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Solutions and Comments for the Problems

Problem Set 1

1. Let t1,t2 be the times of the walk and the cycle ride respectively. Since
d = vt we get two expressions for the distance, those being d = 4t; = 12t,,
whence t; = 3ty. We also have t1 —ty = % hours. Hence 3ty —ty = % =ty = %
hours. Therefore the distance is 12 x 15 =1 mile.

Comment The difficulties with this problem is that the student needs to
introduce his or her own symbols to stand for the quantities that are the subject
of the equations that are implicit in the information offered. The other source
of mistakes is in confusing the units involved as the speeds are in miles per hour
and the times are in minutes. You need to work with one time unit or the other.
If you don’t, false factors of 60 will emerge in your answer. This kind of mistake
can be detected by asking yourself whether your answer looks sensible given the
facts of the problem. A moment’s thought will reveal that you must have made
a slip somewhere. The problem is simple enough to argue other ways: the bike
is 3 times as fast as walking so when the bike arrives, the walker has % of the
journey to go and that takes 10 minutes. Hence the walking time is 10 x % =15
minutes: in % hour, the walker travels i X 4 =1 mile.

2. Speed from X to Y is 35, from Y to X is 25 km/hr. Let ¢1,¢2 denote the
respective times of outward and homeward journeys. Then 35t; = 25ty = to =
%tl. Also t1 +t9 = 2, from which we see by substitution that 1—52151 =2=1t = %
hours. The distance from X to Y is thus:

5 175 1
5 x 35 = 5 7296km

3. Asyou set out you will first meet the five trains travelling towards you that
have already left London and you will also meet the next five that leave while you
are travelling (the final one will just be pulling out as you arrive), so the answer
is 5+ 5 = 10. If the journey took two hours, this would double the number of
trains leaving per unit of travel time and you would meet 2 x (5+5) = 20 trains
going the other way.

Comment These calculations explain why you always meet surprisingly many
trains going the other way, which makes you wonder why it often turns out that
you have to wait so long for the next train when you are standing on a cold
station platform. It applies to all kinds of traffic—there always seem to be
lots of cars and pedestrians going past you in the opposite direction. Another
similar source of confusion is that although a car may roll off the assembly line
every two minutes, it does not follow that it takes two minutes to assemble a
car. It may take many hours, it is just that hundreds are simultaneously being
assembled at once, with them all being at different stages of production at any
given moment.



4. The relative speeds of the trains is 25 + 25 = 50mph so the collision will
occur in 1 hour, in which time the fly will have flown 50 miles.
5. Differentiating 22 + 32 = 25 with respect to time t using the Chain Rule
gives:
Qi+ 2y = 0 = = (—g):b.

When 2 =4, y = 3,4 = 2 (given), so that yl,—s = (— 3)(2) = —% m/sec.
6. Solve

2myg &é\/l—(ﬁ/@):

:>va3:>
2 4

e
I
o

<
¥
|~

Comment And so the mass doubles as its velocity approaches 87% of the
speed of light.
7. We have

x(t) = Asinnt + Bcosnt = &(t) = Ancosnt — Bnsinnt

= #(t) = —An?sinnt — Bn? cosnt = —n’z(t).

8. We have Asinnt + Bcosnt = Rcos(z — o) where R = VA% + B2

and we may put o = tan~! (£). Hence the interval of motion has endpoints

+v/A%2 + B2. The maximum first occurs when z = a = arctan(£). The mini-
mum first occurs when x = o + 7 = arctan (%) + .

9. The nearest thing to a ‘straight line’ is the path ABH, where B is on
the rim of the glass and is such that the line ABH has no kink in it. This has
length L given by

L? =42 + 3% = 25,
so that L = 5 inches.

10. After the passing of midday, up to and including midnight, the direction
of the hands coincide on 11 occasions (yes, 11, not 12) all equally spaced in time,
and so % = 11—11 hours elapse between two successive coincidence of direction.

Comment Alternatively, the minute hand runs at 1 cycle/hour while the
hour hand runs at - cycles/hour. The first time ¢ in hours when the minute

12
hand ‘laps’ the hour hand is when ¢t = 1+ ¢, which gives 13t = 1, which is
to say that ¢ = % hours. A third ‘hare and tortoise’ approach will draw you
into a problem involving summing an infinite geometric series. See my book

Mathematics for the Curious (Oxford University Press, 1998).

Problem Set 2

1. From v = u + at we get v = (u + at)? = u? + a*t? + 2uat. From
s = %at2 + ut we get 2as = a®t? + 2uat; substituting this into the previous
equation then results in v? = u? + 2as.



2. Use s = +at? + ut and put u = 0, ¢t = 20 and s = 500 to obtain

Ca, s 2500
500 = 5(20)° = a= =

=2-5m/sec?.

3. We use v? = u? + 2as, where here a = 1, s = 50 and u = 0 giving
v?=2-1-50 =100, so that v = 10m/sec.

Comment This question was put to a team on University Challenge who got
it wrong - it’s not easy to see through a calculation involving a square root when
you are put on the spot!

