
Mathemati
s 207 Real Analysis

Professor Peter M. Higgins

November 22, 2018

The purpose of real analysis is to provide a rigorous foundation for the

te
hniques of 
al
ulus, whi
h are based on the notion of limit. The exer
ises

assume familiarity with the basi
 ideas of 
onvergen
e of a sequen
e of real

numbers and the de�nition of 
ontinuity of a fun
tion in terms of the standard

symbols ε > 0 and δ > 0 along with the de�nition of derivative. We also assume

the Fundamental theorem of Cal
ulus and take for granted the integrability of

any 
ontinuous fun
tion. The known nature of the real numbers is assumed,

in
luding the existen
e of the greatest lower bound of a set bounded below

and similarly the least upper bound of a set bounded above. Set 1 establishes

the elementary properties of 
onvergent sequen
es of real numbers. Set 2 is


on
erned with 
ertain limits that are espe
ially important, parti
ularly those

involving the number e. Set 3 introdu
es results and examples on 
ontinuity

of a fun
tion. Throughout we will work mainly with one variable mappings

although we o

asionally expand to matters of several variables. Sets 4 and 5


on
ern series. We introdu
e and work with the standard tests for 
onvergen
e

and examples in
lude the binomial series for non-integral powers. We draw on

all this knowledge in the se
ond part of the module.

In Set 6 we study 
ontinuous fun
tions on 
losed intervals (the prototype

of so-
alled 
ompa
t sets, whi
h we shall meet in Level 3 modules in a more

general setting). We prove the Intermediate value and Extreme value theorems

for 
ontinuous fun
tions on a 
losed interval and illustrate the ideas involved

with relevant examples. Set 7 introdu
es the 
on
ept of uniform 
ontinuity for

individual and for sequen
es of fun
tions. This 
ondition is key in justifying

many of the te
hniques of 
al
ulus that involve the inter
hange of limiting op-

erations, su
h as term-by-term di�erentiation and integration of series. In Set

8 we study power series where the uniform 
onvergen
e of the series within its

radius of 
onvergen
e is a 
ru
ial property in 
al
ulations involving power series

representation of fun
tions of interest. In parti
ular the Weierstrass M-test is a

tool we �rst meet here. Set 9 introdu
es and proves another fundamental result

of 
al
ulus, that being the Mean value theorem in various forms and we use the

MVT to prove theorems often used in 
al
ulus in
luding Equality of mixed par-

tial derivates. Set 9 and all of Set 10 are about Taylor series and we introdu
e

a study of the Remainder term both in the Lagrange form, based on the Mean

value theorem, and the Integral form. We 
lose with some pra
ti
al 
al
ulations

in
luding a brief visit into the realm of Taylor series of several variables.
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Solutions and Comments for the Problems

Problem Set 1

1. Suppose to the 
ontrary that M < A. Put ε = A−M > 0. Sin
e an → A
there exists N su
h that for all n ≥ N ,

|A− an| < ε

⇒ A− an ≤ |A− an| < A−M

⇒ an > M,

a 
ontradi
tion, and so limn→∞ an ≤M , the given upper bound of the sequen
e.

2. Given ε > 0 taken N1, N2 su
h that |an − A| < ε for all n ≥ N1 and

|bn − B| < ε for all n ≥ N2. Put N = max{N1, N2} . Then for all n ≥ N we

have by the triangle inequality:

|λan + µbn − (λA + µB)| = |λ(an −A) + µ(bn −B)|

≤ |λ||an −A|+ |µ||bn −B| ≤ |λ|ε+ |µ|ε = ε(|λ|+ |µ|)
and sin
e |λ|+ |µ| is a �xed 
onstant, it follows that (λan + µbn) → λA+ µB.

Comment We 
an end the argument with ε rather than a multiple of ε if we
wish by taking |an − A| < ε

|λ|+|µ| et
. (while also dealing with the trivial 
ase

where λ = µ = 0). It is a matter of taste whether or not to introdu
e su
h a


ontrivan
e in order to satisfy the formal de�nition of 
onvergen
e.

