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June 27, 2017

This is the �rst of our Se
ond Year level modules and it builds on the two

previous 
al
ulus modules MA103 and MA107. We begin with multiple integra-

tion and the 
hange of order in iterated integrals, whi
h requires great 
are to

be taken to identify the new limits of integration, espe
ially of the inner inte-

grals whose limits will depend on the variables remaining in the outer integrals.

We then move on to 
hange of variables, whi
h involves the Ja
obian matrix,

with parti
ular emphasis on polar, 
ylindri
al, and spheri
al 
oordinates. In

Set 3 we introdu
e the notion of 
urvature, whi
h is a fundamental idea in-

trinsi
 to the 
urve being examined and is not dependent on the 
o-ordinate

system used in its 
al
ulation. Throughout we will be using parametrization of


urves, with parametrization by ar
 length of fundamental importan
e as with

this parametrization the tangent ve
tor at ea
h point is normalised in that it is

always of unit length.

In Set 4 we introdu
e the so-
alled big O and little o notation, whi
h is often

used in des
ribing the behaviour of 
omplex fun
tions in terms of simpler ones

together with terms that 
olle
tively vanish as we approa
h a parti
ular limit

or in�nity.

In Set 5 we introdu
e Leibniz's Rule for di�erentiating through an intergal

of a fun
tion of several variables and apply the idea to evaluate some integrals

that are di�
ult to analyse just using single variable te
hniques.

Sets 6 and 7 introdu
e some spe
ial fun
tions, they being the gamma and

beta fun
tions, whi
h are both de�ned by integrals involving a parameter. In

Set 7 we meet the important Chebyshev polynomials.

In set 8 we introdu
e the Lapla
e transform, an integral transform that 
an

be used to solve di�erential equations while Set 9 introdu
es Fourier series and

applies them in order to sum 
ertain interesting and spe
ial series.

Finally Set 10 introdu
es line integrals, whi
h are integrals de�ned along


urves, for both real-valued fun
tions (s
alar �elds) and for ve
tor �elds. This

problem set leads naturally on to MA203, Ve
tor Cal
ulus, where this topi
 is

taken further.

As always, all our problem sets are self-
ontained. The topi
s pra
tised

however may be explored further by sear
hing the internet based on the itali
ised

key words and phrases.
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Problem Set 1 Multiple integrals

For Questions 1-5 evaluate the given double integrals.

1.

ˆ 2

y=1

ˆ 1

x=0

xy(x + y) dxdy.

2.

ˆ
π
4

0

ˆ 1

0

2xy sin y dxdy.

By 
hanging the order of integration, evaluate the integrals in Question 3-5.

3.

ˆ 1

x=0

ˆ 1

y=
√
x

ey
3

dydx.

4.

ˆ
π
2

0

ˆ
π
2

x

sin y

y
dydx.

5.

ˆ y=1

0

ˆ x= y

2

0

ex
2

dxdy

In Questions 6 and 7, evaluate the given triple integrals.

6.

ˆ

P

xzexy dxdydz

where P is the 
uboid P = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 2}.
7.

ˆ
π
2

0

ˆ 1

0

ˆ

√
1−x2

0

x cos z dydxdz.

8. Find the volume in the �rst quadrant bounded by the plane x+ y+ z = 1
by expressing the volume of a triple integral of the 
onstant fun
tion 1. Also

�nd the answer by treating the shape as a triangular pyramid.

The area S of the surfa
e de�ned by the equation z = f(x, y) that lies above
the region R in the xy-plane is given by the integral

S =

ˆ ˆ

R

√

1 +
(∂z

∂x

)2
+
(∂z

∂y

)2
dxdy.

