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Solutions and Comments for the Problems

Problem Set 1

y' = 2sec(x?) - (sec(x?)) = 2sec(x?) - 2z - sec(z?) tan(z?)
=y = 4xsec®(x?) tan(x?).
Iny = In(2?(7x — 14)%) —In((1 4+ 2%

1
=2lnz+ 3 In(7z — 14) — 41n(1 + 2?).

Ldy 2, 73 8

y de = Tx—14 1422
@_m2(7x—14)%(g+ 1 & )
dv — (1+22)* \z 32—-6 1422/

Comment This technique is suitable when asked to find the derivative that
involves a quotient of terms that are themselves products of several terms.

3.y =322—102+1,. y'(1) =3—-10+1 = —6,so that y = —6x+c. Atz =1,
y=1-5+146=3. Using (1,3) we see that 3 = —6(1)+c = ¢ = 9. Hence the
required tangent is y = —6x + 9, which in the required form is 6z +y — 9 = 0.

4. 5y? +siny = 22 = 10yy/ + (cosy)y! = 2z = yI = 10y42-+sy'
5. Differentiating implicitly with respect to x yields:
28y°%y' +32%y + 2%y +1=0=
o _ByetHl
LTI
Evaluating at (4,0) gives the value of the slope as — g5 = —5;-

6.
(cosec(2 cot 3x)) = (—cosec(2 cot 3x) cot(2 cot 3x)) - (2 - 3(—cosec?3x))

= 6eosec(2 cot 3x) cot(2 cot 3x) - cosec*3x.
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(1 —sinx) —sinz(1 —sinz) — (— cos? x)
y/ — . -
COS T (1 —sinx)?
—sinx +sin® z 4 cos® 1 —sinz
= = = sec.
cosz(1l —sinx) cosz(1l —sinx)
9. Put 1_1
—Inz
f/(z):T =0z =c¢,

which yields a turning point with co-ordinates (e,e~!). This is a maximum:
(x) = (_?’””J;c#l”) and so f”(e) = —Z% < 0, whence the turning point is a
maximum by the 2nd derivative test.

10. f(z) = constant < fr(z) = 0 and in these circumstances that gives:

a(cx +d) — c(ax + b)

(cx 1 d)? =0 ad—bc=0.

Hence f(x) is a constant function if and only if ad = bc.

Comment When we say that f(x) is the constant function ¢ we mean that
f(z) = ¢V in the domain of f(z); for emphasis this is sometimes written as
f(z) = 0 so as not to confuse this idea with the finding of the roots of a function
f(z) which are the values of z, if they exist, such that f(z) = 0.

Problem Set 2

1. I = [zcoszdx. Integrate by parts with u = , so that du = dz;dv =
cosx dx, and v = sinz. Hence

I:xsinx—/sinxdm =xsinx 4+ cosz + c.
2. Put u = cosz, Sodu:fsin:c;:c:()éu:hz:%éu:%. Hence
the integral I becomes:

1
L 1
vz du du _
I=- — = — =Inu|"Z'y
1 u 1 u V2

V2

%)
V2
Comments When calculating a definite integral using a substitution it is nor-
mally easier to express the limits in terms of the new variable as well. Alter-

natively, you can find the indefinite integral, substitute back to express this in
terms of the original variable and apply the original limits. However, a mixed

=

:0—111( =1In2 :%1112.



expression involving both your original and substituted variables will rarely be
of any use to you. As usual when dealing with logs, it is important not only to
know your log laws but to use them in order to simplify the expressions that
arise: logab = loga + logb; log 3 = loga — logb and log a® = bloga.

3. 172 = -1+ 2. Hence
1-— 2 d
/ xd:z::/(—l—l——)dx:—x—l—Q/—m:—x—|—2ln|1+x|+c
14z 14z 14z
4. sinbzcosllz = isin(5z — 11z) + 1 sin(5z + 11z) . Hence our integral
becomes:

1 1
§/sin16xdx—§/sin6:cdx:

1 1
= —— 1 — .
D cos 16x + B cosbxr + ¢

d5.
I= /sec6 0do = /sec4 O sec® 0 df = /(1 + tan? 0)? sec” 0dfH = /(1 +u?)? du
(where u = tan ), so du = sec? 0df. Hence

2 1
I:/(1+2u2+u4)du:u+§u3+gu5+c;

2 1
.'_I:tan9+§tan39+gtan59+c.