3. (a) Let A be the limit of the sequen
e (an)n≥1 and put ε = 1. Then there

exists N su
h that for all n ≥ N we have |an −A| < 1. Then for any n ≥ N we

have

|an| = |an −A+A| ≤ |an −A|+ |A| ≤ |A|+ 1 (1)

Next let B = max{|an| : n ≤ N − 1}. Then for all n ≥ 1 we have

|an| ≤M =: max{B, 1 + |A|},

and so (an)n≥1 is bounded.

Comment The 
on
lusion may be written as −M ≤ an ≤ M so that the

sequen
e itself has both a lower and an upper bound.

(b) Any 
onvergent sequen
e is bounded above and below by 3(a). Con-

versely, suppose that (an)n≥1 is a monotoni
 in
reasing sequen
e that is bounded

above. (The argument in the de
reasing 
ase is the same ex
ept for the dire
-

tion of the inequalities involved.) Sin
e (an)n≥1 is bounded above, the sequen
e

has a least upper bound (also known as the supremum) A and we 
laim that

2



an → A. Too see this, let ε > 0 be given. Then there exists N su
h that

A − ε < aN ≤ A for if there were no su
h N , then A − ε would be an upper

bound of the sequen
e that was less than the least upper bound, whi
h is a


ontradi
tion. Then, sin
e (an)n≥1 is in
reasing in n, it follows that for any
n ≥ N we have A − ε ≤ aN ≤ an ≤ A and in parti
ular |A − an| < ε for all

n ≥ N. Therefore it follows that an → A, as required.
(
) Let ε > 0 be given and take N su
h that for all n ≥ N we have |an−A| <

ε. Then by the Triangle inequality we have

||an| − |A|| ≤ |an −A| ≤ ε,

when
e it follows that |an| → |A|.
(d) The 
onverse is false: for example let an = (−1)n. Then |an| = 1 so that

(|an|)n≥1 → 1 but the sequen
e (an)n≥1 has no limit at all.

4. By Question 3 there exists a 
ommon positive upper bound M for the


onvergent sequen
es (an)n≥1 and (bn)n≥1. Similarly, for any given ε > 0, there
is a 
ommon index N su
h that for all n ≥ N we have |an − A| < ε and

|bn −B| < ε. Then

|anbn −AB| = |anbn −Abn +Abn −AB| ≤ |(an −A)bn +A(bn −B)|

≤ |an −A||bn|+ |A||bn −B| ≤ εM + |A|ε = ε(M + |A|),
whi
h is a 
onstant multiple of ε and so we 
on
lude that anbn → AB.

5. It is enough to prove this in the 
ase where an is the 
onstant sequen
e

1, for given this and Question 3 we have

an
bn

= an · 1

bn
→ A · 1

B
=
A

B
.

Now

| 1
bn

− 1

B
| = |B − bn

Bbn
| (2)

Choose N su
h that for all n ≥ N , |bn − B| < |B|ε and |bn| ≥ 1
2 |B| (so that

1
|bn| ≤

2
|B| ). To prove that the latter is possible �rst we note by Question 3(
)

that |bn| → |B|. Take ε = |B|
2 > 0. Then we may take N su
h that for all

n ≥ N , ||bn| − |B|| < ε so that

−ε < |bn| − |B| < ε

⇒ |bn| > |B| − |B|
2

=
|B|
2
.

Then for all n ≥ N we have by (4) that

| 1
bn

− 1

B
| ≤ |B|ε

|B||bn|
=

ε

|bn|
≤ 2ε

|B| ,
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from whi
h follows that

1
bn

→ 1
B , as required.

Comment Even without the 
ondition that bn 6= 0 for all n ≥ 1 we have

that the 
onvergen
e of the tail of the sequen
e

an

bn
to the limit

A
B still holds as

bn → B 6= 0 implies that only �nitely many of the bn 
an equal 0, and we may

simply 
onsider the behaviour of the sequen
e after the point where there are

no further zero values in the bn .

