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Solutions and Comments for the Problems

Problem Set 1

1.

y′ = 2 sec(x2) · (sec(x2))′ = 2 sec(x2) · 2x · sec(x2) tan(x2)

⇒ y′ = 4x sec2(x2) tan(x2).

2.

ln y = ln(x2(7x− 14)
1

3 )− ln((1 + x2)4)

= 2 lnx+
1

3
ln(7x− 14)− 4 ln(1 + x2).

⇒ 1

y
· dy
dx

=
2

x
+

7/3

7x− 14
− 8x

1 + x2

⇒ dy

dx
=

x2(7x− 14)
1

3

(1 + x2)4

( 2

x
+

1

3x− 6
− 8x

1 + x2

)

.

Comment This te
hnique is suitable when asked to �nd the derivative that

involves a quotient of terms that are themselves produ
ts of several terms.

3. y′ = 3x2−10x+1,. y′(1) = 3−10+1 = −6, so that y = −6x+c. At x = 1,
y = 1−5+1+6 = 3. Using (1, 3) we see that 3 = −6(1)+c ⇒ c = 9. Hen
e the
required tangent is y = −6x+ 9, whi
h in the required form is 6x+ y − 9 = 0.

4. 5y2 + sin y = x2 ⇒ 10yy′+ (cos y)y′ = 2x ⇒ y′ = 2x
10y+cos y .

5. Di�erentiating impli
itly with respe
t to x yields:

28y3y′ + 3x2y + x3y′ + 1 = 0 ⇒

y′ = − 3yx2 + 1

28y3 + x3
.

Evaluating at (4, 0) gives the value of the slope as − 1
43 = − 1

64 .

6.

(cosec(2 cot 3x))′ = (−cosec(2 cot 3x) cot(2 cot 3x)) · (2 · 3(−cosec23x))

= 6cosec(2 cot 3x) cot(2 cot 3x) · cosec23x.
7.

y′ = − 1√
1− x2

−
(

− 1

2
(1− x2)−

3

2

)(

− 2x
)

+ (−1)(ln 2)2−x

= − 1√
1− x2

− x

(1 − x2)
3

2

− ln 2

2x
.
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8.

y′ = (1− sinx)

cosx
· − sinx(1− sinx)− (− cos2 x)

(1− sinx)2

=
− sinx+ sin2 x+ cos2 x

cosx(1 − sinx)
=

1− sinx

cosx(1 − sinx)
= secx.

9. Put

f ′(x) = 1− lnx

x2
= 0 ⇔ x = e,

whi
h yields a turning point with 
o-ordinates (e, e−1). This is a maximum:

f ′′(x) = (−3x+2x ln x)
x4 and so f ′′(e) = − 1

e3 < 0, when
e the turning point is a

maximum by the 2nd derivative test.

10. f(x) = 
onstant ⇔ f ′(x) = 0 and in these 
ir
umstan
es that gives:

a(cx+ d)− c(ax+ b)

(cx+ d)2
= 0 ⇔ ad− bc = 0.

Hen
e f(x) is a 
onstant fun
tion if and only if ad = bc.
Comment When we say that f(x) is the 
onstant fun
tion c we mean that

f(x) = c ∀x in the domain of f(x); for emphasis this is sometimes written as

f(x) ≡ 0 so as not to 
onfuse this idea with the �nding of the roots of a fun
tion

f(x) whi
h are the values of x, if they exist, su
h that f(x) = 0.

Problem Set 2

1. I =
´

x cosx dx. Integrate by parts with u = x, so that du = dx;dv =
cosx dx, and v = sinx. Hen
e

I = x sinx−
ˆ

sinx dx = x sinx+ cosx+ c.

2. Put u = 
osx, so du = −sinx; x = 0 ⇒ u = 1; x = π
4 ⇒ u = 1√

2
. Hen
e

the integral I be
omes:

I = −
ˆ

1
√

2

1

du

u
=

ˆ 1

1
√

2

du

u
= lnu|u=1

u= 1
√

2

= 0− ln
( 1√

2

)

= ln 2
1

2 =
1

2
ln 2.

Comments When 
al
ulating a de�nite integral using a substitution it is nor-

mally easier to express the limits in terms of the new variable as well. Alter-

natively, you 
an �nd the inde�nite integral, substitute ba
k to express this in

terms of the original variable and apply the original limits. However, a mixed
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expression involving both your original and substituted variables will rarely be

of any use to you. As usual when dealing with logs, it is important not only to

know your log laws but to use them in order to simplify the expressions that

arise: log ab = log a+ log b; log a
b = log a− log b and log ab = b log a.

3.

1−x
1+x = −1 + 2

1+x . Hen
e

ˆ

1− x

1 + x
dx =

ˆ

(−1 +
2

1 + x
) dx = −x+ 2

ˆ

dx

1 + x
= −x+ 2 ln |1 + x|+ c

4. sin 5x cos 11x = 1
2 sin(5x − 11x) + 1

2 sin(5x + 11x) . Hen
e our integral

be
omes:

1

2

ˆ

sin 16x dx− 1

2

ˆ

sin 6x dx =

= − 1

32
cos 16x+

1

12
cos 6x+ c.

5.

I =

ˆ

sec6 θ dθ =

ˆ

sec4 θ sec2 θ dθ =

ˆ

(1 + tan2 θ)2 sec2 θdθ =

ˆ

(1 + u2)2 du

(where u = tan θ), so du = sec2 θdθ. Hen
e

I =

ˆ

(1 + 2u2 + u4) du = u+
2

3
u3 +

1

5
u5 + c;

∴ I = tan θ +
2

3
tan3 θ +

1

5
tan5 θ + c.