6. Put u =2 — 1, du = dz, giving

u=1 1 i
/ (u+ I)QU% du = / (u? + 2% + u?)du
u=0 0

[2 1+4 §+2 3]1 2+4+ 184
= |—-u?2 —u?2 —uz2 = — — - = —
7 5 377775737105
7.

1 1 A B

x2+x—2:(x—1)(z+2) x—1+:c+2;
= A(x+2)+B(zx—1)=1.

Put z = —2: 73B:1éB:f%;putz:1: then3A:1¢A:%. Hence
the integral I becomes:

1 dx 1 dx 1
. 1 =~ (mlz— 1]~ ]z +2]))
3/x—1 3/x+2 gl lnfz =1 —Inje+2])) +c
11 ‘x—l
x4+ 2

3n ‘—i—c.
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Comment A quick way to split a rational function with linear factors into
partial fractions is the so-called Cauchy Cover-up method. Take the root of each
linear factor in turn, cover that term up and substitute the value of that root in
the remaining expression to get the value of the numerator in the corresponding
fraction. In this example, cover up the z — 1 term in the denominator and put

1

x =1 to get A = 1+2 = 3; similarly cover up the x + 2 term and put z = —2

to get B = 2 T :75.
8. Put u =¢e%; du = e*dr = dx = %; the integral becomes:

/7¥&7:/@_ L) du = In(e®) — In(1 4 %) 4 ¢ =

u(l+u u l14+u

=z—In(l+¢e") +e

Comments Note there is no need for absolute value signs around the log argu-
ments as e > 0 for all z. Applying the Cover Up Method to this example we
have that the roots of v and 1+ u are respectively 0 and —1: covering up the u
term in m and putting v = 0 in 1_+u gives 1, the numerator of %; similarly
covering up the 1 + u term and putting v = —1 in % returns the value of —1,
which we see in the second term of the decomposition' *uﬁ

9. Put v = Inz and dv = dz; we then get du = <% v = x, and so the integral
becomes

dx
zlnz— [ z2— =zlhz—2+ec
T

10. We note that the sign of cos 2z turns from positive to negative at z = 7

and so we write:

3 i 3
/ |(2052:I:|dx=/ |c052$|dx+/ | cos 2z| dx
0 0 z
I 3
:/ costdm—/ cos 2z dx
0 T

1 . z 1 .
= [5 sin 2z — [5 sin 2z

ISEINE

((sing —sin0) — (sinﬂ—sing)) = %(1 -0—(0— 1))

N~

:%a+n:%@p4.

Comment Alternatively we might just appeal to the fact that the form of
the cosine curve below the z-axis is identical to that above and so conclude that
the area represented by the integral is equal to 2 fo cos 2z dv = 2[4 sin2z]¢ =

(5 —-0) = 5 =1 unit?.



Problem Set 3

1. Put y = 2z + 3 so that z = 5(y — 3). Hence

1
2
1, .
fly) = Z(y —6y+9)+ 1 and so, as a function of x :

1 3 13
flzx) = Zx2 - 590—1— T

2. Putting y = ¢” we have f(y) = 5(y + ;) so, as a function of the symbol
x we have )
v +1
flo) =S
3. Write f(z) = e(x) + o(x) where e(x) is an even function and o(x) is odd.
Then f(—z) = e(—x) + o(—x) = e(z) — o(z). Adding and then subtracting the
two equations in f(x) then gives

_ fl@) + f(==) _ f@) = f(==)
e(z) = — o(x) = ——

In particular, taking f(x) = e* gives that e(x) = coshz, and o(z) = sinh x.
Comment The argument above strictly speaking, merely shows that e(x) and
o(x) are unique for we have found out what they are, assuming they do exist.
However the manipulations can be reversed and so e(x) and o(z) as defined
above exist and satisfy e(x) + o(z) = f(x). Moreover, from their definitions it
follows that e(—x) = e(x) and o(—z) = —o(x), as we require.
4. In this instance the equation becomes a’x + b(a + 1) = 2z + 1 so that

a==+v2and b=1/(14++2):
1
fle) = +V2z + T
5. (fo f)(z) = alax +b) + b = a’x + b(a + 1) = z. This is equivalent to
a>=1&bla+1)=0<a=+1&bla+1)=0

Sa=—-lora=1,b=0.

Hence the solutions are f(x) = z and f(z) = b — « for arbitrary b.
Comment Note that the graphs of these functions are precisely the straight
lines that are invariant under reflection in the line y = .
6. From f(f(z)) = 22 — 2 + 1 we have in particular that f(f(0)) =1 =
F(£(1)) and so
F) = FUEFA)) = £2(1) = £(1) +1

= P) =2 (1) +1= (1) - 1P =0= f(1) =1.