6. Let ε > 0 and take N su
h that for all n ≥ N , |an − A| < ε. For

the sequen
e (ani
)i≥1 take j su
h that nj ≥ N . Then for any i ≥ j we have

ni ≥ nj ≥ N so that |ani
−A| < ε and so it follows that ani

→ A.

7. Take N su
h that for all n ≥ N , |an − l| ≤ ε
2 . Then for any m,n ≥ N we

obtain the required inequality as follows:

|am − an| = |am − l − (an − l)| ≤ |am − l|+ |an − l| ≤ ε

2
+
ε

2
= ε.

8. We have that some interval I0 = [−M,M ] 
ontains all members an of

our sequen
e. It follows that at least one of the intervals [−M, 0] and [0,M ]

ontains in�nitely many members of the sequen
e. Choose su
h an interval I1
and repeat the argument, splitting I1 into two 
losed intervals of equal length

with 
ommon endpoint. In this way we de�ne a nested sequen
e of intervals

I0 ⊃ I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · ·

with |In| = M
2n−1 . We then form a subsequen
e (ani

)i≥0 by 
hoosing ani
∈ Ii.

Now let ε > 0 and take i ∈ Z+
su
h that

M
2i−1 < ε. Take any j, k ≥ i. Then

sin
e anj
, ank

∈ Ii we have

|anj
− ank

| ≤ M

2i−1
< ε,

whi
h shows that the subsequen
e (ani
)i≥0 of (an)n≥0 is Cau
hy 
onvergent.

Hen
e, by the 
ompleteness of R, it follows that (ani
)i≥0 
onverges, as required

to 
omplete the proof.

Comment We shall take the results of the previous questions, and simple


onsequen
es thereof, for granted in future proofs without expli
it referen
e.

Another point to note is that the 
onvergen
e or otherwise of a sequen
e is

unaltered if we adjoin or omit a �nite number of terms.

9. Let ε > 0. Take N su
h that for all n ≥ N , |an − A| < ε
2 and let M be

an upper bound for (|an|)n≥1. Then for any n ≥ N su
h that

MN
n < ε

2 we have

| 1
n

n
∑

k=1

ak −A| = | 1
n

N
∑

k=1

ak +
1

n

n
∑

k=N+1

ak −A|
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≤ 1

n
|

N
∑

k=1

ak|+
1

n
|
(

n
∑

k=N+1

ak −A
)

|

≤ MN

n
+

1

n
|

n
∑

k=N+1

(ak −A)|

≤ MN

n
+

1

n

n
∑

k=N+1

|ak −A|

≤ ε

2
+
n(ε/2)

n
= ε.

10. We have

Sn =
1

⌊n
2 ⌋

⌊n
2 ⌋

∑

k=1

k(n− k)

for n = 2m we have, using standard formulas for the sums of powers, that

⇒ Sn

n2
=

1

4m3

(2m2(m+ 1)

2
− m(m+ 1)(2m+ 1)

6
)

=
1

24m2
(6m(m+ 1)− (2m+ 1)(m+ 1)) =

1

24m2
(4m− 1)(m+ 1)

=
1

24
(4− 1

m
)(1 +

1

m
) → 4

24
=

1

6
.

For n = 2m+ 1 we have

Sn

n2
=

1

m(2m+ 1)2
( (2m+ 1)m(m+ 1)

2
− m(m+ 1)(2m+ 1)

6

)

=
1

6(2m+ 1)2
(2(2m+ 1)(m+ 1)) =

1

3
(
m+ 1

2m+ 1
) =

1

3
(
1 + 1

m

2 + 1
m

)

→ 1

3
· 1
2
=

1

6
.