6. Put u = x− 1, du = dx, giving

ˆ u=1

u=0

(u+ 1)2u
1

2 du =

ˆ 1

0

(u
5

2 + 2u
3

2 + u
1

2 ) du

= [
2

7
u

7

2 +
4

5
u

5

2 +
2

3
u

3

2 ]10 =
2

7
+

4

5
+

2

3
=

184

105
.

7.

1

x2 + x− 2
=

1

(x− 1)(x+ 2)
≡ A

x− 1
+

B

x+ 2
;

⇒ A(x+ 2) +B(x− 1) = 1.

Put x = −2: −3B = 1 ⇒ B = − 1
3 ; put x = 1: then 3A = 1 ⇒ A = 1

3 . Hen
e

the integral I be
omes:

I =
1

3

ˆ

dx

x− 1
− 1

3

ˆ

dx

x+ 2
=

1

3

(

ln |x− 1| − ln |x+ 2|
)

)

+ c

=
1

3
ln
∣

∣

∣

x− 1

x+ 2

∣

∣

∣
+ c.
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Comment A qui
k way to split a rational fun
tion with linear fa
tors into

partial fra
tions is the so-
alled Cau
hy Cover-up method. Take the root of ea
h

linear fa
tor in turn, 
over that term up and substitute the value of that root in

the remaining expression to get the value of the numerator in the 
orresponding

fra
tion. In this example, 
over up the x− 1 term in the denominator and put

x = 1 to get A = 1
1+2 = 1

3 ; similarly 
over up the x + 2 term and put x = −2

to get B = 1
−2−1 = − 1

3 .

8. Put u = ex; du = exdx ⇒ dx = du
u ; the integral be
omes:

ˆ

du

u(1 + u)
=

ˆ

(
1

u
− 1

1 + u
) du = ln(ex)− ln(1 + ex) + c =

= x− ln(1 + ex) + c.

Comments Note there is no need for absolute value signs around the log argu-

ments as ex > 0 for all x. Applying the Cover Up Method to this example we

have that the roots of u and 1+ u are respe
tively 0 and −1: 
overing up the u
term in

1
u(1+u) and putting u = 0 in

1
1+u gives 1, the numerator of

1
u ; similarly


overing up the 1 + u term and putting u = −1 in

1
u returns the value of −1,

whi
h we see in the se
ond term of the de
omposition: − 1
1+u .

9. Put u = lnx and dv = dx; we then get du = dx
x , v = x, and so the integral

be
omes

x lnx−
ˆ

x
dx

x
= x lnx− x+ c.

10. We note that the sign of cos 2x turns from positive to negative at x = π
4

and so we write:

ˆ
π

2

0

| cos 2x| dx =

ˆ
π

4

0

| cos 2x| dx+

ˆ
π

2

π

4

| cos 2x| dx

=

ˆ
π

4

0

cos 2x dx−
ˆ

π

2

π

4

cos 2x dx

= [
1

2
sin 2x]

π

4

0 − [
1

2
sin 2x]

π

2
π

4

=
1

2

(

(sin
π

2
− sin 0)− (sinπ − sin

π

2
)
)

=
1

2

(

1− 0− (0− 1)
)

=
1

2
(1 + 1) =

1

2
(2) = 1.

Comment Alternatively we might just appeal to the fa
t that the form of

the 
osine 
urve below the x-axis is identi
al to that above and so 
on
lude that

the area represented by the integral is equal to 2
´ π

4

0
cos 2x dx = 2[ 12 sin 2x]

π

4

0 =

2(12 − 0) = 2 · 1
2 = 1 unit

2
.
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Problem Set 3

1. Put y = 2x+ 3 so that x = 1
2 (y − 3). Hen
e

f(y) =
1

4
(y2 − 6y + 9) + 1 and so, as a fun
tion of x :

f(x) =
1

4
x2 − 3

2
x+

13

4
.

2. Putting y = ex we have f(y) = 1
2 (y + 1

y ) so, as a fun
tion of the symbol

x we have

f(x) =
x2 + 1

2x
.

3. Write f(x) = e(x) + o(x) where e(x) is an even fun
tion and o(x) is odd.
Then f(−x) = e(−x) + o(−x) = e(x) − o(x). Adding and then subtra
ting the

two equations in f(x) then gives

e(x) =
f(x) + f(−x)

2
, o(x) =

f(x)− f(−x)

2
.

In parti
ular, taking f(x) = ex gives that e(x) = coshx, and o(x) = sinhx.
Comment The argument above stri
tly speaking, merely shows that e(x) and

o(x) are unique for we have found out what they are, assuming they do exist.

However the manipulations 
an be reversed and so e(x) and o(x) as de�ned

above exist and satisfy e(x) + o(x) = f(x). Moreover, from their de�nitions it

follows that e(−x) = e(x) and o(−x) = −o(x), as we require.
4. In this instan
e the equation be
omes a2x + b(a + 1) = 2x + 1 so that

a = ±
√
2 and b = 1/(1±

√
2):

f(x) = ±
√
2x+

1

1±
√
2
.

5. (f ◦ f)(x) = a(ax+ b) + b = a2x+ b(a+ 1) ≡ x. This is equivalent to

a2 = 1& b(a+ 1) = 0 ⇔ a = ±1& b(a+ 1) = 0

⇔ a = −1 or a = 1, b = 0.

Hen
e the solutions are f(x) = x and f(x) = b− x for arbitrary b.
Comment Note that the graphs of these fun
tions are pre
isely the straight

lines that are invariant under re�e
tion in the line y = x.
6. From f(f(x)) = x2 − x + 1 we have in parti
ular that f(f(0)) = 1 =

f(f(1)) and so

f(1) = f(f(f(1))) = f2(1)− f(1) + 1

⇒ f2(1)− 2f(1) + 1 = (f(1)− 1)2 = 0 ⇒ f(1) = 1.
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Next

f(f(f(0))) = f2(0)− f(0) + 1 = f(1) = 1.