Next
FUFCF0)) = f2(0) = f(0) + 1= f(1) = 1.
Therefore f(1) = 1 and so f2(0) — f(0) = 0, so that either f(0) = 0 or f(0) = 1.
However, if f(0) = 0 then f(f(0)) = f(0) = 0, contradicting that f(f(0)) =1
Hence we conclude that f(0) = 1.
7. In order to invert the function we make x the subject of the formula:

—dy+b

cxy+dy—axr—b=0=2(cy —a)=b—dy =2 = .
cy—a

Hence the inverse function is given by the rule:

B —dx +0b
cr—a

Note that the condition ad # bc is, by Question 10 of Problem Set 1, what
is needed to guarantee that Zﬂfis is not a constant function, in which case
we see that the same applies to the inverse. In particular, cx — a # 0 as
cx—a=0Vz S a=c=0=ad=bc(=0).

8. cos_l(cos xz) = xV0 < z <, for this interval is the principal domain of
the cosine function. Since cosz is even, so is the given function y(z); since cos x
has period 2, it follows that y(z + 27) = y(x). Collectively, this is sufficient
information to sketch y(z) for all values of : we get a saw-toothed wave as seen
in the graph below.

9. We require that

(2—2>0&sinx + cosz # 0)
@(x<2)&(\/§sin(z+%)7€0)
@(m<2)&x+%7§mr,n€Z

Sx<2)&(z g {(n— i)ﬁ, (ne€Z)}.

Therefore the natural domain of f(z) is:

(00, 2)\ {(n — {)m, n < 0},

10. Since —1 < sinx < 1. We require 0 < sinz. However, for 0 < z < 1 we
have —oco < Inz < 0, so that In(In(sinz)) is not defined for any = € R. Hence
the natural domain of this functional rule is (.
Comment Despite having an empty domain we can formally calculate (In(In(sinz))’

and get
1 CosST cotx

In(sinz) sinz  In(sinz)’

which defines a function with natural domain that is not empty.



Problem Set 4

/
Iny = —2z(lna) = Y~ 2lna
)

Syl = —2In(a) - a” .

Comment Alternatively, by definition, a® = " )* and go from there.
2. We want

N O e D By S 19 1

h—0 h h—0

n
lim (Z’) hkflxnfk —_ (?) :Cnfl — nxnfl;
h— 1

as all other terms contain a postive power of h and so approach 0 as h — 0.

3.
_ 1 22 ) —(1+a?)? 2
" ()t TR ) T e ey
1422
—2z o
Tlt (a2 e
4.

dx dy 1
xr =secy = d_y = Secytany = % = m

Now tan?y =sec?y — 1 =22 — 1, x = secy and so

dy
— = ———if t 0.
I T 1 tany >
If tany < 0, then tany = —v/22 — land
dy 1
de — —zv2? =1
In either case we obtain:
dy 1
dr  |z|vVa? -1
5. We have fr(x) = f\/%ze’é and
1 _z2 9 a2
"x) = — e 2 —xe 2
fr(w) = ——=( )



= L eié(gc2 - 1).

\/27
1
2

Hence fr(z) = 0 iff 22 = 1, that is z = 41, in which case y = f/ﬂ Therefore

. . 1
the required points are ( +1, m)

Comment These are the two points of the bell-shaped curve where we see a
change of shape from concave up to concave down. The unique turning point

of course occurs at the origin.

6.
cos
y! = —cosecl cot ) = ———.
sin“ 6
Hence

T cos(%) B V3/2 B
y'(E) C s (Z) (122 2V,

Now cosec(%) = ﬁ = ﬁ = 2. The gradient of the normal is then
sin 6
_;\1/5 = ?. The equation of the normal is: y = (@)x + ¢, where

\/§ ™ \/§7r
2=— = =2 - —.
6 6+c:>c 36

Therefore the equation of the normal is y = %z +(2- %)
7. By the Chain Rule we obtain:

dw dw dx 9 9

= .= S(12£2 + 1

i dr @ s w12t
= sec?(4t® + t)(12t% + 1).

8. y/ = 2cos2x — 4sindx. Then

2
tant?:y/(g) :2COS% 74sing = E —4=+2-4
9. Let R and r denote the respective radii of the cone and cylinder and
similarly let H and h be their respective heights. By similar triangles we have:
h H H(R-r)

= — h:
R-r R R

Thus writing Vg for the volume of the cylinder we have the equation:

_7TH

Vs(r) = mr?h 7

(Rr2 — r?’)