4. The average speed in m/sec of the cheetah is

u+v_6~20+23~1

=14-65
2 2

and so the ground covered is 3 -3 x 14 - 65 = 48 - 3bm.
5. We have u = 7-7, a = —9.81 and at the top of the toss, v = 0. Hence the
maximum height s reached by the ball is given by

02:(7-7)2—2(9-81)3:52%:3-02m.

6. Put s=0in s = %atQ + ut and dividing through by ¢ (¢ = 0 is the trivial
initial solution) we obtain

1 2 .
u__gt:():m:_u: =1-57sec.
2 g

7. Putting s =0 and ¢ = 6 in s = 2at? + ut gives u — 3g = 0 = u = —3g.

Maximum height occurs when v = 0 and so from v = u+ at we obtain ¢t = = =

%‘Z = 3; at which point we have

5= 29(87) ~ (39)(8) = 29— 99 = —5g = (~45)(~9.81) = 44.1m.

8. From the first formula we get

B x
" Veosa
so that )
x 1 T
p— V 1 — — — —_—
y=(Vsina) (V cos ) 29(V2c082a)
‘ gx? sec?
=gztanq — ———.
2V2

9. Applying the equation of Question 8 we get

gm2z sec 45° e 10\/52902 . 2
2(30)2 2x 900 90

y = rtan45°® —



x

=y =1-—.

v 15
The horizontal component is 30sin45° = 15v/2ms~ 1. Given that z = 30, then
y =1-32 =1 =tan6. The direction of travel is thus tan—!(1/3) above the
horlzontal Replacmg 30m by 50m we get ¢y’ =1 — 22 = f% so that the angle

is tan~!(§) below the horizontal.
10. The equation of Question 8 gives

3 2
y=ztano — 8%(1+tan2a).

At (h, h/8) this gives:
3tan’a — 8tana + 4 = (3tana — 2)(tana — 2) = 0,

which has solutions tan=1(2/3) and tan~! 2.

Problem Set 3

1. Using F = ma we get ' =2 x 103 x 2-5 =5 x 103N.

2. We have & = a say so that & = at as © = 0 when ¢ = 0. But & = 36km/hr
= 28998 = 10m/sec when ¢ = 10 so that 10 = 10a, which is a = 1m/sec?. Hence
F=ma=2x10%x1=2x103N.

3. Taking the downward direction as positive and let the force on the scales
be denoted by F. The net force on the person in the positive (upward) direction

is then, by Newton’s 3rd law,
F—mg=mf=F=m(g+ f).

4. Let B denote the balloon’s buoyancy. The net force on the balloon is
then B —m1g = my f and hence B = m1(g + f).

5. The buoyancy of the balloon in unchanged but its mass is now mj — my
and so the net force F' on the balloon is F' = B — (m; — mg)g upwards, and so,
using the result of Question 4:

F'=DB—(m1—m2)g=mi(g+f)— (mi—ma)g=mif+mag.
Hence the new acceleration equals I%o;é:ée = mlf tmeg,

6. Let the y-axis be directed vertically upwards and let the unknown height

by h and put t = 0 when the stone is dropped. We have ¢ — g so that y = c— gt

say. Since y = 10 when t = 0 we have ¢ = 10. Hence y = 10 — gt and so
y=k+10t — 1gt>. But y = h when t = 0 and so k = h;

1
;y:h+1m75¢?



Now y = 0 when ¢ = 8 and so substituting accordingly we obtain
0=h+80—-329g=h =329 —80~ 233 -9m.

7. Let B denote the buoyancy force acting on the balloon and the ejected
ballast be m. By Newton’s 2nd law we have initial and final equations:

Mg—B=Mfi, B— (M —m)g= (M —m)fo;
adding these equations gives mg = M f1 + (M — m) f2 and so

_ M(fi+ fo)
m=——"=7
g+ fa

8. Thrust of the aircraft in Newtons is 2 -5 x 10° 4+ 6 x 103t. By Newton’s
law
2-5x10° +6 x 10% = 10°%

= i=2-540-06t =& =2-5t40-03t> (as & = 0, when ¢ = 0)

and so since & = 180km/hour = 182800 — 50m /sec at the required time ¢ we
obtain Y —
—2:-5++v6-25+6
=50=2-5t+0-03t" =t = 506 ha

and it is the positive root that is relevant, giving us

—2-5+3-5 100 50
= ——— = —— = — seconds.
0-06 6

9. We put y-axis vertically downwards and set y = 0 and y = 0 when t =0
(when object was dropped). Let y = h denote the level of the window sill.
Equation of motionis j = g =y =gt = y = %th. Let the respective times
when object reaches the top and the bottom of the window by ¢;and towhen
y = h — 2 and y = h respectively. Then

1 2(h —2
h72:§gt§ét1: A =2)
g
1 2h
h=-gt; =to= | —.
2772 g

Thus

1 [2h /2(}1—2)
— =t —t; = _ RS
12 g g

and we are asked to find h. Square and multiply by ¢:

ﬁh:Qh—%Mmh—m+2m—m



= 2\/4h(h — 2) = 4h — 4 — -, square again:

144
16h2 — 32h = 16h% — 8h(4 + —0—) + (4 + -T2
6h% = 32h = 161* = 8h(4 + < 12) + (4 + 110
89 - g \2 -
= Tygh = [+ )7 = h~30- 36m.