Therefore f(1) = 1 and so f2(0)−f(0) = 0, so that either f(0) = 0 or f(0) = 1.
However, if f(0) = 0 then f(f(0)) = f(0) = 0, 
ontradi
ting that f(f(0)) = 1.
Hen
e we 
on
lude that f(0) = 1.

7. In order to invert the fun
tion we make x the subje
t of the formula:

cxy + dy − ax− b = 0 ⇒ x(cy − a) = b− dy ⇒ x =
−dy + b

cy − a
.

Hen
e the inverse fun
tion is given by the rule:

y =
−dx+ b

cx− a
.

Note that the 
ondition ad 6= bc is, by Question 10 of Problem Set 1, what

is needed to guarantee that

ax+b
cx+d is not a 
onstant fun
tion, in whi
h 
ase

we see that the same applies to the inverse. In parti
ular, cx − a 6≡ 0 as

cx− a = 0 ∀x ⇔ a = c = 0 ⇒ ad = bc (= 0).
8. cos−1(cosx) = x∀ 0 ≤ x ≤ π, for this interval is the prin
ipal domain of

the 
osine fun
tion. Sin
e cosx is even, so is the given fun
tion y(x); sin
e cosx
has period 2π, it follows that y(x + 2π) = y(x). Colle
tively, this is su�
ient

information to sket
h y(x) for all values of x: we get a saw-toothed wave as seen

in the graph below.

9. We require that

(2− x > 0& sinx+ cosx 6= 0)

⇔ (x < 2)& (
√
2 sin(x +

π

4
) 6= 0)

⇔ (x < 2)& x+
π

4
6= nπ, n ∈ Z

⇔ (x < 2)& (x 6∈ {(n− 1

4
)π, (n ∈ Z)}.

Therefore the natural domain of f(x) is:

(−∞, 2) \ {(n− 1

4
)π, n ≤ 0}.

10. Sin
e −1 ≤ sinx ≤ 1. We require 0 < sinx. However, for 0 < x ≤ 1 we

have −∞ < lnx ≤ 0, so that ln(ln(sinx)) is not de�ned for any x ∈ R. Hen
e
the natural domain of this fun
tional rule is ∅.

Comment Despite having an empty domain we 
an formally 
al
ulate (ln(ln(sinx))′

and get

1

ln(sinx)
· cosx
sinx

=
cotx

ln(sinx)
,

whi
h de�nes a fun
tion with natural domain that is not empty.
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Problem Set 4

1.

ln y = −2x(lna) ⇒ y′
y

= −2 lna

∴ y′ = −2 ln(a) · a−2x.

Comment Alternatively, by de�nition, ax = e(ln a)x
and go from there.

2. We want

lim
h→0

(x+ h)n − xn

h
= lim

h→0

∑n
k=1

(

n
k

)

hkxn−k

h

lim
h→

n
∑

k=1

(

n

k

)

hk−1xn−k =

(

n

1

)

xn−1 = nxn−1;

as all other terms 
ontain a postive power of h and so approa
h 0 as h → 0.
3.

y′ =
(

1

1 +
(

1
1+x2

)2

)

·
(

−2x

(1 + x2)2

)

=
−(1 + x2)2

(1 + x2)2 + 1
· 2x

(1 + x2)2

=
−2x

1 + (1 + x2)2
or− 2x

x4+2x2+2 .

4.

x = sec y ⇒ dx

dy
= sec y tan y ⇒ dy

dx
=

1

sec y tan y
.

Now tan2 y = sec2 y − 1 = x2 − 1, x = sec y and so

dy

dx
=

1

x
√
x2 − 1

if tany > 0.

If tan y < 0, then tan y = −
√
x2 − 1and

dy

dx
=

1

−x
√
x2 − 1

.

In either 
ase we obtain:

dy

dx
=

1

|x|
√
x2 − 1

.

5. We have f ′(x) = − 1√
2π

xe−
x
2

2
and

f ′′(x) = − 1√
2π

(

e−
x
2

2 − x2e−
x
2

2

)
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=
1√
2π

e−
x
2

2

(

x2 − 1
)

.

Hen
e f ′′(x) = 0 i� x2 = 1, that is x = ±1, in whi
h 
ase y = e−
1

2√
2π
. Therefore

the required points are

(

± 1, 1√
2πe

)

.

Comment These are the two points of the bell-shaped 
urve where we see a


hange of shape from 
on
ave up to 
on
ave down. The unique turning point

of 
ourse o

urs at the origin.

6.

y′ = −cosecθ cot θ = − cos θ

sin2 θ
.

Hen
e

y′
(π

6

)

= − cos
(

π
6

)

sin2
(

π
6

) = −
√
3/2

(1/2)2
= −2

√
3.

Now cosec
(

π
6

)

= 1

sin
(

π

6

) = 1
1/2 = 2. The gradient of the normal is then

−1
−2

√
3
=

√
3
6 . The equation of the normal is: y =

(

√
3
6

)

x+ c, where

2 =

√
3

6
· π
6
+ c ⇒ c = 2−

√
3π

36
.

Therefore the equation of the normal is y =
√
3
6 x+ (2−

√
3π
36

)

.
7. By the Chain Rule we obtain:

dw

dt
=

dw

dx
· dx
dt

= sec2 x · (12t2 + 1)

= sec2(4t3 + t)(12t2 + 1).

