Mathematics 201 Calculus of Several Variables

Professor Peter M. Higgins
June 27, 2017

This is the first of our Second Year level modules and it builds on the two
previous calculus modules MA103 and MA107. We begin with multiple integra-
tion and the change of order in iterated integrals, which requires great care to
be taken to identify the new limits of integration, especially of the inner inte-
grals whose limits will depend on the variables remaining in the outer integrals.
We then move on to change of variables, which involves the Jacobian matriz,
with particular emphasis on polar, cylindrical, and spherical coordinates. In
Set 3 we introduce the notion of curvature, which is a fundamental idea in-
trinsic to the curve being examined and is not dependent on the co-ordinate
system used in its calculation. Throughout we will be using parametrization of
curves, with parametrization by arc length of fundamental importance as with
this parametrization the tangent vector at each point is normalised in that it is
always of unit length.

In Set 4 we introduce the so-called big O and little o notation, which is often
used in describing the behaviour of complex functions in terms of simpler ones
together with terms that collectively vanish as we approach a particular limit
or infinity.

In Set 5 we introduce Leibniz’s Rule for differentiating through an intergal
of a function of several variables and apply the idea to evaluate some integrals
that are difficult to analyse just using single variable techniques.

Sets 6 and 7 introduce some special functions, they being the gamma and
beta functions, which are both defined by integrals involving a parameter. In
Set 7 we meet the important Chebyshev polynomials.

In set 8 we introduce the Laplace transform, an integral transform that can
be used to solve differential equations while Set 9 introduces Fourier series and
applies them in order to sum certain interesting and special series.

Finally Set 10 introduces line integrals, which are integrals defined along
curves, for both real-valued functions (scalar fields) and for vector fields. This
problem set leads naturally on to MA203, Vector Calculus, where this topic is
taken further.

As always, all our problem sets are self-contained. The topics practised
however may be explored further by searching the internet based on the italicised
key words and phrases.



Problem Set 1 Multiple integrals

For Questions 1-5 evaluate the given double integrals.
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By changing the order of integration, evaluate the integrals in Question 3-5.
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In Questions 6 and 7, evaluate the given triple integrals.
6.

/ xze® drdydz
P

where P is the cuboid P = {(z,y,2): 0<2<1,0<y<1,0< 2z <2}.

7.
T Ia?
/ / / x cos zdydxdz.
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8. Find the volume in the first quadrant bounded by the plane x +y+2z =1
by expressing the volume of a triple integral of the constant function 1. Also
find the answer by treating the shape as a triangular pyramid.

The area S of the surface defined by the equation z = f(z,y) that lies above
the region R in the zy-plane is given by the integral

S:/A\/1+(%)2+(g—;)2dxdy.

9. Find the area of the portion of the cylinder 22 + 22 = 4 lying above the
rectangle defined by 0 <z <1l and 0 <y < 4.

10. Find the surface area of the portion of the paraboloid 2z = 22 + 2 that
is inside the cylinder 22 + y2 = 8.




Problem Set 2 Change of variable in multiple integrals

Let (u,v) = (x(u,v),y(u,v)) map S in the uv-plane in a one-to-one manner
onto D is the zy-plane. Then

//Df(:c,y)d;vdy://Sf(x(u,v),y(u7v))|J|dudv

where the Jacobian J is given by

This extends to functions of more than two variables in the natural way.
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1. Find |J| for the change of variable to polar co-ordinates = rcos,
y =rsinf (0 < 6 < 2m) and more generally for cylindrical co-ordinates which
include the third independent variable z.

2. Use a double polar integral to find the area enclosed by the 3-leafed rose
r = sin 36.

3. By changing to polar co-ordinates, find [*_ [% e~ @ +v) dady.

4. Use Question 3 to deduce the value of ffooo e dx.

5. Use the result of Question 4 to show that the function f(z) \/%e’%zz

taken over the entire real line is a probability density function.
6. By converting to polar coordinates evaluate

l(ml T+y
/ / 2ty 2d:zcdu

7. Find the area of the cardiod r = 1+4sin 6 by evaluating through evaluating
the integral A = [ [ vdrde..

8. Find the volume v of the conical paraboloid z+x%+y? = 4 that lies above
the xy-plane by expressing V' as a triple integral in cylindrical co-ordinates.

