gx− ω2

2
x2

⇒ v = ±
√

2gx− ω2x2.

Comment The two opposite solutions 
orrespond to the dire
tion of the mass

as it rea
hes a given point x.
6.

d

dx
(
1

2
ẋ2) = ẋ

dẋ

dx
= ẋ

dẋ

dt
· dt
dx

= ẍ.

7.

W =

ˆ s

0

F dx =

ˆ s

0

mẍdx =
m

2

ˆ s

0

d

dx
(ẋ2) dx

=
m

2
[ẋ2]s0 =

1

2
mv22 −

1

2
mv21 .

8. The work done by the gravity is mg(h1 − h2) and so by Question 7 we

obtain

mg(h1 − h2) =
1

2
mv21 −

1

2
mv22

⇒ mgh1 +
1

2
mv21 = mgh2 +

1

2
mv22 .

Comment The term

1
2mv2 is 
alled the kineti
 energy of the moving obje
t

of massm and the termmgh is the potential energy of the obje
t that is a height

h above a �xed referen
e point. The previous equation asserts the 
onservation
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of energy in that the sum of the kineti
 and potential energies of the obje
t

falling under gravity is �xed.

9. Sin
e here we have F = λx
l

where we measure x from the end of the

spring when at its natural length. Hen
e we have

W =

ˆ a

0

λx

l
dx =

λ

2l
[x2]a0 =

λ

2l
[a2 − 02] =

λa2

2l
.

10. We assign the zero of potential energy of the mass to ground zero. The

velo
ity, and hen
e the kineti
 energy of the mass is 0 both at release and at the

point of 
losest approa
h. Hen
e the energy stored in the spring at this point

equals the 
hange in potential energy of the mass, whi
h is

mg∆h = 50g(2 · 2− 0 · 2) = 100g.

On the other hand the energy stored in the spring at the moment of greatest


ompression is, from Question 9, equal to

λa2

2l
=

λ(0 · 4− 0 · 2)2
2(0 · 4) =

λ

20
;

⇒ 100g =
λ

20
⇒ λ = 2000g ≈ 1 · 96× 104N.

Problem Set 5

1. Taking the zero of potential energy to be the initial position, the drop in

potential energy for a given value of x (1 ≤ x ≤ 2) is

∆E = −(
mg(x− 1)

2
+

m(x− 1)

2
· g x− 1

2
);

where the �rst and se
ond terms in the bra
kets represent the loss of potential

energy of the portion of the 
hain that intially hung o� the table and the portion

that slides from the table respe
tively;

= −mg

2
(x− 1 +

(x− 1)2

2
);

equating the loss of potential energy with the gain in kineti
 energy of the 
hain

gives:

1

2
mv2 =

1

2
mg(

2x− 2 + x2 − 2x+ 1

2
)

⇒ v2 =
g

2
(x2 − 1) ⇒ dx

dt
=

√

g

2

√

x2 − 1. (2)
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2. Alternatively, the net downwards for
e on the 
hain is entirely due to

gravity a
ting on the unsupported portion, and so by Newton's Se
ond Law we

obtain:

ma = mv
dv

dx
=

mx

2
g

⇒
ˆ

v
dv

dx
dx =

g

2

ˆ x

y dy

⇒ v2

2
=

g

2
[
y2

2
]x ⇒ v2 =

gx2

2
+ c;

now when x = 1, v = 0 so that c = − g
2 and so, as before we re
over equation

(3).

3. The di�erential equation (3) is separable and yields:

ˆ

dx√
x2 − 1

=

√

g

2

ˆ

dt.

To evaluate the integral I on the left we substitute x = cosh y (y ≥ 0) so that

dx = sinh y dy and x2 − 1 = cosh2 y − 1 = sinh2 y. Hen
e we obtain:

I =

ˆ

sinh y dy

sinh y
= y = cosh−1 x;

hen
e we have

cosh−1 x =

√

g

2
t+ c;

and when t = 0, x = 1 and cosh−1 1 = 0; thus c = 0 and we 
on
lude that

x = cosh(

√

g

2
t).

The range of values to whi
h this applies has lower limit of t = 0 and upper

limit determined by 2 = cosh(
√

g
2 t), whi
h gives t =

√

2
g
cosh−1(2).