8. y′ = 2 cos 2x− 4 sin 4x. Then

tan θ = y′
(π

8

)

= 2 cos
π

4
− 4 sin

π

2
=

2√
2
− 4 =

√
2− 4.

9. Let R and r denote the respe
tive radii of the 
one and 
ylinder and

similarly let H and h be their respe
tive heights. By similar triangles we have:

h

R− r
=

H

R
⇒ h =

H(R− r)

R
.

Thus writing VS for the volume of the 
ylinder we have the equation:

VS(r) = πr2h =
πH

R

(

Rr2 − r3
)

VS ′(r) =
πH

R

(

2Rr − 3r2) = 0 ⇒ r = 0 or r = 2R
3 .
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Clearly the latter is the maximizing value, when
e VS

(

2R
3

)

= 4
27πR

2H and the

volume of the 
one is then given by VC = 1
3πR

2H . Hen
e at this optimal value

we have:

VC

VS
=

(

1
3πR

2H
)

(

4
27πR

2H
) =

9

4
,

so that the ratio VS : VC = 4 : 9.
10. By the Fundamental Theorem of Cal
ulus we get

dy
dx = sin(x2).

Problem Set 5

1. 1 + cosx = 2 cos2
(

x
2

)

, so the integral be
omes:

ˆ

1

2
sec2

(x

2

)

dx = tan
x

2
+ c.

Comment The so-
alled double-angle formulae are often used in integrals of

this kind but you have to for
e yourself to think of the x as 2θ in order to apply

them so that θ = x
2 . The hint that representation as a square may be useful

also 
omes from the observation that 1 + cosx ≥ 0 for all x.
2. Put u = ln x ⇒ du = dx

x , so the integral be
omes:

ˆ

dx

x lnx
=

ˆ

du

u
= ln |u|+ c = ln | lnx|+ c.

3. x2+6x+18 = (x+3)2+32. Put u = x+3, du = dx; our integral be
omes:

ˆ

du

u2 + 32
=

1

3
tan−1

(u

3

)

+ c =
1

3
tan−1

(x+ 3

3

)

+ c.

4. Write I =
´

ex cosx dx. Put u = ex, dv = cosx dx, so that du = ex dx,
v = sinx. This yields:

I = ex sinx−
ˆ

ex sinx dx.

Call this new integral in the previous expression J . Integrating J by parts:

u = ex, dv = sinx dx ⇒ du = ex dx,v = − cosx dx. Hen
e

J = −ex cosx+

ˆ

ex cosx dx = −ex cosx+ I.

Hen
e our expression for I 
an be re-written as

I = ex sinx− (I − ex cosx) ⇒ 2I = ex sinx+ ex cosx so that

I =
1

2
ex(sinx+ cosx) + c.
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5. a−2x = e(−2 ln a)x
and so

I =

ˆ 1

0

e(−2 lna)x dx = − 1

2 lna

[

e(−2 ln a)x
]1

0
=

− 1

2 lna

[

e−2 lna − e0
]

= − 1

2 lna

(

a−2 − 1)

=
a2 − 1

2a2 ln a
.

6. Put u = sin−1 x, dv = dx, so that the integral I be
omes

x sin−1 x+
1

2

ˆ −2x dx√
1− x2

= x sin−1 x+
1

2

ˆ

t−
1

2 dt (where t = 1− x2)

= x sin−1 x+ t
1

2 + c;

Therefore a primitive is given by

x sin−1 x+
√

1− x2.

7. Put du = cosx dx so that our integral be
omes:

ˆ

(sin2 x)2 cos4 x cos x dx =

ˆ

(1− u2)2u4 du =

ˆ

(u4 − 2u6 + u8)du

=
sin5 x

5
− 2 sin7 x

7
+

sin9 x

9
+ c.

8. cos θ = 1 − 2 sin2 θ. Hen
e sin2 2x = 1
2 (1 − cos 4x) and so the integral

be
omes:

1

2

ˆ

(1 − cos 4x) dx =
1

2

(

x− sin 4x

4

)

+ c.

9.

V =

ˆ ∞

1

πy2 dx = π

ˆ ∞

1

dx

x2

= π
[

− 1

x

]∞
1

= π[0− (−1)] = π units3.

Comment Strange as it may seem, the surfa
e area of this obje
t is in�nite.

That is to say there is an in�nite surfa
e to paint but only π 
ubi
 units of

paint 
an �t inside! When this was �rst pointed out by Tore
elli around 1640

it 
aused must 
onsternation.

10. Put x = 2 sin θ to obtain dx = 2 cos θdθ so that our integral I be
omes:

I =

ˆ

2 cos θdθ

4 sin2 θ
√

4− 4 sin2 θ
=

ˆ

2 cos θdθ

4 sin2 θ · 2 cos θ

=
1

4

ˆ

cosec2θdθ = −1

4
cot θ + c :
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using the right-angled triangle with angle θ with sin θ = x
2 we see that the other

short side of the triangle has length

√
22 − x2

so that cot θ =
√
4−x2

x . Hen
e we


on
lude that

I = −
√
4− x2

4x
+ c.

Problem Set 6

1.

cosh2 x−sinh2 x =
(ex + e−x)2 − (ex − e−x)2

4
=

e2x + 2 + e−2x − e2x + 2− e−2x

4
= 1.

2.

RHS= (ex+e−x)(ey+e−y)±(ex−e−x)(ey−e−y)
4

=
(ex+y + ex−y + ey−x + e−x−y)± (ex+y − ex−y − e−x+y + e−x−y)

2

=
2ex±y + 2e−(x±y)

4
= cosh(x± y).