Problem Set 2

1.

e(n) = (
1

n
+ 1)n =

n
∑

k=0

(

n

k

)

1

nk
=

n
∑

k=0

n(n− 1) · · · (n− k + 1)

k!nk
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and the term indexed by k is given by

t(k) =
1

k!
(1− 1

n
)(1− 2

n
) · · · (1− k − 1

n
). (3)

We observe that tk > 0 and is in
reasing in n as this is true of ea
h of the

fa
tors. Also e(n+1) has one more term than does e(n), when
e it follows that
2 ≤ e(n) < e(n+ 1).

2(a) Repla
ing ea
h bra
keted term of t(k) by 1 we see that

e(n) <

n
∑

k=0

1

k!
(4)

(b) Then observe that 2k−1 < k! for all k ≥ 1 so that

1
k! <

1
2k−1 ; we obtain:

e(n) < 1 + 1 +
1

22
+

1

23
+ · · ·+ 1

2n−1
= 1 +

1− (1/2)n

1− (1/2)
= 1 +

2n − 1

2n−1

= 1 + 2− 1

2n−1
< 3.

3. The M
Laurin series for ex is given by

ex =

∞
∑

k=0

(ex)(n)(0)

k!
xk =

∞
∑

k=0

xk

k!

and putting x = 1 then gives:

e =

∞
∑

k=0

1

k!
(5)

4. If m > n we have

e(m) > 1+1+
1

2!
(1− 1

m
)+

1

3!
(1− 1

m
)(1− 2

m
)+· · ·+ 1

n!
(1− 1

m
) · · · (1−n− 1

m
) (6)

as e(m) is 
omprised of the sum on the right hand side of (8) together with more

positive terms (see (5) above). Letting m→ ∞ then gives that for all n ≥ 0

e = lim
m→∞

e(m) ≥ s(n) =:

n
∑

k=0

1

k!
(7)

On the other hand by (6) we have e(n) ≤ sn. Hen
e we have e(n) ≤ sn ≤ e;
letting n → ∞ we then have e = limn→∞ sn. Therefore we have equality

throughout and arrive at two equivalent de�nitions for the number e:

e = lim
n→∞

(1 +
1

n
)n =

∞
∑

k=0

1

k!
.
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Comment The expression e(n) was �rst introdu
ed in Bernoulli's 
ompound

interest problem, whi
h asks for the limiting amount of interest gained when

interest a

rues 
ontinuously. Looked at this way, it is 
lear that (1 + 1
n )

n
is

in
reasing in n as this expression represents the interest a

ruing when interest

is paid at n equally spa
ed intervals per annum (and interest rate is 100%) and

interest on interest will a

rue earlier if interest is paid more often.

5(a) Let l(x) = logb(x) (x > 0). Then for any a > 0 we have l(xa ) =
l(x)− l(a). Di�erentiating both sides by gives:

l′(xa )

a
= l′(x)

putting x = a then gives

l′(a) =
l′(1)

a
;

or using the symbol x instead of a:

(logb(x))
′ =

λ

x
, λ = (logb(x))

′|x=1.

(b) Hen
e we have

λ = lim
h→0

logb(1 + h)− logb(1)

h
= lim

h→0
logb(1 + h)1/h = logb( lim

h→0
(1 + h)

1
h ),

where we have assumed that the limit and the taking of log may be inter
hanged

(whi
h is valid be
ause of the 
ontinuity of the log fun
tion). Putting n = h−1

we get

lim
h→0

(1 + h)
1
h = lim

n→∞
(1 +

1

n
)n = e.

Therefore λ = logb e = 1 if and only if b = e. This shows in parti
ular that

(lnx)′ = x−1
.

6. For n = 2 we have (1+ h)2 = 1+2h+ h2 > 1+ 2h as h 6= 0. Suppose the

laim holds for some n ≥ 2 and 
onsider

(1+h)n+1 = (1+h)n(1+h) > (1+nh)(1+h) = 1+(n+1)h+h2 > 1+(n+1)h,

and so the indu
tion 
ontinues, thus 
ompleting the proof.