4. For the 
hain falling freely from rest under gravity we would see v21 =
2g(x− 1) whi
h we 
ompare with v22 = g

2 (x
2 − 1). Solving v2 ≤ v1 we obtain

v22 ≤ v21 ⇔ 1

2
(x2 − 1) ≤ 2(x− 1) ⇔ (x− 1)(x+ 1) ≤ 4(x− 1)

⇔ x ≤ 3.

Sin
e the solution of our orginal problems applies only to the range 1 ≤ x ≤ 2,
it follows that v2 ≤ v1 throughout.

Comment The displa
ement of the falling 
hain in
reases only quadrati
ally

with time while the solution to Question 4 sees the movement of the sliding


hain inrease exponentially. However, we see from Question 5 that the velo
ity,

and hen
e the displa
ement of the sliding 
hain is less than that of the 
hain in

free fall.
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5. From Newton's law we obtain:

m1a = T −m1g, −m2a = T −m2g;

subtra
ting the se
ond equation from the �rst then gives

(m1 +m2)a = g(m2 −m1)

⇒ a =
m2 −m1

m1 +m2
g.

Substituting a

ordingly in the �rst equation gives:

T = m1(a+ g) = m1g
(m2 −m1

m1 +m2
+ 1)

= m1g
(m2 −m1 +m1 +m2

m1 +m2

)

=
2m1m2

m1 +m2
g.

6. We measure the PE of the bead from the lowest point (θ = π) so then

PE = mga(1 + cos θ). Now by Conservation of energy we have PE + KE is a


onstant c. When θ = 0, v = 0 so that c = 2mga. Hen
e we obtain:

1

2
mv2 +mga(1 + cos θ) = 2mga

⇒ v2 = 2ga(1− cos θ)

∴ v =
√

2ga(1− cos θ).

Comment Note that 
omponent of the gravitational for
e normal to the


ir
le does no work as the bead moves.

7. When the angle that the radius ve
tor makes with the verti
al is θthe
loss of potential energy from the intial position is E = mg(a − a cos θ) and so

while the pu
k is in 
onta
t with the sphere its velo
ity v satis�es

1

2
mv2 = mga(1− cos θ) ⇒ v2 = 2ga(1− cos θ). (3)

The pu
k will leave the sphere at the point where the apparent 
entrifugal

for
e on the pu
k due to its rotation on the surfa
e of the sphere mat
hes the


omponent of gravitational for
e normal to the surfa
e, whi
h is to say

mv2

a
= mg cos θ

and substituting from (4) we �nd

2mga(1− cos θ) = mga cos θ ⇒ 2− 2 cos θ = cos θ

⇒ cos θ =
2

3

11



∴ θ = cos−1 2

3
≈ 48 · 2◦.

Comment The result is always the same, independently of the radius of the

sphere and the mass of the pu
k (assuming fri
tion is negligible).

8. The kineti
 energy at the bottom of the swing is

E =
1

2
mv2 =

1

2
ml2ω2;

E is transformed into potential energy at the top of the swing so that

E = mg∆h = mg(l− l cos θ)

⇒ 1

2
ml2ω2 = mgl(1− cos θ)

⇒ 1− cos θ =
l2ω2

2

∴ cos θ = 1− l2ω2

2
.

9. The hanging bob will swing ba
kwards and rea
h a stable position, with

angle θ say, when the forward a

eleration of the bob due to the tension T in the

rod mat
hes the a

eleration a of the 
ar. Resolving the horizontal and verti
al


omponents of T at equilibrium therefore yields the pair of equations:

ma = T sin θ, mg = T cos θ

⇒ tan θ =
a

g

∴ θ = arctan−1(
a

g
).

10. At its lowest point the bob has fallen a total distan
e of l+(x− l). The
loss of potential energy in the fall is equal to mgx. The energy stored in the

string (see Question 9 Set 4) at this point is

λ
2l (x− l)2. Sin
e the kineti
 energy

is zero at this point we may equate:

mgx =
λ

2l
(x2 − 2lx+ l2)

⇒ x2 − (
2mgl

λ
+ 2l)x+ l2 = 0

⇒ x2 − (1 +
mg

λ
)2lx+ l2 = 0.

Comment The greater root of this quadrati
 represents the maximum extension

of the string. The se
ond solution is spurious but would apply if the string were

a spring. In that 
ase the expression for the stored energy would also hold under


ompression (x < l) and the mass was proje
ted downwards from the spring's

natural length with velo
ity 
orresponding to falling from the initial position.

12



However sin
e the string will not absorb energy under 
ompression, the mass

will, negle
ting fri
tional energy loss, return to its original position at the top

of the string.