Comment Alternatively, it is quicker to use an average speed argument as
follows. The mean speed of the object as it passes the window is 2/(1/12) =
24m /sec, which will be attained at the window’s midpoint, M. The time ¢ taken
to fall to M satisfies gt = 24 so that t = %. The average speed of the object
as it falls to M is 24/2 = 12m/sec. Hence the distance h — 1 fallen to reach M

satsifies
12 x 24 288

h—1=12t= =h=14"";
g

and so h =1+ 28 =30 36m.

10. As a function of time your velocity is 40 — ¢ while that of the other car
is 30t. You will gain on the other car up to the point when your speeds match,
which is to say 40 — ¢ > 30, that is ¢ < 10. Measuring from your initial position,
the positions of your car and the other are respectively 40t — %(1)1&2 and 50+ 30¢.
When ¢t = 10 these return the same value of 350m, so that you do just catch
the car.

Comment Alternatively, solve when the positions of yourself and the other
car coincide: 40t — $t? = 50 + 30¢ so that ¢* — 20t + 100 = (¢ — 10)* = 0.
Hence you catch the car at ¢ = 10 but do not pass, for if you did, the other car
would eventually pass you again as you are decelerating, but there is no second
solution to the quadratic.

Problem Set 4

1. By Newton’s law and Hooke’s law, mg = % so that A = W;—gl Newtons.

2. Writing w = \/g we consider the homogeneous equation & + w?x =
0. The characteristic roots of this equation are +wi, which yields the general
solution z(t) = A coswt+ B sinwt or equivalently z(t) = C cos(wt+¢) (A, B,C,¢
constants). Our equation (1) has the form & + w2z = g and so its general
solution has the form x(t) = C cos(wt+¢)+ k for some constant k. Substituting
accordingly gives w?k = g so that

g gml  gmlxg
= = = — = = x0n.
w? A mgl 0

Hence our general equation of motion is

x(t) = Ccos(wt + €) + xo.



3. We apply the initial conditions to our solution:
#(0) =0 = —wCsin(w(0) +e) =0=¢ =0;

a = Ccos(w(0)) +z9 = C = a — xp;

and so our solution is

£(t) = (a — o) cos(wt) + o, where w=1/2;. (1)

4. The period of this solution is %“ and the frequency is the reciprocal of the
period: $=. The maximum extension d of the spring first occurs when wt = 7,
which is to say at ¢t = g and that maximum is a — ¢ +z¢ = a. In other words
the maximum extension corresponds to the intial position from which the mass
is released.

5. Writing v for £ we have by the Chain rule that vg—g = %?Tf = % = .
We therefore may write (1) as

. 2 dv 2
r+wr=g=v—t+wr=g
dz

d
é/védz:/(gfw%c)d:c
1

2 wo o

= v = ++/291 — w?z2.

Comment The two opposite solutions correspond to the direction of the mass
as it reaches a given point z.
6.
d(l.g) di di dt
—(zi)=t—=0— - — =&
dxr "2 dx dt dx

S S S d
W:/ Fd:v:/ mibdmzm/ = (#?) dx
m s 1 2

. 1
= 5[:02]0 = imvg — mui.
8. The work done by the gravity is mg(h; — ha) and so by Question 7 we
obtain . 1
mg(hy — ha) = §mv% - §mv§

1 1
= mghi + §mvf = mgha + §mv§.
1

Comment The term va2 is called the kinetic energy of the moving object
of mass m and the term mgh is the potential energy of the object that is a height
h above a fixed reference point. The previous equation asserts the conservation



of energy in that the sum of the kinetic and potential energies of the object
falling under gravity is fixed.

9. Since here we have F' = % where we measure x from the end of the
spring when at its natural length. Hence we have

a2

Az A A
_ ALY g — N ig2a 2 _ 021 — .
w /0 dx 21[:0] [a® — 07 57

0= 2

10. We assign the zero of potential energy of the mass to ground zero. The

velocity, and hence the kinetic energy of the mass is 0 both at release and at the

point of closest approach. Hence the energy stored in the spring at this point
equals the change in potential energy of the mass, which is

mgAh =50g(2-2—0-2) = 100g.

On the other hand the energy stored in the spring at the moment of greatest
compression is, from Question 9, equal to

A2 A0-4-0-2)2 A

20 2(0-4) 20

A
:>10()g:2—0:>>\:2000gz1-96x104N.