7. Sin
e p > 1, we have p1/n > 1 so that an = 1 + hn for some hn > 0.
Hen
e by Question 6,

p = (1 + hn)
n > 1 + nhn

⇒ 0 < hn <
p− 1

n
→ 0

⇒ an → 1 + 0 = 1.
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Otherwise for 0 < p < 1 we have that 0 < p
1
n < 1 and so p

1
n = 1− rn for some

0 < rn < 1. We seek to write this as p
1
n = 1

1+hn
so we solve

1

1 + hn
= 1− rn

⇔ hn =
1

1− rn
− 1 =

rn
1− rn

and sin
e 0 < rn < 1 it follows that 0 < hn, as we require. Sin
e (1 + hn)
n >

1 + nhn we get that (1 + hn)
−n < (1 + nhn)

−1
and so

p =
1

(1 + hn)n
<

1

1 + nhn

⇒ 1 + nhn <
1

p

⇒ 0 < hn <

1
p − 1

n
→ 0.

Therefore in the 
ase where 0 < p < 1 it also follows that an = 1
1+hn

→ 1.

8. Note that bnn = (n
1
2n )n =

√
n so that

√
n = (1 + hn)

n > 1 + nhn

⇒ hn <

√
n− 1

n
<

√
n

n
=

1√
n
.

9. We now have

1 ≤ an = b2n = 1 + 2hn + h2n ≤ 1 +
2√
n
+

1

n
→ 1

and so

an = n
√
n→ 1, as n→ ∞.

10. Put an = n
αn so that

√
an =

√
n

(
√
α)n

. Sin
e α > 1, so is

√
α and so we

may write

√
α = 1 + h for some h > 0. Then

√
αn = (1 + h)n > 1 + nh, so that

√
an =

√
n

(1 + h)n
≤

√
n

1 + nh
≤

√
n

nh
=

1

h
√
n

∴ 0 < an =:
n

αn
≤ 1

nh2
→ 0.
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Problem Set 3

1. Let ε > 0 and take δ > 0 su
h that |x−l| < δ implies that |f(x)−f(l)| < ε,
whi
h is possible as f(x) is 
ontinuous at x = l. Take N su
h that for all n ≥ N ,

|an − l| < δ. Then |f(an)− f(l)| < ε, and therefore (f(an))n≥1 → f(l).
Comment Note this is saying that limn→∞ f(an) = f(limn→∞ an), or in

words, the a
tions of taking the limit and a
ting a 
ontinuous fun
tion on a


onvergent sequen
e may be inter
hanged.

2. For any a ∈ R in
luding a = 0 we may also put δ = ε > 0. For a = 0
if |x − a| = |x| ≤ ε then ||x| − |0|| = |x| ≤ ε and so |x| is 
ontinuous at

x = 0. For a 6= 0 assume without loss that ε is 
hosen su�
iently small so that

|x − a| < ε implies that x and a have the same sign. Then for a > 0 we have

||x|−|a|| = |x−a| < ε while for a < 0 we have ||x|−|a|| = |−x+a| = |x−a| < ε.
In either 
ase, this serves to show that |x| is 
ontinuous for all a ∈ R.

3. Sin
e g(x) is 
ontinuous at x = f(a) it follows that for any ε > 0 there

exists δ1 > 0 su
h that |f(x) − f(a)| < δ1 implies that |g(f(x) − gf(a)| < ε.
Sin
e f(x) is 
ontinuous at x = a if follows that there exists δ > 0 su
h that

|x − a| < δ implies that |f(x) − f(a)| < δ1. Therefore for any x su
h that

|x− a| ≤ δ we obtain

|f(x)− f(a)| < δ1 ⇒ |g(f(x)) − g(f(a))| < ε,

thus proving that g(f(x)) is 
ontinuous at x = a.
By Question 2 we know that |x| de�nes a 
ontinuous fun
tion so that by what

we have just proved (putting g(x) = |x|) we have that if f(x) is 
ontinuous then
so is |f(x)|.

To see that the 
onverse is false as we may take f(x) to be the fun
tion that

takes the value 1 if x ∈ Q and −1 if x 6∈ Q. Then |f(x)| ≡ 1, the 
onstant

fun
tion 1, whi
h is 
learly 
ontinuous, yet f(x) is not a 
ontinuous fun
tion.