Problem Set 6

1. Can do this dire
tly but note that (r̂, θ̂) is obtained from (i, j) by rotation
through the angle θ so it follows that to invert the pro
ess we need only rotate

through the angle −θ. This gives

i = cos θr̂− sin θθ̂ and j = sin θr̂+ cos θθ̂.

2. Using the Chain rule we obtain:

˙̂r = θ̇(− sin θi+ cos θj) = θ̇θ̂
˙̂
θ =

˙
θ̇(− cos θi− sin θj) = −θ̇r̂.

3. Using Question 2 we obtain:

v =
˙

(rr̂) = ṙr̂+ rθ̇θ̂.

4.

a = v̇ =r̈r̂+ ṙ ˙̂r+ ṙθ̇θ̂ + rθ̈θ̂ + rθ̇
˙̂
θ

= r̈r̂+2ṙθ̇θ̂ + rθ̈θ̂ − ṙθ̇2r̂

(r̈ − rθ̇2)r̂+ (rθ̈ + 2ṙθ̇)θ̂.

Comment The respe
tive 
omponents are known as the radial and transverse


omponents of a

eleration.

5. From the formula in Question 3 for v we get that v2 = ṙ2 + r2θ̇2. Di�er-
entiating r = a(2 + cos θ) with respe
t to time gives ṙ = −a sin θθ̇ so that

v2 = a2 sin2 θθ̇2 + a2(2 + cos θ)2θ̇2 = a2(5 + 4 cos θ)θ̇2;

�nally, sin
e θ̇ > 0 we take the positive square root to obtain

θ̇ =
v

a
√
5 + 4 cos θ

.

6. When moving in a 
ir
le at 
onstant angular velo
ity ω = θ̇, the a

eler-
ation a is dire
ted towards it 
entre and, from Question 4, has value a = rω2

,

so the 
entripetal for
e a
ting on the mass is mrω2
. Sin
e v = rω this 
an also

be written as

a = rω2 =
r2ω2

r
=

v2

r
.

7. From the general equation of Question 4 we get

a = −lθ̇2r̂+ lθ̈θ̂ and the for
e on P is given by:

13



F = −T r̂+mg cos θr̂−mg sin θθ̂.

8. Equating the transverse for
e 
omponents then gives:

mlθ̈ = −mg sin θ

⇒ θ̈ +
g

l
sin θ = 0.

9. Repla
ing sin θ by θ in this equation gives θ̈ + g
l
θ = 0, whi
h has general

solution θ(t) = A cos(ωt + α) where ω =
√

g
l
. The period of this solution is

then

2π
ω

= 2π
√

l
g
.

10. Applying Question 4 and noting that ṙ = r̈ = θ̇ = 0 we see that the

a

eleration of the mass P is given by −rω2r̂. Sin
e r = l sin θ we have that

the a

eleration of the bob is l sin θω2
dire
ted from the bob towards the 
entre

of the 
ir
le. Now the net verti
al for
e on the bob is 0 so that T cos θ = mg,
where T is the tension in the suspending string. The horizontal 
omponent of

the for
e on the bob is T sin θ = mrω2
and from these two equations we obtain:

sin θ =
mrω2

T
=

ml sin θ cos θω2

mg

⇒ cos θ =
g

ω2l
.

Problem Set 7

1. The number of hours ahead (for the Sun rises in the East) is

45

360
× 24 = 3

so it is 3 o'
lo
k in the afternoon in Siberia.

2. The ratio of diameters of Sun to Moon is 93 : 1
4 = 372 : 1, so the diameter

of the Sun is about372 times that of the Moon.

3. Sin
e the volume of a sphere is proportional to the 
ube of its radius

(and of its diameter) the number of moons that 
ould �t inside the Sun is about

3723 ≈ 51, 480, 000 (over 51 million).
4. Leap year's aside, the anwer is 365+ 1 = 366. This is be
ause, looking at

the solar system from above the North pole, the Earth rotates anti-
lo
kwise and

revolves around the Sun anti-
lo
kwise as well. This 
ause the Sun to rise

1
365

days (approximately 4 minutes) after a full rotation from the previous sunrise.