3

RHS= (ex−e−x)(ey+e−y)±(ex+e−x)(ey−e−y)
4

=
(ex+y + ex−y − ey−x − e−x−y)± (ex+y − ex−y + e−x+y − e−x−y)

2

=
2ex±y − 2e−(x±y)

4
= sinh(x± y).

4. Using Questions 2 and 3 we obtain:

tanh(x± y) =
sinh(x± y)

cosh(x± y)
=

sinhx cosh y ± coshx sinh y

coshx cosh y ± sinhx sinh y

and upon all terms by coshx cosh y we �nd that

tanhx± tanh y

1± tanhx tanh y
.

5. Put y = x in the identities of Questions 2 and 3 respe
tively and using

that of Question 1 gives

cosh 2x = cosh2 x+ sinh2 x = cosh2 x+ (cosh2 x− 1) = 2 cosh2 x− 1;

sinh 2x = sinhx coshx+ coshx sinhx = 2 sinhx coshx.

12



6. Sum the two identities sinh(u + v) = sinhu cosh v + coshu coshv and

sinh(u− v) = sinhu cosh v − coshu sinh v

2 sinhu cosh v = sinh(u+ v) + sinh(u− v).

Writing u+ v = x and u− v = y so that u = x+y
2 and v = x−y

2 we obtain from

this that

sinhx+ sinh y = 2 sinh
x+ y

2
cosh

x− y

2
.

.

7. Re-working the identity of Question 5 we have that cosh 2x = 1+2 sinh2 x
so that coshx = 1+2 sinh2(x2 ) and hen
e sinh2(x2 ) =

1
2 (coshx−1). Sin
e sinhx

is non-negative exa
tly when x ≥ 0 we 
on
lude that

sinh
(x

2

)

= sgn(x)
√

cosh x−1
2 .

8.

y = sinh−1 x ⇒ x = sinh y =
ey − e−y

2

⇒ u− 1

u
= 2x, whereu = ey,

⇒ u2 − 2xu− 1 = 0 ⇒ u =
2x±

√
4x2 + 4

2
= x±

√

x2 + 1.

Now u = ey > 0, and so only the positive bran
h is relevant, giving us

ey = x+
√

x2 + 1 ⇒ y = ln(x+
√

x2 + 1).

Note that the argument of the log fun
tion is stri
tly positive so that this ex-

pression is valid as x ranges over the entire real line. We therefore get our

expression for the inverse of hyperboli
 sine to be:

y = ln
(

x+
√

1 + x2
)

(x ∈ R).

sinh−1(x) = ln(x+
√

x2 + 1).

9.

y = cosh−1 x ⇒ x = cosh y =
ey + e−y

2

⇒ u+
1

u
= 2x, whereu = ey,

⇒ u2 − 2xu+ 1 = 0 ⇒ u =
2x±

√
4x2 − 4

2
= x±

√

x2 − 1.

Sin
e coshx ≥ 1 we take the positive bran
h to obtain

ey = x+
√

x2 − 1 ⇒ y = ln(x+
√

x2 − 1), x ≥ 1.

13



10. Put

x = tanh y =
sinh y

cosh y
=

ey − e−y

ey + e−y
.

Note that sin
e | sinh y| < | cosh y| ∀ y it follows that −1 < x < 1. Putting

u = ey then gives a quadrati
 in u to solve in terms of x:

x =
u− u−1

u+ u−1
=

u2 − 1

u2 + 1
⇒ x(u2 + 1)− (u2 − 1) = 0

⇒ (x− 1)u2 + (x + 1) = 0 ⇒ u2 =
−(x+ 1)

x− 1
=

1 + x

1− x

⇒ u = ey =

√

1 + x

1− x
⇒ y = tanh−1 x =

1

2
ln
(1 + x

1− x

)

.

Problem Set 7

1.

(coshx)′ =
1

2
(ex + e−x)′ =

1

2
(ex − e−x) = sinhx;

(sinh x)′ =
1

2
(ex − e−x)′ =

1

2
(ex + e−x) = coshx.

2. Making use of Question 1 and Set 40 Question 1 we get:

(tanhx)′ = (
sinhx

coshx
)′ =

cosh2 x− sinh2 x

cosh2 x
=

1

cosh2 x
,

∴ (tanhx)′ = se
h

2x.

3.

1− tanh2 x = 1− sinh2 x

cosh2 x
=

cosh2 x− sinh2 x

cosh2 x

=
1

cosh2 x
= se
h

2x.

4. Put x = a sinh t so that dx = a cosh t and so

ˆ

dx√
a2 + x2

=

ˆ

a cosh t dt
√

a2 + a2 sinh2 t
=

ˆ

a cosh t dt

a
√

1 + sinh2 t

=

ˆ

a cosh t dt

a cosh t
=

ˆ

dt = t = sinh−1
(x

a

)

+ c.

5. Put x = a cosh t with t ≥ 0 so that dx = a sinh t and so

ˆ

dx√
x2 − a2

=

ˆ

a sinh t dt
√

a2 sinh2 t− a2
=

ˆ

a sinh t dt

a
√

cosh2 t− 1

14



=

ˆ

a sinh t dt

a sinh t
=

ˆ

dt = t = cosh−1
(x

a

)

+ c.

Comment : sin
e we have x2 ≥ a2 and t ≥ 0 here we take sinh t and not

− sinh t when extra
ting the root in the denominator.

6. This time put x = a tanhx with −1 < x < 1, whi
h is the range of tanhx.
Then dx = ase
h2tdtand so, making use of Question 3 we obtain

ˆ

dx

a2 − x2
=

ˆ

ase
h2t dt

a2 − a2 tanh2 x
=

ˆ

ase
h2t dt

a2(1− tanh2 x)
=

ˆ

ase
h2t dt

a2se
h2t

=
1

a

ˆ

dt =
t

a
=

1

a
tanh−1

(x

a

)

+ c.