Indeed f(x) is dis
ontinuous at every point as ea
h point has arbitrarily small

neighbourhoods where the fun
tion values of points within the neighbourhood

di�er by 2.

4. Given ε > 0, let δ1, δ2 > 0 be su
h that |x − a| < δ1 implies that

|f(x) − f(a)| < ε and |x − a| < δ1 implies that |g(x) − g(a)| < ε. Put δ =
min{δ1, δ2}. Then |x− a| < δ implies that

|h(x)− h(a)| = |λ(f(x)− f(a)) + µ(g(x) − g(a)|

≤ |λ||f(x) − f(a)|+ |µ||g(x)− g(a)| ≤ (|λ|+ |µ|)ε
and sin
e λ and µ do not depend on ε, it follows that h(x) = λf(x) + µg(x) is

ontinuous at x = a.
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5. Let a ∈ R. Then

sin(a+ h)− sin a = sina cosh− cos a sinh− sin a = sin a(cosh− 1)− cos a sinh.

Given that limh→0 cosh = 1 and limh→0 sinx = 0 we obtain:

lim
h→0

(sin(a+h)−sina) = sin a lim
h→0

(cosh−1)−cosa( lim
h→0

sinh) = sina(1−1)−cosa(0) = 0.

6. It su�
es to prove the 
ase where p(n) = nk
for some k ≥ 1, with the

k = 1 
ase being dealt with in Question 10 Set 2. We pro
eed by indu
tion on

k. Let k ≥ 2 and let b =
√
a > 1. Then by indu
tion and the k = 1 
ase we

obtain:

lim
n→∞

nk

an
= lim

n→∞
nk−1

bn
· n
bn

= lim
n→∞

nk−1

bn
· lim
n→∞

n

bn
= 0 · 0 = 0.

7. We are given that

lim
h→0

f(a+ h)− f(a)

h
= f ′(a)

De�ne the fun
tion ε(h) by the equation

ε(h) =
f(a+ h)− f(a)

h
− f ′(a)

⇒ lim
h→0

ε(h) = f ′(a)− f ′(a) = 0;

∴ f(a+ h)− f(a) = hf ′(a) + hε(h)

⇒ lim
h→0

(f(a+ h)− f(a)) = lim
h→0

hf ′(a) + lim
h→0

hε(h) = 0 + 0 = 0.

Therefore f(a+ h) → f(a) as h→ 0, whi
h is to say that f(x) is 
ontinuous at
x = a.

8. Using polar 
oordinates we have x2 + y2 = r2 and x3 = r3 cos3 θ. The

required limit then takes the form:

lim
r→0

r3 cos3 θ

r2
= lim

r→0
r cos3 θ = 0

as | cos3 θ| ≤ 1 independently of the value of θ. Hen
e if we de�ne f(0, 0) = 0
the fun
tion f(x, y) is 
ontinuous throughout all of the domain R2

.

9. Putting y = mx the limit takes the form:

lim
x→0

x2 −m2x2

x2 +m2x2
= lim

x→0

x2(1−m2)

x2(1 +m2)
=

1−m2

1 +m2
;

10



sin
e the limit is not 
onstant but rather its value depends on the gradient of

the line of approa
h to the origin, it follows that no single limiting value may

be assigned to f(0, 0) that makes the fun
tion 
ontinuous at the origin.

10(a) Again putting y = mx gives the limit:

lim
x→0

mx3

x4 +m2x2
= lim

x→0

mx

x2 +m2
;

if m 6= 0, this limit is

0
m2 = 0. If m = 0 (i.e. we approa
h along the line y = 0)

we also get limx→0
0
x4 = 0.

(b) However if we approa
h the origin along the 
urve y = x2, the limit

exists but takes on a di�erent value:

lim
x→0

x4

x4 + x4
= lim

x→0

1

2
=

1

2
.