Comment If the Earth was rotating in the opposite sense to its revolution

around the sun, we would see 367 days per year. This is why the day of the stars
is four minutes shorter than the Earth's day, 
ausing the night sky positions of

14



the �xed stars to nonetheless 
hange from one night to the next thgourghout

the year. The same phenomenon a�e
ts the appearan
e of the moon, whi
h

revolves around the Earth (and rotates on its axis) every 27 · 3 days yet the

lunation period, the time between one full moon and the next, is approximately

27 · 3 + 27·3
365 × 27 · 3 ≈ 29 · 3 days. For more see my Mathemati
s for the

Imagination, OUP).

5.

T 2
1

R3
1

=
T 2
2

R3
2

⇒ T 2
2 =

R3
2T

2
1

R3
1

;

when
e upon putting R2 = 2R1 we obtain

T 2
2 = 8T 2

1 ⇒ T2 = 2
√
2T1 ≈ 2.828 Earth years.

6. Again by re-arranging the Kepler formula we get R3
2 =

R3

1
T 2

2

T 2

1

. Repla
ing

T2 by 29.5T1 then gives

R3
2 =

(29 · 5T1

T1

)2
R3

1 ⇒ R2 =
(

29 · 5) 3

2R1

so that the distan
e of Saturn from the Sun is about 9 · 6 times that of the

Earth.

Comment Whi
h is then 9 ·6×9.3×106 = 8.9×107 miles (890 million miles).
Newton used his Universal Law of Gravity and 
al
ulus (whi
h he invented) to

explain Kepler's Laws.

7. Orbital speed of the Earth is

v =
2πr

T
=

2π × 1 · 5× 1011

3 · 16× 107
= 3 · 0× 104m/se
= 11, 000 km/hr.

The a

eleration of the Earth towards the Sun is (see Question 6, Set 6)

v2

r
≈ 0 · 006 m/se


2.

Comment: whi
h is negligible 
ompared to the g = 9 · 81m/se
2 a

eleration

due to the Earth's gravity at the surfa
e.

8. The point P rotates around the axis daily in a 
ir
le of radius r cosφ so

the transverse velo
ity of P is

v =
2πr cosφ

T

⇒ v2

r
=

4π2a

T 2
· cosφ = 0 · 034 cosφm/se
2.

This a

eleration is maximized at the equator where φ = 0 and cosφ = 1, whi
h
then gives 0 · 034 m/se
2.

Comment Whi
h is small 
ompared to g = −9 · 81 m/se


2
, but of some

signi�
an
e, whi
h is why satellite ro
kets are often �red from bases 
lose to the

equator.

15



9. Equating the 
entripetal for
e keeping the satellite in orbit with the for
e

of gravity gives the equation:

mrω2 =
γMm

r2
⇒ r =

3

√

γM

ω2
;

substituting the giuven values for G, M and the value of ω now gives r =
4.22× 107 m.

Comment: if we subtra
t the radius of the Earth, 6.4×106m from this value,

we �nd that the height of a syn
hronous satellite is 3.58× 107m, whi
h is about

22, 250 miles above the surfa
e of the planet.
10. From Question 9 we have

r3 =
γM

ω2
;

sin
e T = 2π
ω

if we measure in ω in radians/se
 we infer that

T 2

4π2 = 1
ω2 so the

previous equation yields

4π2r3 = γMT 2

⇒ T =
2πr

3

2

√
γM

.

Comment : and so

r3

T 2 is a 
onstant for all planets, the value of the 
onstant

being a fun
tion of the star's mass, M .

Problem Set 8

1. After the 
ollision the obje
t of mass m has velo
ity v say so that of

the unit mass is −v. Sin
e the total momentum of the system is un
hanged we

obtain:

u = mv − v = v(m− 1) and so

u

v
= m− 1.

The (kineti
) energy of the system is

1
2u

2
and sin
e that is also 
onserved in

any (elasti
) 
ollision we have a se
ond equation:

1

2
u2 =

1

2
mv2 +

1

2
v2 and so u2 = v2(m+ 1)

⇒ u2

v2
= m+ 1.

Comparing our two equations and squaring the �rst leads to

(m− 1)2 = m+ 1 and so m2 − 2m+ 1 = m+ 1

⇒ m2 − 3m = m(m− 3) = 0.

16



Sin
e m 6= 0 we dedu
e that m = 3.
2. We have by Newton's Se
ond Law that

I =

ˆ t1

t2

F dt = m

ˆ t2

t1

dv

dt
dt = m

ˆ v2

v1

dv

where v1 and v2 are the velo
ities of the mass at times t1 andt2 respe
tively.