Problem Set 5

1. Taking the zero of potential energy to be the initial position, the drop in
potential energy for a given value of z (1 <z < 2) is

mg(:c—l)ij(zfl) x—1

AE=—-(— 2 Y

where the first and second terms in the brackets represent the loss of potential
energy of the portion of the chain that intially hung off the table and the portion
that slides from the table respectively;

(z—1)
]
equating the loss of potential energy with the gain in kinetic energy of the chain
gives:

1, 1 2$—2+x2—2x—|—1)
2

d
;»02:3(;0271);» S EAV/ I (2)

at V2




2. Alternatively, the net downwards force on the chain is entirely due to
gravity acting on the unsupported portion, and so by Newton’s Second Law we

obtain:

dv mx
ma=mu— = —
dx 2 g

d xT
:>/U—Ud:13: / ydy
dx

’1)2 ng ng
> — =[]0’ =2 +¢
g =gl = 5 TG

now when x = 1, v = 0 so that ¢ = —4 and so, as before we recover equation

(3)

NSRS

3. The differential equation (3) is separable and yields:

[F=-3 ]

x?2—1 2 '
To evaluate the integral I on the left we substitute = coshy (y > 0) so that
dz = sinhydy and 22 — 1 = cosh? y — 1 = sinh”® y. Hence we obtain:

inhyd
I:/wzy:coshflx;
sinh y

cosh ™tz = \/gt + ¢

and when ¢ = 0, z = 1 and cosh™" 1 = 0; thus ¢ = 0 and we conclude that

= Ty

The range of values to which this applies has lower limit of ¢ = 0 and upper
limit determined by 2 = cosh(,/Zt), which gives ¢t = \/gcosh_l(Q).
4. For the chain falling freely from rest under gravity we would see v? =

2g(x — 1) which we compare with v3 = (2 —1). Solving v; < v we obtain

hence we have

v%<Uf(:)%(:132—1)§2(m—1)(:)(x—1)(:1:+1)§4(x—1)

s < 3.

Since the solution of our orginal problems applies only to the range 1 < x < 2,
it follows that vy < v; throughout.

Comment The displacement of the falling chain increases only quadratically
with time while the solution to Question 4 sees the movement of the sliding
chain inrease exponentially. However, we see from Question 5 that the velocity,

and hence the displacement of the sliding chain is less than that of the chain in
free fall.

10



5. From Newton’s law we obtain:
mia =1 —myg, —maa =T —mag;
subtracting the second equation from the first then gives

(m1 4+ ma)a = g(ma — my)
™Mo — M1

=aq=-———¢.
mi + mo

Substituting accordingly in the first equation gives:

™Mo — M7

T=mi(a+g)=m +1
1(a+g) 1g(ml+m2 )
—m (mg—m1+m1+m2)7 2m1m2
- my + mo 7m1+m29'

6. We measure the PE of the bead from the lowest point (¢ = 7) so then
PE = mga(1 + cosf). Now by Conservation of energy we have PE + KE is a
constant ¢. When 6 = 0, v = 0 so that ¢ = 2mga. Hence we obtain:

1
§mv2 + mga(1l + cos @) = 2mga

= v? = 2ga(1 — cos )

v =+/2ga(1 — cosb).

Comment Note that component of the gravitational force normal to the
circle does no work as the bead moves.

7. When the angle that the radius vector makes with the vertical is fthe
loss of potential energy from the intial position is E = mg(a — acosf) and so
while the puck is in contact with the sphere its velocity v satisfies

1
Eva = mga(l — cosf) = v* = 2ga(1l — cos¥). (3)

The puck will leave the sphere at the point where the apparent centrifugal
force on the puck due to its rotation on the surface of the sphere matches the
component of gravitational force normal to the surface, which is to say

’I”I’L’U2

—— =mgcosf
a

and substituting from (4) we find

2mga(l — cosf) = mgacosf = 2 — 2cosf = cosf

2
= 0= —
COS 3

11



2
.0 =cos! 3 ~ 48 - 2°.

Comment The result is always the same, independently of the radius of the
sphere and the mass of the puck (assuming friction is negligible).
8. The kinetic energy at the bottom of the swing is

1 1
E= §m02 = 5m12w2;

F is transformed into potential energy at the top of the swing so that

E =mgAh =mg(l — lcos®)

1
= —mi%w? = mgl(1 — cos )

l2 2

élfcos@:i
2

2 2

.'.cosH:I—Zi.
2

9. The hanging bob will swing backwards and reach a stable position, with
angle 0 say, when the forward acceleration of the bob due to the tension 7" in the
rod matches the acceleration a of the car. Resolving the horizontal and vertical
components of T" at equilibrium therefore yields the pair of equations:

ma =T sinf, mg =T cosf

= tanf =

Q|

a
Pl

10. At its lowest point the bob has fallen a total distance of [ + (x — ). The
loss of potential energy in the fall is equal to mgxz. The energy stored in the
string (see Question 9 Set 4) at this point is £;(z —1)?. Since the kinetic energy
is zero at this point we may equate:

.0 = arctan™*(

A
mgxr = 2—1(502 — 2z +1?)

= a2? - (—2”;91 2z +12=0

:>$2—(1+%)2l$+12:0.

Comment The greater root of this quadratic represents the maximum extension
of the string. The second solution is spurious but would apply if the string were
a spring. In that case the expression for the stored energy would also hold under
compression (z < [) and the mass was projected downwards from the spring’s
natural length with velocity corresponding to falling from the initial position.

12



However since the string will not absorb energy under compression, the mass
will, neglecting frictional energy loss, return to its original position at the top
of the string.