9. Find the area of the portion of the 
ylinder x2 + z2 = 4 lying above the

re
tangle de�ned by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 4.
10. Find the surfa
e area of the portion of the paraboloid 2z = x2 + y2 that

is inside the 
ylinder x2 + y2 = 8.
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Problem Set 2 Change of variable in multiple integrals

Let (u, v) → (x(u, v), y(u, v)) map S in the uv-plane in a one-to-one manner

onto D is the xy-plane. Then

ˆ ˆ

D

f(x, y) dxdy =

ˆ ˆ

S

f(x(u, v), y(u, v))|J | dudv

where the Ja
obian J is given by

J =

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

.

This extends to fun
tions of more than two variables in the natural way.

1. Find |J | for the 
hange of variable to polar 
o-ordinates x = r cos θ,
y = r sin θ (0 ≤ θ < 2π) and more generally for 
ylindri
al 
o-ordinates whi
h

in
lude the third independent variable z.

2. Use a double polar integral to �nd the area en
losed by the 3-leafed rose

r = sin 3θ.
3. By 
hanging to polar 
o-ordinates, �nd

´∞
−∞

´∞
−∞ e−(x2+y2)dxdy.

4. Use Question 3 to dedu
e the value of

´∞
−∞ e−x2

dx.

5. Use the result of Question 4 to show that the fun
tion f(x) = 1√
2π

e−
1
2
x2

taken over the entire real line is a probability density fun
tion.

6. By 
onverting to polar 
oordinates evaluate

ˆ 1

−1

ˆ

√
1−(x−1)2

0

x+ y

x2 + y2
dxdu

7. Find the area of the 
ardiod r = 1+sin θ by evaluating through evaluating

the integral A =
´ 2π

θ=0

´ r=1+sin θ

r=0
rdrdθ..

8. Find the volume V of the 
oni
al paraboloid z+x2+y2 = 4 that lies above
the xy-plane by expressing V as a triple integral in 
ylindri
al 
o-ordinates.

Spheri
al 
o-ordinates P (r, θ, φ) of P (x, y, z) are given by r =
√

x2 + y2 + z2,

x = r cos θ sinφ, y = r sin θ sinφ and z = r cosφ where 0 ≤ θ < 2π is the po-

lar angle in the xy-plane formed by the proje
tion of OP onto the horizontal

xy-plane and 0 ≤ φ ≤ π is the angle between the verti
al z-axis and the ray

OP .

9. Show that for the transformation from 
artesian to spheri
al 
oordinates

we have that for the 3× 3 Ja
obian J we have J = r2 sinφ.
10. Suppose a sphere of radius a has variable density ρ = ρ0(1 − r

a ), where
ρ0 is a 
onstant. Find total mass M of the sphere by expressing M as a triple

integral in spheri
al 
oordinates of the density over the volume of the sphere.
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Problem Set 3 Plane Curvature

Let a 
urve C be parametrized as r(t) = x(t)i + y(t)j (a ≤ t ≤ b) and let

φ(t) be the angle that the tangent ve
tor ṙ(t) makes with the x-axis.

1. Use the equation tan(φ(t)) = ẏ(t)
ẋ(t) to show that

dφ

dt
=

ẋÿ − ẏẍ

ẋ2 + ẏ2
.

2. Re
all the ar
 length of C at time t is given by

s(t) =

ˆ t

a

√

ẋ2(u) + ẏ2(u) du =

ˆ t

a

||ṙ(u)|| du.

The 
urvature κ of C is de�ned as

dφ
ds , while the radius of 
urvature is de�ned

as φ = 1
κ . Use Question 1 and the Chain rule to show that

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3
2

.

3. Parametrize the 
ir
le of radius a 
entred at the origin and �nd its 
ur-

vature and radius of 
urvature.

4. Find the 
urvature of the parabola y = x2
.

5. Find the 
urvature of the graph of the fun
tion y = ln(cosx), (−π
2 ≤ x ≤

π
2 ).