7.

sinhx =
1

2

(

∞
∑

n=0

xn

n!
−

∞
∑

n=0

(−1)nxn

n!

)

=
1

2

∞
∑

n=0

(1 + (−1)n+1)xn

n!
=

∞
∑

n=0

x2n+1

(2n+ 1)!
.

coshx =
1

2

(

∞
∑

n=0

xn

n!
+

∞
∑

n=0

(−1)nxn

n!

)

=
1

2

(

∞
∑

n=0

(1 + (−1)n)xn

n!

)

=

∞
∑

n=0

x2n

(2n)!
.

8. Consider the equations eix = cosx + i sinx and e−ix = cosx − i sinx.
Adding and subtra
ting them respe
tively yields

2 cosx = eix + e−ix
and 2i sinx = eix − e−ix

⇒ cosx = cosh(ix), and sinx = −i sinh(ix).

Repla
ing x by ix in both of these then gives

cos(ix) = cosh(i2x) = cosh(−x) = coshx and

sin(ix) = −i sinh(i2x) = −i(− sinhx) = i sinhx. Hen
e

sinhx = −i sin(ix) and coshx = cos(ix).

9. Using the double-angle formula and Question 8 we obtain:

cos(x + iy) = cosx cos(iy)− sinx sin(iy)

cosx cosh y − i sinx sinh y.

10.

sin(x+ iy) = sinx cos(iy) + cosx sin(iy)

= sinx cosh y + i cosx sinh y.

15



Problem Set 8

1. By the Chain rule:

y′ = −
ose
2(sin x) cosx.

2. We have x = cot y ⇒ dx
dy = −
ose
2y. Now 
ose


2y = 1+ cot2 y = 1+ x2
.

Hen
e

dy

dx
= − 1

1 + x2
.

3. We have ln y = x ln x so that

y′

y
= lnx+

x

x
⇒ y′ = y(1 + lnx),

∴ y′ = xx(1 + lnx).

4. Let us work in units of 100m and 
all the length of the sides of the �nal

re
tangle x and 1 + y. Then the area A(x, y) = x(1 + y) and we also have the

perimeter is 3 so that 2(1+y)+2x = 3 ⇒ 1+y+x = 3
2 ⇒ 1+y = 3

2 −x. Hen
e,
as a fun
tion of x alone we obtain A(x) = x

(

3
2 − x

)

. The graph of this fun
tion

is a downward parabola with roots at x = 0 and x = 3
2 so the un
onstrained

maximum over all non-negative x o

urs at the midpoint between the roots,

whi
h is x = 3
4 . However, sin
e y = 1

2 − x ≥ 0 we have that x ≤ 1
2 . Sin
e A(x)

in
reases in x as we pass from x = 0 to x = 3
4 , the maximum value of A(x)

given the 
onstraint of the question o

urs at x = 1
2 in whi
h 
ase y = 0. The

dimensions of the re
tangle with the maximum area subje
t to the 
onstraint

in the question is that 50m by 100m (with an area of 5000m2
).

5. Pla
e the origin of our x-axis at the position of the 
andle of luminosity

a so the se
ond 
andle is at ordinate d on the x-axis. By the Inverse square

law, the amount of light from a sour
e diminishes in proportion to the inverse

square of the distan
e of separation. Working in suitable units therefore, if we

stand at position x, the amount of light rea
hing us from the respe
tive sour
es

will be

a
x2 and

b
(d−x)2 . We wish therefore to minimize the sum of these:

y =
a

x2
+

b

(d− x)2

⇒ dy

dx
= −2ax−3 − 2b(d− x)−3 · (−1) =

2b

(d− x)3
− 2a

x3
.

Putting this derivative equal to zero then yields the equation:

a

x3
=

b

(d− x)3
⇒ (d− x)3

x3
=
(d− x

x

)3

=
b

a

⇒ d− x

x
=
( b

a

)
1

3

and so

d

x
= 1 +

( b

a

)
1

3
and

x

d
=
(

1 +
( b

a

)
1

3

)−1

16



∴ x = d
(

1 +
( b

a

)
1

3

)−1

.

You are within your rights, on physi
al grounds, to 
laim that this turning

point must represent the unique minimum of the fun
tion in that range. We


an however 
he
k that our 
riti
al value is a minimum through use of the

Se
ond derivative test : we just need to verify that the se
ond derivative of the

brightness fun
tion y(x) is positive at the 
riti
al point. Upon di�erentiating

y′ = 2b
(d−x)3 − 2a

x3 we �nd that

y′′ =
6b

(d− x)4
+

6a

x4
> 0

for all values of x, so there is no need to substitute the 
riti
al value of x into

this expression for y′′ as we already know the answer will be positive.

As is often the 
ase you 
an 
he
k whether your result gives the right answer

in simple 
ases where the out
ome is 
lear by inspe
tion. Here we note that if

b = a, then the dimmest point must, by symmetry, be the midpoint between

the two 
andles and indeed if we put b = a in the above formula it returns the

expe
ted value of

d
2 . The algebrai
 manipulations above are all natural enough

although you need to resist the temptation to expand the 
ubi
 term (d − x)3

the �rst time that you see it as that will not help at all.