Problem Set 6

1. Can do this directly but note that (¥, 8) is obtained from (i, j) by rotation
through the angle 6 so it follows that to invert the process we need only rotate
through the angle —6. This gives

i = cosOf — sin 09 and j =sinfr + cos 04.
2. Using the Chain rule we obtain:
= 0(—sin i + cos 0j) = 00 6= 0(— cos i — s.in9j) = —0f.
3. Using Question 2 we obtain:

v = (TI:) = if + r00.

a = =it + it + 700 + 160 + r0f
= FE+2700 + 60 — 7%t
(#* — r0)E + (rf + 276)0).
Comment The respective components are known as the radial and transverse
components of acceleration.

5. From the formula in Question 3 for v we get that v> = #2 + r26%. Differ-
entiating r = a(2 + cos ) with respect to time gives 7 = —asin 66 so that

v? = a?sin? 00% + a®(2 + cos0)26% = a*(5 + 4 cos 0)6;

finally, since 0 > 0 we take the positive square root to obtain
v

a5+ dcosh

6. When moving in a circle at constant angular velocity w = 6, the acceler-
ation a is directed towards it centre and, from Question 4, has value a = rw?,
so the centripetal force acting on the mass is mrw?. Since v = rw this can also

be written as

r r
7. From the general equation of Question 4 we get

a = —16% + 166 and the force on Pis given by:

13



F = -Tt+ mgcosft — mgsin 0.

8. Equating the transverse force components then gives:
mlf = —mgsin 6

=+ %sin0 =0,
9. Replacing sinf by 6 in this equation gives 0+ 4 10 = 0, which has general
solution 0(t) = Acos(wt + o) where w = /2. The perlod of this solution is

1
then;’er \/7

10. Applying Question 4 and noting that 7 = # = § = 0 we see that the
acceleration of the mass P is given by —rw?#. Since r = [sinf we have that
the acceleration of the bob is I sin fw? directed from the bob towards the centre
of the circle. Now the net vertical force on the bob is 0 so that T cosf = mg,
where T is the tension in the suspending string. The horizontal component of
the force on the bob is T'sin § = mrw? and from these two equations we obtain:

) mrw?  mlsin @ cos Ow?
sinf = =
T mg
g
= cosl = —.
w?l

Problem Set 7

1. The number of hours ahead (for the Sun rises in the East) is

45 x24=3
360
so it is 3 o’clock in the afternoon in Siberia.

2. The ratio of diameters of Sun to Moon is 93 : i =372 : 1, so the diameter
of the Sun is about372 times that of the Moon.

3. Since the volume of a sphere is proportional to the cube of its radius
(and of its diameter) the number of moons that could fit inside the Sun is about
3723 ~ 51,480,000 (over 51 million).

4. Leap year’s aside, the anwer is 365+ 1 = 366. This is because, looking at
the solar system from above the North pole, the Earth rotates anti-clockwise and
revolves around the Sun anti-clockwise as well. This cause the Sun to rise %
days (approximately 4 minutes) after a full rotation from the previous sunrise.

Comment If the Earth was rotating in the opposite sense to its revolution
around the sun, we would see 367 days per year. This is why the day of the stars
is four minutes shorter than the Earth’s day, causing the night sky positions of

14



the fixed stars to nonetheless change from one night to the next thgourghout
the year. The same phenomenon affects the appearance of the moon, which
revolves around the Earth (and rotates on its axis) every 27 - 3 days yet the
lunation period, the time between one full moon and the next, is approximately
27 -3 + % X 27 -3 ~ 29 -3 days. For more see my Mathematics for the
Imagination, OUP).
5.
TP . BTE
R} R T R}

whence upon putting R, = 2R; we obtain

T2 = 8T? = Ty = 22T, ~ 2.828 Earth years.

6. Again by re-arranging the Kepler formula we get Rj = %
1

T by 29.5T} then gives

. Replacing

29 - 5T}
T

so that the distance of Saturn from the Sun is about 9 - 6 times that of the
Earth.

Comment Which is then 9-6 x 9.3 x 105 = 8.9 x 107 miles (890 million miles).
Newton used his Universal Law of Gravity and calculus (which he invented) to
explain Kepler’s Laws.

7. Orbital speed of the Earth is

R} = ( )’RY = Ry = (29-5)2 R,

21r 2w x 1-5x 101 4
V= T: W:?)OX 10 m/SeC: 11,000km/hr

The acceleration of the Earth towards the Sun is (see Question 6, Set 6)

1)2

— ~0-006 m/sec?.
r
Comment: which is negligible compared to the g = 9 - 81m/sec? acceleration
due to the Earth’s gravity at the surface.

8. The point P rotates around the axis daily in a circle of radius r cos ¢ so
the transverse velocity of P is

_ 27rcos ¢
B T
v?2  4n2a 2
= =T -cos ¢ = 0-034 cos pm/sec*.

This acceleration is maximized at the equator where ¢ = 0 and cos ¢ = 1, which
then gives 0 - 034 m/sec?.

Comment Which is small compared to g = —9 - 81 m/sec?, but of some
significance, which is why satellite rockets are often fired from bases close to the
equator.

15



9. Equating the centripetal force keeping the satellite in orbit with the force
of gravity gives the equation:

Mm s/ yM
mrw2:72 éTid—QQ
T w

substituting the giuven values for G, M and the value of w now gives r =
4.22 x 107 m.