6. A 
y
loid is the path tra
ed out by a point on the rim of a wheel of

a moving 
ar. A typi
al parametrization of a 
y
loid is x = a(t − sin t), y =
a(1− cos t). Find ar
 length of the portion of this 
y
loid 
orresponding to the

time interval [0, α] and the length of one 
omplete ar
h.

7. Find the radius of 
urvature ρ for a point on the 
y
loid of Question 6


orresponding to a given time t = α.

8. Find the area under one ar
h of the 
y
loid of Question 6.

9. The Cornu spiral is parametrized by the equations

x(t) =

ˆ t

0

cos(u2)du, y(t) =

ˆ t

0

sin(u2)du.

Find the length of the spiral between the parameter values of 0 and t0.

10. Show that the 
urvature of the Cornu spiral is 2t and dedu
e that the


urve has a 
onstant rate of 
hange of 
urvature.
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Problem Set 4 Big O and little o notation

We say that a fun
tion f = O(g) for another fun
tion g taking only positive

values if there exists a 
onstant K su
h that |f(x)| ≤ Kg(x) for all x. Similarly

if

f
g → 0 (as x → ∞) we write f = o(g) (as x → ∞). We write f = o(g) as

x → a if

lim
x→a

f(x)

g(x)
= 0.

We write f ∼ lg if f
g → l, (as x → ∞ or as x → a as the 
ase may be) where l is a

non-zero 
onstant. We also simply write O(g) and o(g) to denote an unspe
i�ed

fun
tion f su
h that f = O(g) or f = o(g) as the 
ase may be. Verify ea
h of

the following statements.

1. f = O(1) if and only if f is a bounded fun
tion; f = o(1) if and only if

f(x) → 0 as x → ∞.

2. xm = o(xm+1).
3. 
ose
(x)− cotx ∼ 1

2x as x → 0.
4. O(f) +O(g) = O(f + g).
5. O(fg) = O(f)O(g). (Note that fg here denotes fun
tion produ
t (and

not fun
tion 
omposition) so that (fg)(x) = f(x)g(x).)
6. O(f)o(g) = o(fg).
7. If f ∼ g then f + o(g) ∼ g.

8. Suppose that f(x) has a 
onvergent Taylor series in some neighbourhood

of x0 so that

f(x) =
∞
∑

n=0

an(x− x0)
n.

Show that

f(x− x0)− a0 − a1(x− x0) = o(x− x0) as x → x0.

9. Continuing Question 8, show that l(x) = a0+a1(x−x0) is the only linear
fun
tion su
h that f(x)− l(x) = o(x − x0) as x → x0.

10. Simplify

(n+O(n
1
2 )(n+O(log n))2

as n → ∞.
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Problem Set 5 Di�erentiation under the integral

1. Leibniz's Rule Assume that we may write f(x + ∆x, t) = f(x, t) +
∂f(x,t)

∂x ∆x + o(∆x) so that the remainder term has the form o(∆x) indepen-

dently of t. Show from �rst prin
iples that the derivative of

g(x) =

ˆ b

a

f(x, t) dt

is given by

g′(x) =

ˆ b

a

∂f(x, t)

∂x
dt.

The Feynman Integration Tri
k, whi
h featured on an episode of `Big Bang

Theory' is illustrated in the following questions.

2. Let f(b) =
´ 1

0
xb−1
log x dx. By di�erentiating under the integral sign, �nd

f ′(b).
3. Integrate f ′(b) to re
over an expression for f(b) up to an integration


onstant C. Find the integration 
onstant C by putting b = 0.

4. Hen
e �nd

´ 1

0
x2−1
log x dx.

5. By n-fold di�erentiation of the fun
tion

g(x) =

ˆ ∞

0

e−tx dt

show that

ˆ ∞

0

xne−x dx = n!

6. This time put

f(b) =

ˆ ∞

0

sinx

x
e−bx dx

and 
ompute f ′(b).
7. Integrate f ′(b) to re
over f(b) up to an integration 
onstant C and �nd

C by putting b = ∞.