Spherical co-ordinates P(r,0, ¢) of P(x,y, z) are given by r = y/22 + y2 + 22,
x =rcosfsing, y = rsinfsing and z = rcos ¢ where 0 < 6 < 27 is the po-
lar angle in the xy-plane formed by the projection of OP onto the horizontal
zy-plane and 0 < ¢ < 7 is the angle between the vertical z-axis and the ray
OP.

9. Show that for the transformation from cartesian to spherical coordinates
we have that for the 3 x 3 Jacobian J we have J = r2sin ¢.

10. Suppose a sphere of radius a has variable density p = po(1 — Z), where
po is a constant. Find total mass M of the sphere by expressing M as a triple
integral in spherical coordinates of the density over the volume of the sphere.



Problem Set 3 Plane Curvature

Let a curve C be parametrized as r(t) = z(¢t)i + y(¢)j (e <t < b) and let
@(t) be the angle that the tangent vector r(¢) makes with the z-axis.

1. Use the equation tan(¢(t)) = % to show that

d¢ @i — i
dt 242’

2. Recall the arc length of C at time ¢ is given by

S(t) = / V(@) § () du = / (a0 | ds.

The curvature k of C' is defined as %, while the radius of curvature is defined

as ¢ = % Use Question 1 and the Chain rule to show that

3y -y
@+ )8
3. Parametrize the circle of radius a centred at the origin and find its cur-
vature and radius of curvature.
2

4. Find the curvature of the parabola y = x°.
5. Find the curvature of the graph of the function y = In(cos ), (=5 <2 <

N

).

6. A cycloid is the path traced out by a point on the rim of a wheel of
a moving car. A typical parametrization of a cycloid is * = a(t — sint), y =
a(l — cost). Find arc length of the portion of this cycloid corresponding to the
time interval [0, o] and the length of one complete arch.

7. Find the radius of curvature p for a point on the cycloid of Question 6
corresponding to a given time ¢ = a.
8. Find the area under one arch of the cycloid of Question 6.
9. The Cornu spiral is parametrized by the equations

x(t) = /Ot cos(u?)du, y(t) = /Ot sin(u?)du.

Find the length of the spiral between the parameter values of 0 and t.
10. Show that the curvature of the Cornu spiral is 2¢ and deduce that the
curve has a constant rate of change of curvature.



Problem Set 4 Big O and little o notation

We say that a function f = O(g) for another function ¢ taking only positive
values if there exists a constant K such that |f(z)| < Kg(z) for all x. Similarly
if f — 0 (as x — o0) we write f = o(g) (as x — 00). We write f = o(g) as
x —) a if

lim @ =0.

z—a g(x)
We write f ~ lg if% — 1, (as x — oo or as ¢ — a as the case may be) where [ is a
non-zero constant. We also simply write O(g) and o(g) to denote an unspecified
function f such that f = O(g) or f = o(g) as the case may be. Verify each of
the following statements.

1. f=0(Q) if and only if f is a bounded function; f = o(1) if and only if
f(z) = 0 as x — oo.

2. 2™ = o(z™*t1).

3. cosec(z) — cotx ~ 1z as v — 0.

4. 0(f) +0(9) = O(f + g)-
5. O(fg) = O(f)O(g). (Note that fg here denotes function product (and
not function composition) so that (fg)(z) = f(x)g(z).)

6. O(f)o(g) = o(f9g)-
7. If f ~ g then f+ o(g) ~g.
8. Suppose that f(x) has a convergent Taylor series in some neighbourhood

of z¢ so that
oo
= Z an(x — x0)"
n=0

Show that
flx —x) —ap —ar1(x — x0) = o(x — x0) as x — xo.

9. Continuing Question 8, show that I(z) = ag+ a1(z —x¢) is the only linear
function such that f(x) —I(z) = o(x — z9) as  — xo.
10. Simplify
(n+ O(n?)(n + O(logn))?

as n — oQ.



Problem Set 5 Differentiation under the integral

1. Leibniz’s Rule Assume that we may write f(z + Az, t) = f(z,t) +
%A{E + o(Az) so that the remainder term has the form o(Azx) indepen-
dently of t. Show from first principles that the derivative of

b
mm:/fmwﬁ

is given by

b of(x
g (z) :/ Lféx’ t dt.

The Feynman Integration Trick, which featured on an episode of ‘Big Bang
Theory’ is illustrated in the following questions.

2. Let f(b) = fol fgg;l dz. By differentiating under the integral sign, find
(D).
3. Integrate f’(b) to recover an expression for f(b) up to an integration
constant C. Find the integration constant C' by putting b = 0.
2
4. Hence find fol —L dx.