H
Vsi(r) = 7T7(2R7°—37°2):O:r:Oor r= %



Clearly the latter is the maximizing value, whence VS(%) = %WRQH and the
volume of the cone is then given by Vo = %TFR2H . Hence at this optimal value
we have:

VC (%WR2H) 9

Vs (&nR?H) 4
so that the ratio Vg : Vo =4:9.
10. By the Fundamental Theorem of Calculus we get 2% = sin(z2).

Problem Set 5

1. 1+ cosx = 2cos? (%), so the integral becomes:

1
/5 sec? (g) dx = tang + c.

Comment The so-called double-angle formulae are often used in integrals of
this kind but you have to force yourself to think of the = as 26 in order to apply
them so that @ = 5. The hint that representation as a square may be useful
also comes from the observation that 1 4+ cosxz > 0 for all x.

2.Putu=lnz=du= df, so the integral becomes:

dx du
= [ —=hnjul+c=n|lnz|+ec
rzlnzx U
3. 22+ 62+18 = (z+3)?+32%. Put u = x+3, du = dx; our integral becomes:
du 1 U 1 1 /T+3
/7u2+32:§tan (g)—l—c:gtan ( 3 )—i—c.

4. Write [ = fel cosxdx. Put u = e®, dv = cosxzdz, so that du = e dz,
v = sinz. This yields:

I:elsinzf/elsinzdz.

Call this new integral in the previous expression J. Integrating J by parts:
u=e" dv=sinzxdr = du = e*dr,y = —cosz dx. Hence

J = fexcostr/ezcoszdz = —e®cosx + 1.

Hence our expression for I can be re-written as

I=¢"sine — (I —e®cosx) = 21 = e”sinx + e” cosx so that

1
1= §em(sin:c + cosz) + c.

10



5. g 2% = e(721na)ac

and so
1
I = / e(_QIHQ)I dr = _; |:€(—21na)mi| L _
0 21110, 0
1 —21 0} 1 9
—_— na __ — _ 1
2lna {e ¢ 2na (a )
a?—1
2a2Ina’
6. Put u = sin"! x, dv = dx, so that the integral I becomes
1 —2x dx

rsin~lx + 3

1 1

.1 _1 2
——— =ugsin” z+ - [ t72dt (wheret=1-—2?)
V1—2? 2/

. 1
= gsinla+t2 + ¢

Therefore a primitive is given by

rsinTlz 4+ V1 — 22.

7. Put du = cosz dz so that our integral becomes:

/(sin2 z)? cos* x cos x dx = /(1 —u?)2ut du = /(u4 —2u® + u®)du

sin®z  2sin” z n sin” n
— c.
) 7 9
8. cosf = 1 —2sin”¢. Hence sin®2z = 1(1 — cos4z) and so the integral
becomes:

1 1 in4
5/(lfcos4z)dz i(xfsmélz)Jrc

[ee) Ood

V:/ wad:z::ﬂ/ —f
1 1 7

1 o0 M 3

:ﬂ-[_g}l =70 — (—1)] = 7 units’.

Comment Strange as it may seem, the surface area of this object is infinite.
That is to say there is an infinite surface to paint but only 7 cubic units of

paint can fit inside! When this was first pointed out by Torecelli around 1640
it caused must consternation.

10. Put z = 2sin# to obtain dx = 2 cosfdf so that our integral I becomes:

I*/ 2 cos 0df - 2 cos 6do
) 4sin?0/4— 4sin?9 J 4sin®60-2cosd

1 1
=1 /0056029d9 =7 cotf +c:

11



using the right-angled triangle with angle § with sinf) = £ we see that the other
short side of the triangle has length /22 — x2 so that cot§ = ¥ 4;12. Hence we
conclude that

V4 — 2?2

[=——— .
4x te

Problem Set 6

1.
x —x\2 __ x __ ,—x\2 2x —2x _ 2z _ 2z
COSh2$—SiDh2$=(€ +e®) (e ™) = ¢ t2+e eTt2-e =1.
4 4
> ( )( ) ( )( )
e+e ) (eY4e V)L (e—e T (e —e Y
RHS= 1
(e etV 4 eV p et Y ) L (e — eV — e T e 7Y
N 2
2¢TEY 1 9po—(zLy)
== +4€ = cosh(z £ y).
3

e’ —e ) (eY4+e V)L (eTte ) (e —e Y
RHS— (€1me ) lehbe (e e ) (e e )

(€T 4 ™Y — ¥ — 7YY 4 (eTHY — TY 4 7Y _ g TY)
2
) Tty 2 —(zty)
== 2 c = sinh(z £ y).