8. Hen
e �nd

ˆ ∞

−∞

sinx

x
dx.

9. Show that for x ≥ 0 that cosx ≥ 1− x2

2 .

10. Does

ˆ ∞

0

cosx

x
dx

exist?
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Problem Set 6 Spe
ial fun
tions I: The Gamma and Beta fun
tions

The gamma fun
tion is de�ned by Γ(t) =
´∞
0 xt−1e−x dx.

1. By integrating by parts show that Γ(t+1) = tΓ(t) and hen
e dedu
e that

Γ(n+ 1) = n! for any non-negative integer n.

2. Show that Γ(12 ) =
√
π.

3. Show that

Γ(
1

2
+ n) =

(2n)!

4nn!

√
π.

4. Show that

Γ(
1

2
− n) =

(−4)nn!

(2n)!

√
π.

The beta fun
tion is de�ned for positive real number pairs (x, y) as

B(x, y) =

ˆ 1

0

tx−1(1 − t)y−1 dt.

5. Write

Γ(x)Γ(y) = (

ˆ ∞

0

e−uux−1 du)(

ˆ ∞

0

e−vvy−1 dv)

as one double integral.

6. For the 
hange of variables u = zt and v = z(1− t) �nd |J(z, t)| where J
is the Ja
obian of the transformation, and the 
orresponding ranges of z and of

t.

7. By simplifying the integral of Question 5 via the substitution of Question

6 derive the formula

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

8. By making the substitution u = t
1−t show that

B(x, y) =

ˆ ∞

0

tx−1

(1 + t)x+y
dx.

9. Show that B(x, y) = B(x, y + 1) +B(x + 1, y) .
10. And another identity:

B(x+ 1, y) = B(x, y) · x

x+ y
.
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Problem Set 7 Spe
ial Fun
tions II: Chebyshev Polynomials

The form of the nth Chebyshev polynomial of the �rst kind Tn(x) is de�ned
by putting x = cos θ and de
laring that Tn(cos θ) = cosnθ (n ≥ 0).

1. Find T0(x) and T1(x).
2. Find T2(x) and T3(x).
3. Show that in general Tn+1(x) = 2xTn(x)− Tn−1(x).
4. Use the result of Q3 to �nd T4(x).
5. Show that Tn(Tm(x)) = Tnm(x).
De�ne the Chebyshev polynomial of the se
ond kind Un(x) by

nUn−1(x) =
d(Tn(x))

dx
, (n ≥ 1).

6. Find U1(x), U2(x), and U3(x).
7. Show that

Un−1(cos θ) =
sinnθ

sin θ
.

8. Show that

Tn(x) = Un(x)− xUn−1(x).

9. Show that

Tn(x) =
1

2

(

Un(x)− Un−2(x)
)

10. Show that Tn(x) is a solution to the di�erential equation

(1− x2)y′′ − xy′ + n2y = 0.
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Problem Set 8 The Lapla
e transform

The Lapla
e transform of a fun
tion f(t) is de�ned as

L{f(t)} = F (s) =

ˆ ∞

0

e−stf(t) dt.

.

1. Find L{1}.
2. Show by indu
tion that

L{tn} =
n!

sn+1
,

for any non-negative integer n.

3. Find L{eat} (s > a).
4. Find L{sinat}.
5. Express L{af(t) + bg(t)} in terms of L{f(t)} and L{g(t)}.
6. Express L{f ′(t)} in terms of L{(f(t)}.
7. Express L{f ′′(t)} in terms of L{f(t)}.
8. Consider the equation y′′ − y′ − 2y = 0 with initial 
onditions y(0) = 1

and y′(0) = 0 and let Y (s) be L{y(t)}. Show that

Y (s) =
s− 1

s2 − s− 2
.

9. Use partial fra
tions to express Y (s) in the form

a
s−b +

c
s−d .