Comment: if we subtract the radius of the Earth, 6.4 x 10%m from this value,
we find that the height of a synchronous satellite is 3.58 x 107m, which is about
22,250 miles above the surface of the planet.

10. From Question 9 we have

5 _ AM
w2’
. . . . . . 2
since T' = 2 if we measure in w in radians/sec we infer that 5 = 2 so the
previous equation yields
Am?r® = yMT?
3
2mr2
=T =

VAM
7‘3

Comment: and so 77 is a constant for all planets, the value of the constant

being a function of the star’s mass, M.

Problem Set 8

1. After the collision the object of mass m has velocity v say so that of
the unit mass is —v. Since the total momentum of the system is unchanged we
obtain:

u=mv—v=uv(m-—1) and so % =m—1.

The (kinetic) energy of the system is %uz and since that is also conserved in

any (elastic) collision we have a second equation:

1 1 1
§u2 = imUQ + 51}
2

u
v

2 and so u? = v*(m + 1)

Comparing our two equations and squaring the first leads to
(m—1)*=m+landsom? —2m+1=m+1

= m? —3m=m(m—3) =0.
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Since m # 0 we deduce that m = 3.
2. We have by Newton’s Second Law that

t1 to v2
I = Fdt=m %dt:m/ dv

to t1

where v1; and v, are the velocities of the mass at times ¢; andts respectively.
= I =mvy —mv1 = pz — p1 = Ap;

in words, the impulse of a force F' acting on a mass m acting over a time interval
At =ty — ty is equal to the change in momentum of the mass.

3. We have Ap = (7-50—6-00)m = 1-50m. On the other hand I = 3x4 =12
so that

I=12=1-50m

=>m= 8kg.

150
4. Ap=0-1x50-0=5-00 kg m/sec. Equate Ap = FAt so that

_Ap 5-00

=L ___ 7 _10
At 5-00x 10-3 0

so that the force averages 1000V during the impact.
5. The initial momentum of the object is 3-00 x 4-00 = 12 - 00 kg m/sec;
Ap = —5-00x1-80 = —9-00 so the final momentum is 12:00—9-00 = 3-00 = mw.

Hence
~3-00

~3-00
6. Take p with 0 < p < 1 such that [ vdt = fplvdt = 1. Suppose that
p < % and suppose that % < afor 0 <t < p. Then for any t < p,

v = 1m/sec.

¢
d
/ = ds < at = v(t) —v(0) < at,
o ds

where s is a dummy variable introduced so that the symbol ¢ does not have two
meanings. Since v(0) = 0 we deduce that v(¢) < at. Integrating again we obtain

td ! 1
/0 d_: ds < a/o sds = z(t) — z(0) < a[552]226
t2
= a(t) < -

Now putting t = p < % gives (since % > 2 and so p% >4)

1 ap?
s=ap) <L

=>a>
5 =

1oy
2 p2



We conclude that if p < % then the particle undergoes an acceleration of at least
a > 4 during the interval [0,p]. Otherwise p > % sothat g=1—-p < % Put
u=1—t. Then du = —dt, and when t = 0,1 u = 1,0. Suppose that % > —a
(a>0)forallp <t <1. Then f% > —a so that Z—Z <aforany0<u<g¢g< %
Replacing ¢t by u and p by ¢ in the previous calculation we get as before that
a > 4 and so it follows that the particle undergoes a deceleration of at least
a > 4 during the interval [¢,1]. Overall then, the particle must undergo and
acceleration of magnitude at least 4 during the 1 second interval.

Comment This maximum value is attainable. Let the particle have an ac-
celeration of 4m/sec? for the first 1 second and the opposite deceleration for
the second part of the interval. Hence the maximum velocity of the particle is
2 =2 m/sec and the mean velocity of the particle is 2 = 1 m/sec (in both the
first and second half second intervals) and so it travels 1 m from the origin in
the time specified.

7.
Fd 880 x 12
=TT 800

. P =480 watts = kg m?/sec®.

p-
t

8. The total mass being lifted is 500+ 300 = 800 kg so the net force resisting
the motion is 1200 4+ mg = 1200 + (800 x 9.81) = 9048N. The power required is

then Fd
P:T:Fv:9048><0-2:1.81kW.

9. First 120 km/hr = 12321900 — 33. 33 m/sec. P = Ruv (where R is the

resistance force, which matches that of mechanical power being produced) so
that

P 42x10
v 33-33
For the case of the slope, the force F' down the slope is

R= = 1260 N.

1
F = R+ mgsinf = 1260 + 900 x 9'814—0 = 1260 + 221 = 1481 N.

Finally,

P 42000
= 1481 8 -4m/sec =102 km/hr

10. The initial velocity u of the particle P can be expressed as u =
3¢c0s30°1 — 3sin30°j = 2-60i — 1-50j. Let v denote the final velocity vec-
tor of the particle. The impulse vector is

2j=Ap=2v—-2u

= v=u+j=2 60i—0-50j.