4. Using Questions 2 and 3 we obtain:

tanh(z + ) sinh(x £y)  sinhacoshy & coshasinhy
anh(z = =
4 cosh(zx +£y)  coshaxcoshy + sinhzsinhy

and upon all terms by cosh x cosh y we find that

tanh z + tanh y
1+ tanhztanhy’

5. Put y = x in the identities of Questions 2 and 3 respectively and using
that of Question 1 gives

cosh 2z = cosh? x + sinh? z = cosh® z 4 (cosh? z — 1) = 2 cosh? z — 1;

sinh 22 = sinh x cosh x + cosh z sinh x = 2 sinh x cosh .

12



6. Sum the two identities sinh(u + v) = sinhwcoshv + coshucoshv and
sinh(u — v) = sinhw cosh v — cosh usinh v

2 sinh u coshv = sinh(u + v) + sinh(u — v).

Writing u +v =2 and u — v = y so that u = £ and v = %5¥ we obtain from

2
this that
THY h P Y

sinh x + sinh y = 2sinh 5

7. Re-working the identity of Question 5 we have that cosh 2z = 142sinh? z

so that coshz = 142 sinhQ(%) and hence sinhQ(%) = 1(coshz —1). Since sinhz

is non-negative exactly when z > 0 we conclude that

sinh (g) = sgn(z),/ cshe=1

e¥ — e~V

y=sinh™ 'z = z =sinhy = >

= u— — = 2z, whereu = €Y,
U

_ 2r V4?44
= 5 =
Now u = e¥ > 0, and so only the positive branch is relevant, giving us

u—2zu—1=0=u x+ Va4 1.
e=z+vVr2+1l=y=hz++Vz2+1).

Note that the argument of the log function is strictly positive so that this ex-
pression is valid as x ranges over the entire real line. We therefore get our
expression for the inverse of hyperbolic sine to be:

y=1In(z+V1+22) (z €R).

sinh ™ (z) = In(z + V22 + 1).

9.
y -y
yzcoshflx:x:coshy:%
1
= u+ — = 2z, whereu = €Y,
U
20 +v4x? — 4

2
Since cosh z > 1 we take the positive branch to obtain

eV=z+vVr2-1l=y=mh(z+V22-1),z>1

13



10. Put

sinhy e¥—e™¥

r =tanhy = = .
Y coshy e¥+e ¥

Note that since |sinhy| < |coshy|Vy it follows that —1 < z < 1. Putting
u = €Y then gives a quadratic in u to solve in terms of x:

u—u"t  u?-1 9 9
x:u+u71:u2+1:x(u +1)_(u _1):0

S@-Du+(z+1)=0=u=

1 1 1
S>u=¢eY= +xéy:tanh_1x:—ln( +z)'
1—-2z 2

Problem Set 7

1.
1 1
coshz) = =(e® +e %) = =(e* — e %) =sinhx;
2 2
: i 1 x —x\/ 1 xT —X
inhz) = =(e®* —e = —(e e = z.
(sinh z) 2( ) 2( + ) = cosh
2. Making use of Question 1 and Set 40 Question 1 we get:
sinh z cosh? x — sinh? 1
tanhz)’ = = = ,
( ) (coshx) cosh? z cosh? z
. (tanh z)" = sech?z.
(
3.
1 — tanh? 1 sinh®z  cosh®?z — sinh® z
—tanh“z =1 — =
cosh? x cosh? z
1
== sech?z.
4. Put x = asinht so that dx = a cosht and so

acoshtdt acoshtdt

dx /
/ va? + a2 a2 + a2 sinh? ¢ aV/' 1+ sinh? ¢

acoshtdt 1,
= _ = = = gi h — .
/ coshi /dt t = sin (a)—i—c

5. Put x = acosht with ¢t > 0 so that dx = asinht¢ and so

asinhtdt asinht dt

dx /
/ Va? —a? a2 sinh? t — a2 av/cosh?t — 1

14



inh ¢ dt
:/w:/dt:t:coshfl(f)—i—c.

asinht a

Comment: since we have 22 > a2 and ¢t > 0 here we take sinht¢ and not
— sinh ¢ when extracting the root in the denominator.