T
logz
5. By n-fold differentiation of the function

g(:z:):/ e dt
0

o0
/ z"e *dr = n!
0

f(b):/ HT embe gy
0

x

show that

6. This time put

and compute f/(b).
7. Integrate f’(b) to recover f(b) up to an integration constant C' and find

C by putting b = co.
/ sinx .
oo X

8. Hence find
9. Show that for x > 0 that cosz > 1 — %

10. Does -
/ cosxdx
O :I;

exist?



Problem Set 6 Special functions I: The Gamma and Beta functions

The gamma function is defined by I'(t) = [~ 2"~ 'e ™ d.

1. By integrating by parts show that I'(t+ 1) = ¢tI'(¢) and hence deduce that
['(n + 1) = n! for any non-negative integer n.

2. Show that T'(3) = /7.

3. Show that ) (2n)!
n).
4. Show that ) (—ayn
—4)"n!

The beta function is defined for positive real number pairs (x,y) as

1
B(:v,y):/ 11— ) dt.
0

5. Write
I'(x)T(y) = (/Ooo eyt du)(/ooo e YovTt dv)

as one double integral.

6. For the change of variables u = 2zt and v = z(1 —¢) find |J(z,t)| where J
is the Jacobian of the transformation, and the corresponding ranges of z and of
t.

7. By simplifying the integral of Question 5 via the substitution of Question
6 derive the formula

I(2)C(y)

B =ty

8. By making the substitution v = % show that

[ee] tmfl
B = ———dx.
9. Show that B(x,y) = B(z,y +1) + B(z + 1,y) .
10. And another identity:

x
x—l—y'

B(z+1,y) = B(z,y) -



Problem Set 7 Special Functions 1I: Chebyshev Polynomials

The form of the nth Chebyshev polynomial of the first kind T,,(x) is defined
by putting x = cosf and declaring that T}, (cos ) = cosnf (n > 0).

1. Find Ty(z) and Ti(x).

2. Find Ty (z) and T5(x).

3. Show that in general T),11(x) = 22T, (z) — Tp—1(x).

4. Use the result of Q3 to find Ty(z).

5. Show that T, (Tpn(x)) = Thm(x).

Define the Chebyshev polynomial of the second kind U, (x) by

d(T(z))
— = —= >1).
nUp—1(x) . (n>1)
6. Find Ui (z), Uz(x), and Us(x).
7. Show that nd
sinn

Upn—1(cosf) = el

8. Show that
To(x) = Up(x) — 2Up—1(2).

9. Show that

1
To(z) = 3 (Un(z) = Up—z(x))
10. Show that T),(z) is a solution to the differential equation

(1-2%)y" —zy +n’y=0.



Problem Set 8 The Laplace transform

The Laplace transform of a function f(t) is defined as

£{f 0} = F(s) = | T ety dr.

0
1. Find £{1}.
2. Show by induction that
n n!
L{t"} = prEsg

for any non-negative integer n.
3. Find L{e"} (s > a).
Find L{sinat}.
Express L{af(t) + bg(t)} in terms of L{f(t)} and L{g(t)}.
Express L{f'(t)} in terms of L{(f(¢)}.
Express L{f"(t)} in terms of L{f(¢)}.
. Consider the equation y” — 3y’ — 2y = 0 with initial conditions y(0) = 1
and y'(0) = 0 and let Y'(s) be L{y(t)}. Show that

® NS o

s—1

Y = —
(s) §2—5—2

9. Use partial fractions to express Y (s) in the form %5 + <.
10. Use the result of Question 9 to find the solution to the equation of
Question 8.




Problem Set 9 Fourier series

Recall that the Fourier series of a function f(z): if f(x) is smooth function
then f(x) = % + >, (ax coskx + by sin kx) on the interval [—m, 7] where the
Fourier coeflicients are given by:

U 1 U
ap = — f(z)cosnxdx, b, = — f(z)sinnzx dx

TJ =

1. Calculate the Fourier series for the function f(z) = 2.

2. Use the result of Question 1 to find the sum of the series

1 1

3. Again using Question 1, find 0% |

n=1 n2"
4. Find the Fourier series for f(z) = |x| and hence find the sum of the series

1 1
Ittt
5. Find the Fourier series for f(x) = cospx for —m < & < w, where p is not
an integer.
6. Use Question 5 to find the resolution of the cotangent into partial frac-

tions:
1 2x 1 1 1

trr — — = — =22 .
i g 7T(12—I2+22—:E2+32—:E2+ )
7. Prove by induction the Lagrange identity:

1 sin(n + 1)u

— 4 cosu+cos2u+ - -+ cosnu = (712) (u # nm).