6. In general, the volume of a 
one is given by the formula V = π
3 r

2h. The
water within the 
one at time t forms a 
one itself with dimensions r = r(t) and
h = h(t) say, but by similar triangles we have

r
h = 2

5 ⇒ r = 2h
5 (sin
e we seek

dh
dt , we wish to express V in terms of h). Hen
e the volume of water present is

given by V = π
3

(

2h
5

)2
h = 4π

75h
3
. Di�erentiating with respe
t to t and applying

the Chain Rule now gives:

dV

dt
=

dV

dh
· dh
dt

=
4π

25
h2 · dh

dt
;

now we are told that when h = 4 we have

dV
dt = − 1

12 . Substituting a

ordingly

yields:

− 1

12
=

4π

25
· 42 dh

dt
⇒ dh

dt
|h=4 = − 25

12× 64π
= − 25

768π
≈ 1 · 036m/min.

7. By the Fundamental theorem of 
al
ulus and the Chain rule we obtain

upon putting u =
√
x

dy

dx
=

dy

du
· du
dx

= sin(u2) · (1
2
x− 1

2 ) =
sinx

2
√
x
.

8. We need

lim
h→0

sin(x+ h)− sinx

h
= lim

h→0

sinx cosh+ cosx sinh− sinx

h

= sinx lim
h→0

cosh− 1

h
+ cosx lim

h→0

sinh

h
= sinx(0) + cosx(1) = cosx.
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9. Let m be the gradient of a suitable tangent. Sin
e (2, 0) lies on the

tangent we have that points (x, y) of the tangent satisfy the relation m = y−0
x−2

so that the tangent line has an equation of the form y = m(x − 2). Let su
h a

line meets the parabola y = x2
at (a, a2) say. Then sin
e the line is a tangent

to the parabola we have m = y′(a) = 2a. Equating the y 
o-ordinates of the

tangent and the parabola for x = a now gives a2 = 2a(a − 2) ⇒ a = 0, or
a = 2(a − 2) ⇒ a = 4. Hen
e the two possible values of m are m = 2 × 0 = 0
or m = 2× 4 = 8 and the 
orresponding tangent equations are:

y = 0 or y = 8(x− 2) = 8x− 16.

10.

y = logx a = (loga x)
−1

⇒ y′ = −(loga x)
−2 · 1

(ln a)x
= − 1

(ln a)x(loga x)
2
.

Problem Set 9

1. t = tan θ
2 throughout Problems 1-4.

cos θ = 2 cos2
θ

2
− 1 =

2

sec2 θ
2

− 1 =
2

1 + t2
− 1

∴ cos θ =
1− t2

1 + t2
.

2.

sin θ = 2 sin
θ

2
cos

θ

2
= 2 tan

θ

2
cos2

θ

2
=

2 tan θ
2

sec2 θ
2

∴ sin θ =
2t

1 + t2
.

3.

t = tan
θ

2
⇒ dt =

1

2
sec2

θ

2
dθ =

1 + t2

2
dθ

⇒ dθ =
2 dt

1 + t2
.

4. Put t = tan θ
2 ,

ˆ

dθ

sin θ
=

ˆ

1 + t2

2t
· 2 dt

1 + t2
=

ˆ

dt

t
= ln |t|+ c

∴

ˆ

cosecθ dθ=ln|tan θ
2 |+ c.

18



5.

ˆ

dθ

cos θ
=

ˆ

1 + t2

1− t2
· 2 dt

1 + t2
=

ˆ

( 1

1− t
+

1

1 + t

)

dt = ln(1 + t)− ln(1− t) + c

∴

ˆ

sec θ dθ = ln
1 + tan θ

2

1− tan θ
2

+ c.

Comment This is not the neatest solution. In Question 8 on Set 1 we showed

that an alternative answer is ln cos θ
1−sin θ . Another inspired approa
h is to multiply

top and bottom of the integrand by sec θ + tan θ to get

I =

ˆ

sec θ + tan θ

sec2 θ + sec θ tan θ
dθ = ln(sec θ + tan θ).

Of 
ourse all these answers must be equal up to an additive 
onstant.

6. Pla
ing the three partial fra
tions over a 
ommon denominator gives:

ax(x − 1) + b(x− 1) + cx2

x2(x− 1)
≡ −1

x2(x− 1)

Put x = 0 and equate 
oe�
ients: −b = −1 ⇒ b = 1. Putting x = 1 gives

c = −1. Equating 
oe�
ient of x2
to 0 gives: a+c = 0 ⇒ a = −c = −(−1) = 1.

∴

1

x2(1 − x)
=

1

x
+

1

x2
− 1

x− 1
.

Comment The Cover Up method 
an be used to �nd b and c (but not a):

overing the term in x2

and putting x = 0 gives b = −1
0−1 = 1, while 
overing up

the term in x− 1 and putting x = 1 gives c = −1
12 = −1.

We now apply the given de
omposition:

ˆ

dx

x2(1− x)
=

ˆ

dx

x
−
ˆ

dx

x− 1
+

ˆ

dx

x2
= ln |x| − ln |x− 1|+

(

− 1

x

)

+ c

= ln
∣

∣

∣

x

x− 1

∣

∣

∣
− 1

x
+ c.

7. We may 
al
ulate the volume of revolution `by washers':

V =

ˆ 1

0

π(R2 − r2) dy = π

ˆ 1

0

(y − y2) dy

= π
[y2

2
− y3

3

]y=1

y=0
= π

((1

2
− 1

3

)

− (0− 0)
)

=
π

6
.

Or we may 
al
ulate this by the method of `
ylindri
al shells':

V =

ˆ 1

0

2πxf(x) dx = 2π

ˆ 1

0

x(x− x2) dx
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= 2π

ˆ 1

0

(x2 − x3) dx = 2π
[x3

3
− x4

4

]x=1

x=0

= 2π
((1

3
− 1

4

)

− (0− 0)
)

=
π

6
.

8.

ˆ

tan2 x dx =

ˆ

(sec2 x− 1) dx = tanx− x+ c.