6. This time put x = atanh z with —1 < z < 1, which is the range of tanh x.
Then dx = asech?tdtand so, making use of Question 3 we obtain

/ de / asech®tdt / asech®tdt / asech?t dt
a?—122 ) a2 —a2tanh®z ) a2(1 —tanh®z) J a2sech?t

:l/dtzzzltanh_l(f)Jrc.
a a a a
7.
1, 2" & (—1)"z"
smhzzQ(ZO—!—Zo ] )

coshx:%(zg—i— (_173:%")
n=0 n=0
1, X (14 (—=1)™)an =z
_E(Z n! ):Z(Qn)'
n=0 n=0

8. Consider the equations € = cosz + isinz and e~ = cosx — isinx.

Adding and subtracting them respectively yields

2cosz =€ 4+ e and 2isinxg = e —e™"*
= cosx = cosh(iz), and sinz = —isinh(iz).

Replacing x by iz in both of these then gives
cos(iz) = cosh(i’z) = cosh(—x) = coshz and
sin(iz) = —isinh(i’z) = —i(— sinhx) = i sinh 2. Hence
sinhz = —isin(iz) and coshx = cos(iz).

9. Using the double-angle formula and Question 8 we obtain:
cos(x 4 iy) = cos x cos(iy) — sin x sin(iy)

cos x coshy — i sinx sinh y.

10.
sin(x + iy) = sin x cos(iy) + cos x sin(iy)

= sinx coshy + i cosz sinh y.

15



Problem Set 8

1. By the Chain rule:

y' = —cosec?(sin z) cos .
2. We have z = coty = Z—z = —cosec?y. Now cosec?y = 1 +cot?y = 1+ 22,
Hence
dy 1
de 1+ 22

3. We have Iny = xlnx so that

/

Y —me+ 2 =y =y(l+1Inz),
)

x
Sy =271+ Inx).

4. Let us work in units of 100m and call the length of the sides of the final
rectangle z and 1 + y. Then the area A(z,y) = (1 + y) and we also have the
perimeter is 3 so that 2(1+y)+2x =3 = 1+y+a = % = 14y= %f:c. Hence,

as a function of z alone we obtain A(z) = (2 —z). The graph of this function

is a downward parabola with roots at x = 02 and x = % so the unconstrained
maximum over all non-negative x occurs at the midpoint between the roots,
which is z = 2. However, since y = 1 — 2 > 0 we have that = < 1. Since A(z)
increases in z as we pass from z = 0 to = 2, the maximum value of A(z)
given the constraint of the question occurs at x = % in which case y = 0. The
dimensions of the rectangle with the maximum area subject to the constraint
in the question is that 50m by 100m (with an area of 5000m?2).

5. Place the origin of our z-axis at the position of the candle of luminosity
a so the second candle is at ordinate d on the z-axis. By the Inverse square
law, the amount of light from a source diminishes in proportion to the inverse
square of the distance of separation. Working in suitable units therefore, if we
stand at position x, the amount of light reaching us from the respective sources

will be - and ﬁ. We wish therefore to minimize the sum of these:

_e . b
V=2 (d—x)?
dy _3 _3 2b 2a
=2 — 2b(d — (1) =—"__=
e “ (d—2) (=1) (d—=x)3 a3
Putting this derivative equal to zero then yields the equation:
a b (d—x)® sd—a\3 b
E_(df:c)3: a3 _( x )_a
d— b\ 3 b1 by 3\ 1!
- (—)3 and so — :1+(—)S and £ = (1+ (—)d)
T a d



ca=a(i+ (D)7

You are within your rights, on physical grounds, to claim that this turning
point must represent the unique minimum of the function in that range. We
can however check that our critical value is a minimum through use of the
Second derivative test: we just need to verify that the second derivative of the
brightness function y(z) is positive at the critical point. Upon differentiating

= (dfl;)s — 2¢ we find that

" 60 6a
Y= (d—x)4+x4 >0
for all values of z, so there is no need to substitute the critical value of = into
this expression for 3" as we already know the answer will be positive.

As is often the case you can check whether your result gives the right answer
in simple cases where the outcome is clear by inspection. Here we note that if
b = a, then the dimmest point must, by symmetry, be the midpoint between
the two candles and indeed if we put b = a in the above formula it returns the
expected value of %l. The algebraic manipulations above are all natural enough
although you need to resist the temptation to expand the cubic term (d — )3
the first time that you see it as that will not help at all.