2 2sin su

2

8. Obtain the identity of Question 7 by summing the geometric series with
a =1 and r = ¢, multiplying top and bottom by e~ 2% and then taking the
real part.

9. Inversion of a Fourier series: we shall find the function whose Fourier
series is f(t) =1+ acost +a?cos2t +--- (=1 < a < 1) in two steps as follows.
First introduce the companion series g(t) = asint + a?sin2t + --- and show
that f(¢) +ig(t) = -

10. By passing to real and imaginary parts in the answer to Question 9,

show that
1 —acost

T 1 2acost+a?

ft)

10



Problem Set 10 Line integrals

For a real-vlaued function f(x,y) and a curve C in R?parametrized by z =
x(t),y = y(t) for a <t < b the line integral of f(x,y) along C is

b
/Cf(%y)dS—/t_ f(@(t),y(0)V/ 32 (t) + §2(t) di.

For Questions 1 and 3, evaluate the given line integrals.

1.
/xds
c

where C is the curve y = 22 for —1 <z < 1.

2. Take f(z,y) = xzy and C is the unit circle in the first quadrant, traced
anti-clockwise.

3. F(z,y) = x+v?, C is the curve that begins at (2, 0), moves anti-clockwise
around the circle 22 + y? = 4 to the point (—2,0), and then returns to (2,0)
along the z-axis.

4. Extend the notion of line integral to curves in three dimensions and

evaluate
/ xyzds
c

where C' is the heliz (spring shape) parametrized as z(t) = cost, y(t) = sint,
z(t) =3t for 0 <t < 4.

For a wvector field F(
parametrization z = z(t),y = y(t) for a
C is I which equals

x,y)j and curve C with smooth
t < b the line integral I of F along

“EZ
s
I
el
“EZ
o=
IA +
o

b
/CF.dr_/cp(xvy)dﬂ_/cQ(I,y)dy_/a ((P(x(t),y(ﬂ)%%—@(x(t%y(ﬂ%)dt

with a natural extension to curves in three dimensions. If F represents a force
then the value of I is the word done by the force in moving along the curve in
the given direction.

5. Show that an alternative formulation of the previous line integral is

/Foer/Fons
C C

where T is the unit vector in the direction of the tangent to C at (z(t), y(t)).
In Questions 6-8 calculate the given line integrals for each of the vector fields
F.

11



F(x,y,2) = 8z%yzi + 52j — 4axyk

and C is the curve parametrized by r(t) = ti + t%j + t3k for 0 <t < 1.
7.
F(x,y,2z) = xzi — yzk

and C is the line segment from (—1,2,0) to (3,0,1).

8. Integrals independent of parametrization Suppose that for our line integal
as above we have t = «(u) with o/(u) > 0 with a = «a(c),b = a(d) say and
write z = #(u) = z(a(t)),y = §(u) = y(a(t)). Denote 4 = 99 by o/(u). Show
that the value of | o P(z,y) dx has the same value irrespective of whether the
parameter t or u is used to calculate it.

9. Repeat Question 8 for the integral of a real-valued function |, o flx,y)ds.

10. Suppose that C is the curve from (0,14) to (1.8) with parametrization
r(t) = (t+3,t2—t+2) for =3 <t < —2. Let F(x,y) = (22%, —y). Show that the
parametrization r(u) = (u,u? — Tu+14), 0 < u < 1 describes the same curve C
and calculate [, o Fedr using both parametrizations, verifying the general result
shown in Question 8 in this particular case.

12



Hints for Problems

Problem Set 1

8. The upper limit of z for an arbitrary point (x,y) in the base of the volume
in the xy-plane is 1 —x — y. For the upper limit of the second integral, take the
projection of the plane into the zy-plane and we need the greatest value of y
for an arbitrary value of x.

10. The integral that arises involves transforming to polar variables with
dzdy being replaced by rdrdf (see Set 2 for details).

Problem Set 2

2. Sketch the curve and find the area of one leaf, taking care to find the
value of the upper limit of 6.

3 & 4. Work in polars.

4. Write the integral of Question 3 as a product of two integrals, identical
except for the name of the variable of integration.