9.

sinmx cosnx =
1

2
sin
(

(m+ n)x
)

+
1

2
sin
(

(m− n)x
)

and so our integral be
omes:

1

2

ˆ 2π

0

(

sin
(

(m+ n)x
)

+ sin
(

(m− n)x
))

dx

=
1

2

[− cos
(

(m+ n)x
)

m+ n
− cos

(

(m− n)x
)

m− n

]2π

0

=
1

2

[

[

− cos
(

2(m+ n)π
)

m+ n
− cos

(

2(m− n)π
)

m− n

]

−
[

− 1

m+ n
− 1

m− n

]

]

=
1

2

[

− 1

m+ n
− −1

m− n
+

1

m+ n
+

1

m− n

]

= 0.

Comment That this integral is zero is used 
onstantly in the 
al
ulation of


oe�
ients in Fourier series, whi
h is the fundamental tool for expressing a

periodi
 fun
tion in series form (see Set ??).

10. As with any of the inverse trans
endental fun
tions, we integrate by

parts: put u = arctanx, dv = dx so that du = dx
1+x2 and v = x to obtain:

x arctanx−
ˆ

x dx

1 + x2
, and substituting for 1 + x2

in this intergral gives:

x arctanx− 1

2
ln(1 + x2) + c.

Problem Set 10

1. Let I =
´

x2e−xdx. Integrate by parts, putting u = x2, dv = e−xdx so

that du = 2xdx, v = −e−x
. Hen
e

I = −x2e−x + 2

ˆ

xe−x dx.
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Call this new integral J and integrate by parts again with u = x, dv = e−xdx
so that du = dx and v = −e−x

. We obtain

J = −xe−x +

ˆ

e−x dx = −xe−x − e−x.

Hen
e I = −x2e−x − 2xe−x − 2e−x + c and therefore:

I = −e−x(x2 + 2x+ 2) + c.

2. Integrating by parts twi
e: put u = ex, dv = sinx dx ⇒ v = − cosx so

that

I = −ex cosx+

ˆ

ex cosx dx.

Integrating the new integral by parts in the same fashion gives

I = −ex cosx+ (ex sinx−
ˆ

ex sinx dx) ⇒ 2I = ex sinx− ex cosx,

∴ I =
1

2
ex(sinx− cosx) + c.

Our integral is I =
´

e−x sinx dx. Putting u = −x transforms I into−
´

eu sin(−u) du =
´

eu sinu du. By above this gives

I =
1

2
eu(sinu− cosu) =

1

2
e−x(sin(−x)− cos(−x))

⇒
ˆ

sinx

ex
dx = c− sinx+ cosx

2ex
.

3. Let f(x) = sin2n+1 x. Then

f(−x) = (sin(−x))2n+1 = (− sinx)2n+1 = (−1)2n+1(sin2n+1 x) = − sin2n+1 x = −f(x).

Hen
e f(x) is odd and so

´ 1

−1 f(x) dx = 0.

4.

x2

1+x2 = (1+x2)−1
1+x2 = 1− 1

1+x2 . Hen
e our integral be
omes:

ˆ

(

1− 1

1 + x2

)

dx = x− arctanx+ c.

5.

I = lim
l→1−

ˆ l

0

dx√
1− x

= lim
l→1−

[

− 2
√
1− x

]l

0

= lim
l→1−

[

− 2
√
1− l + 2

]

= 0 + 2 = 2.

6. Putting sinx + cosx = r cos(x − α) gives r =
√
2, α = π

4 . Using that

´

secx dx = ln | secx+ tanx| then gives

ˆ

dx

sinx+ cosx
=

√
2

2

ˆ

sec(x− π

4
) dx =

√
2

2
ln | sec(x− π

4
) + tan(x− π

4
)|+ c.
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7. Putting u = x+ 1 the integral I be
omes

ˆ

sin(u− 1)

cosu
du =

ˆ

sinu cos 1− cosu sin 1

cosu
du =

(cos 1)

ˆ

tanu du− (sin 1)

ˆ

du = (cos 1) ln | secu| − (sin 1)u+ c =

(cos 1) ln | sec(x+ 1)| − (sin 1)x+ c,

where we have absorbed the term − sin 1 into the additive 
onstant.

8. With x = a sin t (−π
2 ≤ t ≤ π

2 ) (range determined by the range of x,

whi
h is −a ≤ x ≤ a) we have dx = a cos tdt and
√
a2 − x2 =

√

a2 − a2 sin2 t =√
a2 cos2 t = a cos t. Hen
e

I =

ˆ

(a cos t)2 dt =
a2

2

ˆ

(1 + cos 2t) dt =
a2

2

(

t+
1

2
sin 2t

)

+ c.

Now t = arcsin x
a and so

1
2 sin 2t = sin t cos t = x

a

√

1− x2

a2 = x
a2

√
a2 − x2

so in

terms of our original variable x we have:

I =
a2

2
arcsin

x

a
+

x

2

√

a2 − x2 + c.

9. With x = a cos t (0 ≤ t ≤ π) we have dx = −a sin t dt and
√
a2 − a2 cos2 t =√

a2 sin2 t = a sin t. Hen
e

I = −
ˆ

(a sin t)2 dt =
a2

2

ˆ

(cos 2t− 1) dt =
a2

2

(1

2
sin 2t− t

)

+ c =

−a2

2
arccos

x

a
+

x

2

√

a2 − x2 + c.

10. The answers to 8 & 9 are 
onsistent as the expressions di�er by a �xed


onstant, that being:

a2

2

(

arcsin
x

a
+ arccos

x

a

)

=
a2

2

π

2
=

πa2

4
.
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