6. In general, the volume of a cone is given by the formula V = %rQh. The
water within the cone at time ¢ forms a cone itself with dimensions r = r(¢) and
h = h(t) say, but by similar triangles we have 7 = % =r = % (since we seek
%, we wish to express V in terms of h). Hence the volume of water present is
given by V = %(%)Qh = %h3. Differentiating with respect to ¢t and applying
the Chain Rule now gives:

v _dv dh_dr, dh
dt dh dt 25 dt’

now we are told that when h = 4 we have % =— 112. Substituting accordingly
yields:
1 4m dh  dh 25 25
=2y, = ~1- in.
o ar T @ 036m,/min

T12x 647 7637

7. By the Fundamental theorem of calculus and the Chain rule we obtain
upon putting u = /x

dy dy du in 2) (1 _;) sinx
— =—.— =sin(u*)  (z272) = —&.
dv  du dz 2 2\/x
8. We need

. sin(z + h) —sinz . sinzcosh +coszsinh —sinx

lim = lim

h—0 h h—0 h

h—1 in h
= sing lim ——" = 4 cosz lim o = sinz(0) + cosz(1) = cos .
h—0 h—0 h

17



9. Let m be the gradient of a suitable tangent. Since (2,0) lies on the
tangent we have that points (x,y) of the tangent satisfy the relation m = Z—:g
so that the tangent line has an equation of the form y = m(x — 2). Let such a
line meets the parabola y = 22 at (a,a?) say. Then since the line is a tangent
to the parabola we have m = y/(a) = 2a. Equating the y co-ordinates of the
tangent and the parabola for = a now gives a®> = 2a(a —2) = a = 0, or
a = 2(a — 2) = a = 4. Hence the two possible values of m are m =2 x 0 =0

or m = 2 x 4 = 8 and the corresponding tangent equations are:
y=0ory=_8(x—2)=_8z— 16.

10.
y= 1ng a = (1Oga 1,)—1
9 1 1

=y = (o0 s = (s, o7

Problem Set 9

1. t= tan% throughout Problems 1-4.

0 2 2
0=2 2. =" 1=
cos cos 5 sec2g 5
1—¢?
c.cosf) = ——.
1+ ¢2
2. )
0 0 f 2tanz
sin9:2sin§cos§:2tan§cos2§: secQgQ
2t
c.osinf = ——.
sin e
3. ; ; )
1 14+t
{—tan o = dt = ~sec® 2 df — ——_ gp
2 2 2 2
2dt
= df = .
1+1¢2

4. Put t = tan g,

/ do /1+t2 2dt /dt In|t| +
- . = [ ==1In c
sin 2t 142 t

/005609 do=In|tanZ| + c.

18



5.
/ o /1+t2. 2 dt :/( L D yat=m+6) -1 —t)+e

cosf )1 11 T—t 1+¢
1+tang

_',/se(;@d9zln7§+c.
1—tan§

Comment This is not the neatest solution. In Question 8 on Set 1 we showed

that an alternative answer is In %. Another inspired approach is to multiply

top and bottom of the integrand by secf + tan 6 to get

df = In(secf + tan6).

B / secH + tan 6
) sec2f +secOtand

Of course all these answers must be equal up to an additive constant.
6. Placing the three partial fractions over a common denominator gives:
ar(x —1)+b(x —1)+c2®> -1
z2(z — 1) T2 (z—1)

Put x = 0 and equate coefficients: —b = —1 = b = 1. Putting z = 1 gives
¢ = —1. Equating coefficient of 2 to 0 gives: a+c=0=a=—c= —(-1) = 1.
1 1 1 1

"'z2(1—z)_z 22 -1

Comment The Cover Up method can be used to find b and ¢ (but not a):
covering the term in 2 and putting x = 0 gives b = 0%11 =1, while covering up
the term in = — 1 and putting = = 1 gives ¢ = 1—21 =—-1.

We now apply the given decomposition:

dx dx dx dx 1
/m—/?—/ + ?—1n|x|—1n|x—1|+(—5)+c

r—1

7. We may calculate the volume of revolution ‘by washers’:

1 1
V= [ aw -y [y
0 0

¥’ Y= 11 m
ZW[j—g}y:o:W((g—g)—(0—0))25-

Or we may calculate this by the method of ‘cylindrical shells’:

V=/0127mcf($)d$:27r/01x($—x2)dx

19



3
1

1 3 gtye=1
:277/0 (2* — 2%) dz = 2| —Z}
=on((z-9) - 0-0) =1

/taandz:/(seCQxfl)d:c:tanxfquc.

sin max cosnx = % sin ((m +n)z) + % sin ((m — n)z)

and so our integral becomes:

%/0 (sin ((m + n)x) +sin ((m —n)z)) dx

1 [f cos ((m + n)z) _ cos ((m —n)x) ]QW

2 m-+n m-—n 0
1 cos (2(m+n)w)  cos (2(m —n)n) 1 1
72[[7 m4+n B m-—n ]7[7m+nim—nﬂ
1 1 —1 1 1
2 m+n m-n m+n m-—n

Comment That this integral is zero is used constantly in the calculation of
coefficients in Fourier series, which is the fundamental tool for expressing a
periodic function in series form (see Set 77).