⇒ I = mv2 −mv1 = p2 − p1 = ∆p;

in words, the impulse of a for
e F a
ting on a massm a
ting over a time interval

∆t = t2 − t2 is equal to the 
hange in momentum of the mass.

3. We have∆p = (7·50−6·00)m = 1·50m. On the other hand I = 3×4 = 12
so that

I = 12 = 1 · 50m

⇒ m =
12

1 · 50 = 8kg.

4. ∆p = 0 · 1× 50 · 0 = 5 · 00 kg m/se
. Equate ∆p = F∆t so that

F =
∆p

∆t
=

5 · 00
5 · 00× 10−3

= 103

so that the for
e averages 1000N during the impa
t.

5. The initial momentum of the obje
t is 3 · 00 × 4 · 00 = 12 · 00 kg m/se
;

∆p = −5·00×1·80 = −9·00 so the �nal momentum is 12·00−9·00 = 3·00 = mv.
Hen
e

v =
3 · 00
3 · 00 = 1m/se
.

6. Take p with 0 < p < 1 su
h that

´ p

0 v dt =
´ 1

p
v dt = 1

2 . Suppose that

p ≤ 1
2 and suppose that

dv
dt

≤ a for 0 ≤ t ≤ p. Then for any t ≤ p,

ˆ t

0

dv

ds
ds ≤ at ⇒ v(t)− v(0) ≤ at,

where s is a dummy variable introdu
ed so that the symbol t does not have two
meanings. Sin
e v(0) = 0 we dedu
e that v(t) ≤ at. Integrating again we obtain

ˆ t

0

dx

ds
ds ≤ a

ˆ t

0

s ds ⇒ x(t)− x(0) ≤ a[
1

2
s2]s=t

s=0

⇒ x(t) ≤ at2

2
.

Now putting t = p ≤ 1
2 gives (sin
e

1
p
≥ 2 and so

1
p2 ≥ 4)

1

2
= x(p) ≤ ap2

2
⇒ a ≥ 1

p2
≥ 4.
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We 
on
lude that if p ≤ 1
2 then the parti
le undergoes an a

eleration of at least

a ≥ 4 during the interval [0, p]. Otherwise p ≥ 1
2 so that q = 1 − p ≤ 1

2 . Put

u = 1 − t. Then du = −dt, and when t = 0, 1 u = 1, 0. Suppose that dv
dt

≥ −a

(a ≥ 0) for all p ≤ t ≤ 1. Then − dv
du

≥ −a so that dv
du

≤ a for any 0 ≤ u ≤ q ≤ 1
2 .

Repla
ing t by u and p by q in the previous 
al
ulation we get as before that

a ≥ 4 and so it follows that the parti
le undergoes a de
eleration of at least

a ≥ 4 during the interval [q, 1]. Overall then, the parti
le must undergo and

a

eleration of magnitude at least 4 during the 1 se
ond interval.

Comment This maximum value is attainable. Let the parti
le have an a
-


eleration of 4m/se
2 for the �rst

1
2 se
ond and the opposite de
eleration for

the se
ond part of the interval. Hen
e the maximum velo
ity of the parti
le is

4
2 = 2 m/se
 and the mean velo
ity of the parti
le is

2
2 = 1 m/se
 (in both the

�rst and se
ond half se
ond intervals) and so it travels 1 m from the origin in

the time spe
i�ed.

7.

P =
W

t
=

Fd

t
=

880× 12

22
= 80× 6

∴ P = 480watts = kg m

2
/se


3.

8. The total mass being lifted is 500+300 = 800 kg so the net for
e resisting
the motion is 1200+mg = 1200+ (800× 9.81) = 9048N. The power required is

then

P =
Fd

t
= Fv = 9048× 0 · 2 = 1.81 kW.

9. First 120 km/hr = 120×1000
3600 = 33 · 33 m/se
. P = Rv (where R is the

resistan
e for
e, whi
h mat
hes that of me
hani
al power being produ
ed) so

that

R =
P

v
=

4.2× 104

33 · 33 = 1260N.

For the 
ase of the slope, the for
e F down the slope is

F = R+mg sin θ = 1260 + 900× 9 · 81 1

40
= 1260 + 221 = 1481N.

Finally,

v =
P

F
=

42000

1481
= 28 · 4m/se
=102 km/hr.