6. Again, work in polars, so you will need the equation of the boundary
semicircle in polar form in order to find the limits of integration.

8. Integrate r dzdrdf, writing the upper limit for z in terms of r.

Problem Set 3

1. Differentiate tan(¢(t)) by the Chain rule and then write ¢ in terms of &

and y.
2. This time use % = % - % and write eveything in terms of & and g.

8. The required integral [ ydz over one arch is, in terms of the parameter

2m dz
Jo " y(t) % dt.
9. Apply the Fundamental theorem of calculus and the formulae for arc
length.
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Problem Set 4

3. Apply L’Hopital’s rule twice to the limit that arises in order to find a
suitable [.

4 - 7. These are ’if and only if’ statements so require separate arguments,
working from the definitions, in each direction. The rule of Question 6 is par-
tiularly useful, often in the special form fo(g) = o(fg).

10. A typical application: expand the product and use the rules of the
previous questions, trying to absorb smaller terms into larger ones; for example,
as n — 00, O(n3) + O(n?) = O(n?).

Problem Set 5

5. Find ¢ (x) directly by integrating first and then by differentiating
through the integral and equate the two forms.

9. Look to the derivative of cosz — (1 — %)

10. Make use of Question 9 and integrate between 1 and € > 0.

Problem Set 6

6.0<2<00,0<t< 1.

Problem Set 7

3. Make use of cos A + cos B = 2 cos A"’TB cos A;QB.
7. Chain Rule.
8. & 9. Make use of Question 7.

Problem Set 8

2. Integrate by parts.
10. Take the inverse Laplace transform and the result of Question 5.
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Problem Set 9

Remember that an even (resp. odd) function has only a cosine (resp. sine)
series for its Fourier expansion.

2,3, 5, and 6. Choose special values for = to derive the particular series
results required.

8. Multiply top and bottom by e~z and then take the real part.

10. Carry out the division in the usual way by multiplying top and bottom
by the complex conjugate and then take the real part.

Problem Set 10

3. Extend the definition to a curve in 3-space.

4. Calculate the integrals over the two separate curves and sum to get the
answer.

6. [, Fedr = [ F(r(t))or'(t)di

8 & 9. In each case re-write the line integral in terms of the give substitution
using the Chain rule.

10. Identitfy the function ¢ = «(u) by solving z(t) = z(a(u)) = Z(u),
checking that %% > 0, and that y(t) = y(a(u)) = §(u) also holds. Find the
limits of integration when using the parameter u, checking that they indeed
correspond to the endpoints of C' taken in the correct order.
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Answers to the Problems

Problem Set 1

1. 2. 2.
3
5271
10. 22,

S

(4—m).3. <1 4. 1.5. e—1.6.2(e—2). 7. 1. 8.

o=

Problem Set 2

Lor.2 2.3 m 4. 7 5 V2r 6. T2 . 7. 32,8 8m. 9. r?sing. 10.
s 3
3P0a".

Problem Set 3

3. 4.4, 0 422)3. 5. —cosx. 6. 8a. 7. —4a|sink|. 8. 3a*T . 9. to. 10. 2.
+4x<)2

Problem Set 4

10. 73 4 O(n3).

Problem Set 5

3. log(b+1). 4. log3. 6. f(b) = C —arctanb. 7. C' = 7. 8. m. 10. No, the
(improper) integral diverges.

Problem Set 6

As per problem set.
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Problem Set 7
1.1, 2. 2. 202 — 1, 423 — 3. 4. 8x* — 822 + 1. 6. 2z, 42% — 1, 823 — 2
Problem Set 8

1. L 92 3 1

Sn+1 .

L4 % 5 al{f(t)} +bL{g(t)}. 6. L{f(t)} =
SCLf()} — f(0). T. L{F" (1)} = s2L{f(£)} — s£(0) — f/(0). 8. 5*=L5.9. L5+
fﬁ 10. y(t) = 3e* + 27"

s2—s5—2 T os—2

Problem Set 9

1. x2__+2n 1

2 2 2
™ i T_ 4 cos(2n—l)zx 72
" cosna. 2. 5 3 6 4. 223" =17 8
2p sin pw 1 cosz cos2xr __ _ asmt
5. T (2M —12 + p2—22 ) 9. 1— ae” 10. f( ) -

1—2acost+a? "

Problem Set 10

1. 0.2

3. 3. 4w 4. —=3/10m. 6. 1. 7. 3. 10. 663 .
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