10. As with any of the inverse transcendental functions, we integrate by

parts: put u = arctanx, dv = dx so that du = 1122 and v = z to obtain:

d
rarctanx — / %, and substituting for 1 + x2in this intergral gives:
x

1
xarctanx — 3 In(1+ z?) +c.

Problem Set 10

1. Let I = [2?e“dx. Integrate by parts, putting u = z*,dv = e~ *dx so
that du = 2xdx, v = —e~". Hence

I=—2%""*+ 2/:66796 dx.

20



Call this new integral J and integrate by parts again with v = z, dv = e"*dx
so that du = dr and v = —e™*. We obtain

J=—ze "+ /671 doe = —xze ™ * —e ",
Hence I = —z2e™* — 2z~ % — 2¢~% + ¢ and therefore:

I=—e"(z*+20+2) +e

2. Integrating by parts twice: put u = e*, dv = sinxzdr = v = — cosx so
that

I:femcostr/emcoszdz.

Integrating the new integral by parts in the same fashion gives
I=—e"cosz+ (e"sinz — /e”” sinzdx) = 2] = e"sinx — e” cos z,

1
S = QeI(sinx —cosz) +c.

Our integralis I = [ e *sinz dz. Putting u = —z transforms I into — [ € sin(—u) du =
[ e*sinudu. By above this gives

1 1
I= aeu(sinu —cosu) = §e_m(sin(—x) — cos(—x))
/ sinz sinx + cosx
= doe =¢c— —————.
e 2e*

3. Let f(x) = sin®* ™! 2. Then
f(=z) = (sin(—z))*" ™! = (=sinz)* ! = (12" (sin?" T z) = —sin®" T o = — f(x).
Hence f(z) is odd and so fil f(x)dz = 0.

4 22 _ (I+zH-1 _ 1— 1
T 1422 T 1+x2 - 14z2 -

1
/(1——) dr = x — arctanx + c.
1+ 22

Hence our integral becomes:

l
dx 1
I=1 = lim [—2V1—
Jim / T = Jm | 7],

= lim [-2V1—-1+2]=0+2=2.
I—=1-

s

6. Putting sinz + cosz = rcos(z — a) gives r = V2, a = 7+ Using that
[ secxdr = In|secx + tan x| then gives

dx V2 T V2 s ™
/ 5 /sec(m 4)dac 5 n | sec(z 4) + tan(x 4)| +c

sinx + cosx
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7. Putting v = x + 1 the integral I becomes

sin(u — 1 sinucosl — cosusinl
sin(u—1) , _ du =
cosu cosu

(cos1) /tanudu - (sinl)/ du = (cos1)In|secu| — (sinl)u+c =

(cos1)In|sec(xz + 1)| — (sinl)z + ¢,

where we have absorbed the term — sin 1 into the additive constant.
8. With # = asint (-5 < t < T) (range determined by the range of x,

which is —a < = < a) we have dz = acostdt and va? — 22 = Va2 — a?sin®t =
va?cos?t = acost. Hence

9 a? a? 1
I:/(acost) dt = 7/(1+cos2t)dt: 7(t+ §sin2t) +ec.

. . . 2 .
Now ¢ = arcsin Z and so Lsin2t = sintcost = £ — L = 2Va?—-2%s01in
a 2 a a a
terms of our original variable x we have:
2
a . T x
I = —arcsin— + =va2 — 22 +c.
2 a 2

9. Withz =acost (0 <t <) wehavedr = —asintdt and va? — a? cos?t =
Va2 sin®t = asint. Hence
2 2
1
I= —/(asint)th: %/(COSQt— 1)dt = %(isin%—t) +c=
a2

T x
——arccos — + —
2 a

2

10. The answers to 8 & 9 are consistent as the expressions differ by a fixed
constant, that being:

a? — 22 +c.

2 2 2

a—(arCSinE + arccos E) _arT_Tma
2 a a 22 4

22