Hence v = v/2-602 4+ 0-502 = 2. 65. The direction 8 South of East satisfies

tanf = g:gg = 0-1923 so that 6 ~ 11-2°, so that the bearing of the final vector

is 101 - 2° East of North.

18



Problem Set 9

1. In the case where N is the line x = k > 0 we have from the defining
equation OP = ePN that
r =e(k—rcosf)
= r(l+ecos) = ke

o ke
T T  ecost
If 2 = —k < 0 then
r =e(k+rcosf)
=r= ok .
1 —ecosfd
2. We have
2.5
"1 " cosd
so e = 1 (a parabola) and ek = k = 2 -5 so that the directrix N is the line
x = —2-5. Next

5 5
r—rcos9:§:\/;z:27+y2—x:§

25
éz2+y2:z2+5z+z
N 15, 5
r=—-y" —-.

5Y "1

2

3. For e = 1 we have, since r? = 22 + y? and r cosf = z that

r=rcosh + ke = x> + 9% = 2% + 2k + k?
= 9% = 2kx + k°.
If we put z = 2’ — % the equation of the conic becomes
2 / k 2 / /
y* = 2k(x f§)+k = 2ka’ = 4aa’,

where k = 2a. This is a parabola with turning point at the origin of the x'y
axes system. The directrix of the parabola is ' — a = —2a so that 2/ = —a.
The focus of the parabola is the origin of the xy-system, which is the point
(04 a,0) = (a,0) of the 2’y axes.

4. The equation OP = ePN now becomes

r =e(k —1rcos(6 — )

= r(l+ecos(d — b)) = ek

19



e ek
~ 1+ecos(f —6p)

5. Let P(z,y) be a point of the locus. Note that 2a > 2¢ so that 0 < ¢ < a.
Then we have

Vie—e)2+y2+ V(@ +e)2+y2=2a>0
= (x+e) 4y =4+ (x —¢)® +y? —da/(z — )% + 2

>a-Sp= (x—c)2+y?
a

2,2
éa2+—2—2cz:z2—2cz+c2+y2
a

2 2 2 _ 2
= z°(1 +y* =
x=( 5) +y a” —c

2
2, @ —C Y
> T =1
((12((12*CQ>) a2 — 2
2 2
z Y
= 4+—-< =1
(12+(127C2

Since a > ¢ we may write a? — ¢ = b? giving the equation:

an ellipse, centred at the origin with respective semi-major and semi-minor axes
of lengths a and b (as a > b).

6. Similarly to Question 5 the given condition is captured by

IV —e)2+y2—(r+c)2+y2=2a>0

= (@ = +9° + (@ + 0 +y? =4a” + 2/ ((z — 02 +12)(( + ) +7)
=222 + 22 + 2% —4a® = 2¢/((z — )2 + v2)((z + ©)? + ¢2)

= (@ +y*+ ¢ = 20")" = (@ = +y)(z + 0" +7)

= (22 P+ —20%)% = (2 + oy + 2 — 2cx)(

22 4+ 9% + 2 + 2cx)
= 4a* — 4a® (2% + y? + ) = —4c%2?

T
2,2
c’r
:>:132+y2+02——2:a2
a
2
ézQ(l——2)+y2:a2 ?
2 2
Y
i -1
2 T2 _ 2
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.’L'2 y2

“a? b2

—a? > 0. This is a hyperbola centred at the origin. Re-writing

=1
where b? = ¢?
its equation as

y2 b2 b2

x2 a2 %’

we see that for |x| — the curve approaches y = igx, which therefore represent
the asymptotes of this hyperbola.
7. We have

r(1 —ecosf) =ek =r=e(k+rcost) =e(k+x)
= 2% 4+ 9% = 2(k? + 2kx + 2?)

= 22(1 — %) — 2e%kx + y* = %k?

g 2e%kx n y? e2k?
xr° — =
1—e2 1-—e2 1-—¢2
e’k y? 2e2k?
é(zil—eQ) +1—€2:1—62; (5)

if e < 1 then 1 —e? > 0 and (6) represents an ellipse, as the equation can be

written in the form (I;;)Z + g—j =1, while if e > 1 (6) represents a hyperbola,
2

2
as the equation can be written in the form % - %=1
8. We have

l

r=—— I1l=0<e<1,l=ke>0.
1+ ecosb

Hence the aphelion position A (of the planet), which is the furthest point from
the Sun at the focus O, is given by

when 6 = 7, so that cosf = —1.

The perihelion position P, which is the point where the planet is closest to the
Sun, is given by

l
rp = —— when 6§ = 0, so that cosf = 1.
1+e
The semi-latus rectum is the vertical distance from the focus to the curve, which
corresponds to ¢ = 7, in which we get r = [ = ek.
9. Writing a for the major semi-axis of the ellipse we have

l l (1+e+1—e) 21
20 = = = =
@=rPtTa 17€+1+6 (I—e)(1+e) 1—e?
ke A
T e T 1y e (6)
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10. Following on from Question 9, we have, from (7), writing ON for the
distance from the focus to the directrix N

ON =k =2(1-¢?).
e

Again from (7) we find that the distance CO, where C is the centre of the ellipse
satisfies
CO=ras—a=a(l+e)—a=ae. (7)

Finally. denoting by B the point of the ellipse vertically above the centre C we
have BO = eBN = eCN so from (8) we obtain

BO =e(ae + k) = e(ae + g —ae) = a. (8)

By considering the right triangle AOBC and using (9) and (10) we find b, the
minor semi-axis of the ellipse, as

b + (CO)* = (BO)?