10. Use the result of Question 9 to �nd the solution to the equation of

Question 8.
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Problem Set 9 Fourier series

Re
all that the Fourier series of a fun
tion f(x): if f(x) is smooth fun
tion

then f(x) = a0

2 +
∑∞

k=1(ak cos kx+ bk sin kx) on the interval [−π, π] where the
Fourier 
oe�
ients are given by:

an =
1

π

ˆ π

−π

f(x) cosnxdx, bn =
1

π

ˆ π

−π

f(x) sinnxdx

1. Cal
ulate the Fourier series for the fun
tion f(x) = x2
.

2. Use the result of Question 1 to �nd the sum of the series

1− 1

22
+

1

32
− · · · .

3. Again using Question 1, �nd

∑∞
n=1

1
n2 .

4. Find the Fourier series for f(x) = |x| and hen
e �nd the sum of the series

1 +
1

32
+

1

52
+ · · · .

5. Find the Fourier series for f(x) = cosµx for −π < x < π, where µ is not

an integer.

6. Use Question 5 to �nd the resolution of the 
otangent into partial fra
-

tions :

cotπx− 1

πx
= −2x

π

( 1

12 − x2
+

1

22 − x2
+

1

32 − x2
+ · · ·

)

.

7. Prove by indu
tion the Lagrange identity :

1

2
+ cosu+ cos 2u+ · · ·+ cosnu =

sin(n+ 1
2 )u

2 sin 1
2u

(u 6= nπ).

8. Obtain the identity of Question 7 by summing the geometri
 series with

a = 1 and r = eiut, multiplying top and bottom by e−
1
2
iu

and then taking the

real part.

9. Inversion of a Fourier series : we shall �nd the fun
tion whose Fourier

series is f(t) = 1 + a cos t+ a2 cos 2t+ · · · (−1 < a < 1) in two steps as follows.

First introdu
e the 
ompanion series g(t) = a sin t + a2 sin 2t + · · · and show

that f(t) + ig(t) = 1
1−aeit .

10. By passing to real and imaginary parts in the answer to Question 9,

show that

f(t) =
1− a cos t

1− 2a cos t+ a2
.
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Problem Set 10 Line integrals

For a real-vlaued fun
tion f(x, y) and a 
urve C in R
2
parametrized by x =

x(t), y = y(t) for a ≤ t ≤ b the line integral of f(x, y) along C is

ˆ

C

f(x, y) ds =

ˆ b

t=a

f(x(t), y(t))
√

ẋ2(t) + ẏ2(t) dt.

For Questions 1 and 3, evaluate the given line integrals.

1.

ˆ

C

x ds

where C is the 
urve y = x2
for −1 ≤ x ≤ 1.

2. Take f(x, y) = xy and C is the unit 
ir
le in the �rst quadrant, tra
ed

anti-
lo
kwise.

3. F (x, y) = x+y2, C is the 
urve that begins at (2, 0), moves anti-
lo
kwise

around the 
ir
le x2 + y2 = 4 to the point (−2, 0), and then returns to (2, 0)
along the x-axis.

4. Extend the notion of line integral to 
urves in three dimensions and

evaluate

ˆ

C

xyz ds

where C is the helix (spring shape) parametrized as x(t) = cos t, y(t) = sin t,
z(t) = 3t for 0 ≤ t ≤ 4π.

For a ve
tor �eld F(x, y) = P (x, y)i + Q(x, y)j and 
urve C with smooth

parametrization x = x(t), y = y(t) for a ≤ t ≤ b the line integral I of F along

C is I whi
h equals

ˆ

C

F•dr =

ˆ

C

P (x, y) dx+

ˆ

C

Q(x, y) dy =

ˆ b

a

((P (x(t), y(t))
dx

dt
+Q(x(t), y(t)

dy

dt
) dt

with a natural extension to 
urves in three dimensions. If F represents a for
e

then the value of I is the word done by the for
e in moving along the 
urve in

the given dire
tion.