10. The initial velo
ity u of the parti
le P 
an be expressed as u =
3 cos 30◦i − 3 sin 30◦j = 2 · 60i − 1 · 50j. Let v denote the �nal velo
ity ve
-

tor of the parti
le. The impulse ve
tor is

2j = ∆p = 2v − 2u

⇒ v = u+ j = 2 · 60i− 0 · 50j.
Hen
e v =

√
2 · 602 + 0 · 502 = 2 · 65. The dire
tion θ South of East satis�es

tan θ = 0·50
2·60 = 0 · 1923 so that θ ≈ 11 · 2◦, so that the bearing of the �nal ve
tor

is 101 · 2◦ East of North.
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Problem Set 9

1. In the 
ase where N is the line x = k > 0 we have from the de�ning

equation OP = ePN that

r = e(k − r cos θ)

⇒ r(1 + e cos θ) = ke

∴ r =
ke

1 + e cos θ
.

If x = −k < 0 then

r = e(k + r cos θ)

⇒ r =
ek

1− e cos θ
. (4)

2. We have

r =
2 · 5

1− cos θ

so e = 1 (a parabola) and ek = k = 2 · 5 so that the dire
trix N is the line

x = −2 · 5. Next

r − r cos θ =
5

2
⇒

√

x2 + y2 − x =
5

2

⇒ x2 + y2 = x2 + 5x+
25

4

⇒ x =
1

5
y2 − 5

4
.

3. For e = 1 we have, sin
e r2 = x2 + y2 and r cos θ = x that

r = r cos θ + ke ⇒ x2 + y2 = x2 + 2kx+ k2

⇒ y2 = 2kx+ k2.

If we put x = x′ − k
2 the equation of the 
oni
 be
omes

y2 = 2k(x′ − k

2
) + k2 = 2kx′ = 4ax′,

where k = 2a. This is a parabola with turning point at the origin of the x′y
axes system. The dire
trix of the parabola is x′ − a = −2a so that x′ = −a.
The fo
us of the parabola is the origin of the xy-system, whi
h is the point

(0 + a, 0) = (a, 0) of the x′y axes.

4. The equation OP = ePN now be
omes

r = e(k − r cos(θ − θ0))

⇒ r(1 + e cos(θ − θ0)) = ek
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⇒ r =
ek

1 + e cos(θ − θ0)
.

5. Let P (x, y) be a point of the lo
us. Note that 2a > 2c so that 0 < c < a.
Then we have

√

(x− c)2 + y2 +
√

(x + c)2 + y2 = 2a > 0

⇒ (x+ c)2 + y2 = 4a2 + (x− c)2 + y2 − 4a
√

(x− c)2 + y2

⇒ a− c

a
x =

√

(x− c)2 + y2

⇒ a2 +
c2x2

a2
− 2cx = x2 − 2cx+ c2 + y2

⇒ x2(1− c2

a2
) + y2 = a2 − c2

⇒ x2(
a2 − c2

a2(a2 − c2)
) +

y2

a2 − c2
= 1

⇒ x2

a2
+

y2

a2 − c2
= 1.

Sin
e a > c we may write a2 − c2 = b2 giving the equation:

x2

a2
+

y2

b2
= 1,

an ellipse, 
entred at the origin with respe
tive semi-major and semi-minor axes

of lengths a and b (as a > b).
6. Similarly to Question 5 the given 
ondition is 
aptured by

|
√

x− c)2 + y2 −
√

(x + c)2 + y2| = 2a > 0

⇒ (x− c)2 + y2 + (x + c)2 + y2 = 4a2 + 2
√

((x− c)2 + y2)((x + c)2 + y2)

⇒ 2x2 + 2y2 + 2c2 − 4a2 = 2
√

((x − c)2 + y2)((x + c)2 + y2)

⇒ (x2 + y2 + c2 − 2a2)2 = ((x − c)2 + y2)((x + c)2 + y2)

⇒ (x2 + y2 + c2 − 2a2)2 = (x2 + y2 + c2 − 2cx)(x2 + y2 + c2 + 2cx)

⇒ 4a4 − 4a2(x2 + y2 + c2) = −4c2x2

⇒ x2 + y2 + c2 − c2x2

a2
= a2

⇒ x2(1− c2

a2
) + y2 = a2 − c2

x2

a2
+

y2

a2 − c2
= 1
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∴

x2

a2
− y2

b2
= 1

where b2 = c2 − a2 > 0. This is a hyperbola 
entred at the origin. Re-writing

its equation as

y2

x2
=

b2

a2
− b2

x2
,

we see that for |x| → the 
urve approa
hes y = ± b
a
x, whi
h therefore represent

the asymptotes of this hyperbola.