= b? + (ae)? = a®

b=ay1—e2.

Problem Set 10

1. We work backwards: the condition that 726 = h, a constant implies that

%(7@9) =0& 2r7)0+1r20=0

& 20 +rf =0,

so that the given condition is equivalent to saying that the radial component of
acceleration is 0, so that the force on the object is purely radial.

Comment it follows that for a mas m orbiting the Sun, mr20 is constant.
This quantity is the angular momentum of the mass, a topic that we shall return
to in the Second Year modules. Kepler’s Second Law, which states that the rate
at which a planet sweeps out radial area is constant, represents a manifestation
of the law of conservation of angular momentum.

2. If P moves from P; to P in the time interval ¢1to ¢ then the area swept
out by the the ray OP is
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1 [t h
:—/ hdtzi(tg—tl).

2 Jy

Hence the area swept out depends only on the length of the time interval and
is independent, of the value of r. This is Kepler’s Second Law: a planet sweeps
out equal areas in equal times.

3. From Question 1, 726 = h, a constant, and so

2

h2 —_ T492 _ h2 ; T92 =—.
r

Hence, if we now equate the gravitational force to the radial force acting on our
mass m and cancel the common factor of m we obtain:

4. By the Chain rule and Question 1 we get
d d d .d hd

i w @ e Ea
Substituting accordingly into our differential equation now gives:

,ﬂfi(ﬁ),hjfﬁi(ﬁﬂ),hj
r2  dt dt 3 r2d0 r2 do r3
oM adn

K2 dOr2dh r

5. Now ‘;—g = 7%2% and so substituting into the equation of Question 4
gives:
yM d ( du)
e (i D)
h? do do
d? M
# +u= Vh—Q’ where u = 1.

The general solution of the corresponding homogeneous equation is u = A’ cos 6+
B’sinf (A’, B’ constants) or, if we choose, as we do here, u = A cos(f — 6y) for
arbitrary constants A and 6y. For a particular integral we may take any con-
stant, so in particular we may have u = h—I‘{I, giving the general solution:

u(0) = Acos(d — 0y) + %

=

h2

1 1+ },;Z—A?COS(H—QO)
r o
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Re-writing the solution in terms of r now gives:

h2

r(0) = 2 M ;
(©) 1—}—’;—]\?(:05(9—90)

. . . . . 2 . .
this is a conic section with e = }}Y—I\? and k = %, one focus at the origin O and

corresponding directrix at a distance k = % from O with 6, the angle between
the perpendicular to the directrix and the z-axis, measure (anti-clockwise).

Comment In particular, an orbit is either elliptical, parabolic, or hyperbolic.
In the case of a planet or other body trapped in the star system, the orbit is
elliptical with the Sun at one focus of the orbit, as the Sun is the chosen origin
of our coordinate system. This is Kepler’s First Law.

6. The area of the ellipse forming the orbit is wab. Using the result of
Question 1 we can also express this area as:

1 (% 1 [T, ae ho[T h hT
ﬁab:—/ T2d9:—/ TQ—dt:—/ dt = (T -0) = —,
2 /o 2/, dt 2 o 2 2

7. The gravitational potential V' of a unit mass m at a distance r from a
mass M is the work done to move m from r to infinity:

r=r

e M 1
r xT T

= M0 - (~2)] = -2,

8. In general we have h = r20. At perihelion, the radial component of
acceleration is 0 so that the velocity is in the direction of 6 and has value
vp = 7’9, whence h = rpvp. Now the energy of the planet F is constant and the
equation F =V + P (kinetic plus potential) at perihelion takes on the form:

r

1 M
E:—mv%f’y .
2 ’I“P

Now we substitute vp = % and rp = #e (see Question 8 Set 9) to obtain:

2 rp rp

For Question 5 we have 7’1—]\24 = so that h? = yMI. This becomes

po T 2 e 2000
= FE = 71\2417”(62 -1)



9. It follows from Question 8 that for an elliptical orbit, (e < 1), we have
E < 0, for a parabolic orbit (e = 1), E = 0 and for a hyperbolic orbit (e > 1),
E > 0. In particular, a planet will escape the Sun’s gravitational pull if and
only if E > 0, which is to say

1 M

—mv227 m
r
M

S v > i .
T

Comment This bounding speed is known as the escape velocity of the orbiting
body.
2
10. From Question 5 we have Vh—M = [ so that h? = yMI. Also from
Question 8 on Set 9 we have b = av/1 — €2 and from Question 9 on Set 9 we
have | = bv/1 — €2 so that [ = a(1 — e?). Using these equations and Question 7

then gives:
2mab 2ra?yV1 — €2 27 3
= = pry . a2
h AMya/i-e  AM

which is Kepler’s Third Law for an elliptical orbit.
Comment Question 10 on Set 7 was the special case where the orbit was
circular.

T
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