5. Show that an alternative formulation of the previous line integral is

ˆ

C

F•dr =
ˆ

C

F •Tds

where T is the unit ve
tor in the dire
tion of the tangent to C at (x(t), y(t)).
In Questions 6-8 
al
ulate the given line integrals for ea
h of the ve
tor �elds

F.
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6.

F(x, y, z) = 8x2yzi+ 5zj− 4xyk

and C is the 
urve parametrized by r(t) = ti+ t2j+ t3k for 0 ≤ t ≤ 1.
7.

F(x, y, z) = xzi− yzk

and C is the line segment from (−1, 2, 0) to (3, 0, 1).
8. Integrals independent of parametrization Suppose that for our line integal

as above we have t = α(u) with α′(u) > 0 with a = α(c), b = α(d) say and

write x = x̃(u) = x(α(t)), y = ỹ(u) = y(α(t)). Denote dt
du = dα

du by α′(u). Show
that the value of

´

C
P (x, y) dx has the same value irrespe
tive of whether the

parameter t or u is used to 
al
ulate it.

9. Repeat Question 8 for the integral of a real-valued fun
tion

´

C f(x, y) ds.

10. Suppose that C is the 
urve from (0, 14) to (1.8) with parametrization

r(t) = (t+3, t2−t+2) for −3 ≤ t ≤ −2. Let F(x, y) = (2x2,−y). Show that the

parametrization r(u) = (u, u2 − 7u+14), 0 ≤ u ≤ 1 des
ribes the same 
urve C

and 
al
ulate

´

C F•dr using both parametrizations, verifying the general result

shown in Question 8 in this parti
ular 
ase.
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Hints for Problems

Problem Set 1

8. The upper limit of z for an arbitrary point (x, y) in the base of the volume

in the xy-plane is 1− x− y. For the upper limit of the se
ond integral, take the

proje
tion of the plane into the xy-plane and we need the greatest value of y

for an arbitrary value of x.

10. The integral that arises involves transforming to polar variables with

dxdy being repla
ed by rdrdθ (see Set 2 for details).

Problem Set 2

2. Sket
h the 
urve and �nd the area of one leaf, taking 
are to �nd the

value of the upper limit of θ.

3 & 4. Work in polars.

4. Write the integral of Question 3 as a produ
t of two integrals, identi
al

ex
ept for the name of the variable of integration.

6. Again, work in polars, so you will need the equation of the boundary

semi
ir
le in polar form in order to �nd the limits of integration.

8. Integrate r dzdrdθ, writing the upper limit for z in terms of r.

Problem Set 3

1. Di�erentiate tan(φ(t)) by the Chain rule and then write φ̇ in terms of ẋ

and ẏ.

2. This time use

dφ
ds = dφ

dt · dt
ds and write eveything in terms of ẋ and ẏ.

8. The required integral

´

y dx over one ar
h is, in terms of the parameter

´ 2π

0 y(t)dxdt dt.
9. Apply the Fundamental theorem of 
al
ulus and the formulae for ar


length.
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Problem Set 4

3. Apply L'Hopital's rule twi
e to the limit that arises in order to �nd a

suitable l.

4 - 7. These are 'if and only if' statements so require separate arguments,

working from the de�nitions, in ea
h dire
tion. The rule of Question 6 is par-

tiularly useful, often in the spe
ial form fo(g) = o(fg).
10. A typi
al appli
ation: expand the produ
t and use the rules of the

previous questions, trying to absorb smaller terms into larger ones; for example,

as n → ∞, O(n3) +O(n2) = O(n3).

Problem Set 5

5. Find g(n)(x) dire
tly by integrating �rst and then by di�erentiating

through the integral and equate the two forms.

9. Look to the derivative of cosx− (1− x2

2 ).
10. Make use of Question 9 and integrate between 1 and ε > 0.

Problem Set 6

6. 0 ≤ z ≤ ∞, 0 ≤ t ≤ 1.