7. We have

r(1 − e cos θ) = ek ⇒ r = e(k + r cos θ) = e(k + x)

⇒ x2 + y2 = e2(k2 + 2kx+ x2)

⇒ x2(1 − e2)− 2e2kx+ y2 = e2k2

⇒ x2 − 2e2kx

1− e2
+

y2

1− e2
=

e2k2

1− e2

⇒ (x− e2k

1− e2
)2 +

y2

1− e2
=

2e2k2

1− e2
; (5)

if e < 1 then 1 − e2 > 0 and (6) represents an ellipse, as the equation 
an be

written in the form

(x−c)2

a2 + y2

b2
= 1, while if e > 1 (6) represents a hyperbola,

as the equation 
an be written in the form

(x−c)2

a2 − y2

b2
= 1.

8. We have

r =
l

1 + e cos θ
, l = 0 < e < 1, l = ke > 0.

Hen
e the aphelion position A (of the planet), whi
h is the furthest point from

the Sun at the fo
us O, is given by

rA =
l

1− e
, when θ = π, so that cos θ = −1.

The perihelion position P , whi
h is the point where the planet is 
losest to the

Sun, is given by

rP =
l

1 + e
when θ = 0, so that cos θ = 1.

The semi-latus re
tum is the verti
al distan
e from the fo
us to the 
urve, whi
h


orresponds to θ = π
2 , in whi
h we get r = l = ek.

9. Writing a for the major semi-axis of the ellipse we have

2a = rP + rA =
l

1− e
+

l

1 + e
=

l(1 + e+ 1− e)

(1− e)(1 + e)
=

2l

1− e2

∴ a =
ke

1− e2
=

rA
1 + e

. (6)
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10. Following on from Question 9, we have, from (7), writing ON for the

distan
e from the fo
us to the dire
trix N

ON = k =
a

e
(1− e2).

Again from (7) we �nd that the distan
e CO, where C is the 
entre of the ellipse

satis�es

CO = rA − a = a(1 + e)− a = ae. (7)

Finally. denoting by B the point of the ellipse verti
ally above the 
entre C we

have BO = eBN = eCN so from (8) we obtain

BO = e(ae+ k) = e(ae+
a

e
− ae) = a. (8)

By 
onsidering the right triangle △OBC and using (9) and (10) we �nd b, the
minor semi-axis of the ellipse, as

b2 + (CO)2 = (BO)2

⇒ b2 + (ae)2 = a2

∴ b = a
√

1− e2.

Problem Set 10

1. We work ba
kwards: the 
ondition that r2θ̇ = h, a 
onstant implies that

d

dt
(r2θ̇) = 0 ⇔ (2rṙ)θ̇ + r2θ̈ = 0

⇔ 2ṙθ̇ + rθ̈ = 0,

so that the given 
ondition is equivalent to saying that the radial 
omponent of

a

eleration is 0, so that the for
e on the obje
t is purely radial.

Comment it follows that for a mas m orbiting the Sun, mr2θ̈ is 
onstant.

This quantity is the angular momentum of the mass, a topi
 that we shall return

to in the Se
ond Year modules. Kepler's Se
ond Law, whi
h states that the rate

at whi
h a planet sweeps out radial area is 
onstant, represents a manifestation

of the law of 
onservation of angular momentum.

2. If P moves from P1 to P2 in the time interval t1to t2 then the area swept

out by the the ray OP is

A =
1

2

ˆ θ(t2)

θ(t1)

r2 dθ =
1

2

ˆ t2

t1

r2
dθ

dt
dt
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=
1

2

ˆ t2

t1

h dt =
h

2
(t2 − t1).

Hen
e the area swept out depends only on the length of the time interval and

is independent of the value of r. This is Kepler's Se
ond Law : a planet sweeps

out equal areas in equal times.

3. From Question 1, r2θ̇ = h, a 
onstant, and so

h2 = r4θ̇2 = h2 ⇒ rθ̇2 =
h2

r3
.

Hen
e, if we now equate the gravitational for
e to the radial for
e a
ting on our

mass m and 
an
el the 
ommon fa
tor of m we obtain:

−γM

r2
= r̈ − rθ̇2 = r̈ − h2

r3
.

4. By the Chain rule and Question 1 we get

d

dt
=

d

dθ
· dθ
dt

= θ̇
d

dθ
=

h

r2
d

dθ
.

Substituting a

ordingly into our di�erential equation now gives:

−γM

r2
=

d

dt

(dr

dt

)

− h2

r3
=

h

r2
d

dθ

( h

r2
dr

dθ

)

− h2

r3

⇒ −γM

h2
=

d

dθ

( 1

r2
dr

dθ

)

− 1

r
.

5. Now

du
dθ

= − 1
r2

dr
dθ

and so substituting into the equation of Question 4

gives:

−γM

h2
=

d

dθ

(

− du

dθ

)

− u

∴

d2u

dθ2
+ u =

γM

h2
, where u = 1

r
.

The general solution of the 
orresponding homogeneous equation is u = A′ cos θ+
B′ sin θ (A′, B′


onstants) or, if we 
hoose, as we do here, u = A cos(θ − θ0) for
arbitrary 
onstants A and θ0. For a parti
ular integral we may take any 
on-

stant, so in parti
ular we may have u = γM
h2 , giving the general solution:

u(θ) = A cos(θ − θ0) +
γM

h2

⇒ 1

r
=

1 + h2A
γM

cos(θ − θ0)

h2

γM
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Re-writing the solution in terms of r now gives:

r(θ) =

h2

γM

1 + h2A
γM

cos(θ − θ0)
;

this is a 
oni
 se
tion with e = h2A
γM

and k = 1
A
, one fo
us at the origin O and


orresponding dire
trix at a distan
e k = 1
A
from O with θ0 the angle between

the perpendi
ular to the dire
trix and the x-axis, measure (anti-
lo
kwise).
Comment In parti
ular, an orbit is either ellipti
al, paraboli
, or hyperboli
.

In the 
ase of a planet or other body trapped in the star system, the orbit is

ellipti
al with the Sun at one fo
us of the orbit, as the Sun is the 
hosen origin

of our 
oordinate system. This is Kepler's First Law.

6. The area of the ellipse forming the orbit is πab. Using the result of

Question 1 we 
an also express this area as:

πab =
1

2

ˆ 2π

0

r2 dθ =
1

2

ˆ T

0

r2
dθ

dt
dt =

h

2

ˆ T

0

dt =
h

2
(T − 0) =

hT

2
,

⇒ T =
2πab

h
.

7. The gravitational potential V of a unit mass m at a distan
e r from a

mass M is the work done to move m from r to in�nity:

V =

ˆ

∞

r

−γM

x2
dx = −γM [− 1

x
]x=∞

x=r

= −γM [0− (−1

r
)] = −γM

r
.

8. In general we have h = r2θ̇. At perihelion, the radial 
omponent of

a

eleration is 0 so that the velo
ity is in the dire
tion of θ̂ and has value

vP = rθ̇, when
e h = rP vP . Now the energy of the planet E is 
onstant and the

equation E = V + P (kineti
 plus potential) at perihelion takes on the form:

E =
1

2
mv2P − γMm

rP
.

Now we substitute vP = h
rP

and rP = l
1+e

(see Question 8 Set 9) to obtain:

E =
m

2
· h

2

r2P
− γMm

rP
.

For Question 5 we have

h2

γM
= l so that h2 = γMl. This be
omes

E =
γMm

2
[
l(1 + e)2

l2
− 2(1 + e)

l
] =

γMm

2l
[(1 + e)2 − 2(1 + e)]

⇒ E =
γMm

2l
(e2 − 1).
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9. It follows from Question 8 that for an ellipti
al orbit, (e < 1), we have
E < 0, for a paraboli
 orbit (e = 1), E = 0 and for a hyperboli
 orbit (e > 1),
E > 0. In parti
ular, a planet will es
ape the Sun's gravitational pull if and

only if E > 0, whi
h is to say

1

2
mv2 ≥ γMm

r

⇔ v ≥
√

2γM

r
.

Comment This bounding speed is known as the es
ape velo
ity of the orbiting

body.

10. From Question 5 we have

h2

γM
= l so that h2 = γMl. Also from

Question 8 on Set 9 we have b = a
√
1− e2 and from Question 9 on Set 9 we

have l = b
√
1− e2 so that l = a(1− e2). Using these equations and Question 7

then gives:

T =
2πab

h
=

2πa2
√
1− e2√

γM
√
a
√
1− e2

=
2π√
γM

· a 3

2

whi
h is Kepler's Third Law for an ellipti
al orbit.

Comment Question 10 on Set 7 was the spe
ial 
ase where the orbit was


ir
ular.
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