Problem Set 7

3. Make use of cosA+ cosB = 2 cos A+B
2 cos A−B

2 .

7. Chain Rule.

8. & 9. Make use of Question 7.

Problem Set 8

2. Integrate by parts.

10. Take the inverse Lapla
e transform and the result of Question 5.
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Problem Set 9

Remember that an even (resp. odd) fun
tion has only a 
osine (resp. sine)

series for its Fourier expansion.

2,3, 5, and 6. Choose spe
ial values for x to derive the parti
ular series

results required.

8. Multiply top and bottom by e−
1
2
iu

and then take the real part.

10. Carry out the division in the usual way by multiplying top and bottom

by the 
omplex 
onjugate and then take the real part.

Problem Set 10

3. Extend the de�nition to a 
urve in 3-spa
e.

4. Cal
ulate the integrals over the two separate 
urves and sum to get the

answer.

6.

´

C F•dr =
´ b

a F(r(t))•r′(t) dt
8 & 9. In ea
h 
ase re-write the line integral in terms of the give substitution

using the Chain rule.

10. Identitfy the fun
tion t = α(u) by solving x(t) = x(α(u)) = x̃(u),

he
king that

dα
du > 0, and that y(t) = y(α(u)) = ỹ(u) also holds. Find the

limits of integration when using the parameter u, 
he
king that they indeed


orrespond to the endpoints of C taken in the 
orre
t order.
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Answers to the Problems

Problem Set 1

1.

5
3 . 2.

√
2
8 (4 − π). 3. e−1

3 . 4. 1. 5. e − 1. 6. 2(e − 2). 7. 1
3 . 8.

1
6 . 9.

4π
3 .

10.

52π
3 .

Problem Set 2

1. r. 2. π
4 . 3. π. 4.

√
π. 5.

√
2π. 6. π+2

2 . 7.

3π
2 . 8. 8π. 9. r2 sinφ. 10.

π
3 ρ0a

3
.

Problem Set 3

3.

1
a . 4.

2

(1+4x2)
3
2

. 5. − cosx. 6. 8a. 7. −4a| sin t
2 |. 8. 3a2π . 9. t0. 10. 2.

Problem Set 4

10. n3 +O(n
5
2 ).

Problem Set 5

3. log(b+ 1). 4. log 3. 6. f(b) = C − arctan b. 7. C = π
2 . 8. π. 10. No, the

(improper) integral diverges.

Problem Set 6

As per problem set.
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Problem Set 7

1. 1, x. 2. 2x2 − 1, 4x3 − 3x. 4. 8x4 − 8x2 + 1. 6. 2x, 4x2 − 1, 8x3 − 2.

Problem Set 8

1.

1
s . 2.

n!
sn+1 . 3.

1
s−a . 4.

a
a2+s2 . 5. aL{f(t)} + bL{g(t)}. 6. L{f ′(t)} =

sL{f(t)}− f(0). 7. L{f ′′(t)} = s2L{f(t)}− sf(0)− f ′(0). 8. s−1
s2−s−2 . 9.

1/3
s−2 +

2/3
s+1 . 10. y(t) =

1
3e

2t + 2
3e

−t.

Problem Set 9

1. x2 = π2

3 +
∑∞

n=1
4(−1)n

n2 cosnx. 2. π2

12 . 3.
π2

6 . 4.
π
2 − 4

π

∑∞
n=1

cos(2n−1)x
(2n−1)2 ,π

2

8 .

5.

2µ sinµπ
π

(

1
2µ2 − cosx

µ2−12 + cos 2x
µ2−22 − · · ·

)

. 9. 1
1−aeit . 10. f(t) =

a sin t
1−2a cos t+a2 .

Problem Set 10

1. 0. 2.

1
2 . 3. 4π. 4. −3

√
10π. 6. 1 . 7. 3. 10. 66 2

3 .
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