Problem Set 4

1. Let sn =
∑n

k=1 ak. We have that sn → S, where S is the sum of the

series. The sequen
e (sn)n≥1 is Cau
hy 
onvergent and in parti
ular for any

ε > 0 there exists N su
h that for all n ≥ N , |sn+1 − sn| < ε, whi
h is to say

|an+1| < ε for all n ≥ N . Sin
e ε was arbitrary it follows that an → 0.

2. Suppose that Σ 
onverges so that sn → S say. Let us write tn,m for

∑k=n+m
k=n+1 an = sn+m − sn. Then for any ε > 0 there exists N su
h that for all

n ≥ N , |sn − s| < ε
2 . Hen
e for all m ≥ 0 we have

|sn+m − s| = |tn,m − s+ sn)| <
ε

2
.

⇒ −ε
2
< tn−m + (sn − s) <

ε

2

⇒ −ε < tn,m < ε⇔ |tn,m| < ε ∀m ≥ 0

⇒ lim
m→∞

|tn,m| =: tn = |
∞
∑

k=n+1

an| ≤ ε.

Sin
e ε > 0 was arbitrary it follows that |tn| → 0 as n→ ∞, so the same is true

of tn, i.e.

lim
n→∞

∞
∑

k=n+1

an = 0. (8)

11



Conversely suppose that (8) is true. Let ε > 0 and take N su
h that for all

n ≥ N, |tn| ≤ ε
2 . Then for any m ≥ 0 we have

−ε
2
<

∞
∑

k=n+1

an = sn+m − sn +

∞
∑

k=n+m+1

an <
ε

2

−ε < sn+m − sn < ε,

and so for all n ≥ N and m ≥ 0, |sn+m − sn| < ε, and sin
e ε was arbitrary it

follows that

∑∞
k=0 an 
onverges.

3. We have that

∑∞
n=1 |an| 
onverges so given any ε > 0 there exists N

su
h that for all n ≥ N , and m ≥ 1,
∑n+m

k=n+1 |ak| ≤ ε. Hen
e, by the Triangle

inequality we obtain:

|
n+m
∑

k=n+1

ak| ≤
n+m
∑

k=n+1

|ak| ≤ ε

⇔ |sn+m − sn| ≤ ε

and so

∑∞
k=1 an 
onverges.

4. We show indu
tively that the series (s2n)n≥0 and (s2n+1)n≥0 are respe
-

tively monotoni
ally in
reasing and monotoni
ally de
reasing. Suppose that we

have s0 ≥ s2 ≥ · · · ≥ s2n for some n ≥ 0 (the n = 0 
ase being va
uously true).

Then

s2(n+1) = s2n+2 = s2n + (a2n+2 − a2n+1)

and by hypothesis the bra
keted term is non-positive (as a2n+2 ≤ a2n+1) and

so s2n ≥ s2(n+1) and the indu
tion 
ontinues. Similarly suppose we have s1 ≤
s3 ≤ · · · ≤ s2n+1 for some n ≥ 0, the base 
ase again being 
lear. Then

s2(n+1)+1 = s2n+3 = s2n+1 + (a2n+2 − a2n+1) ≥ s2n+1,

and the indu
tion 
ontinues; therefore (a2n+1)n≥0 is de
reasing. The 
laim is

thus established.

Next we observe that s2n ≥ s2m+1 for any n,m ≥ 0. To see this, suppose

to the 
ontrary that for some n,m we have s2m+1 > s2n. Take k > m, n. It

follows from the 
laim that

s2k+1 ≥ s2m+1 > s2n ≥ s2k.

This gives s2k+1 = s2k − a2k+1 > s2k, a 
ontradi
tion. Therefore we 
on
lude

that s2n ≥ s2m+1 for all n,m ≥ 0.
The sequen
e (s2n)n≥0 is monotoni
 de
reasing and is bounded above by s0

so 
onverges to a limt A, while similarly (s2n+1)n≥0 is a monotoni
 in
reasing

sequen
e bounded above by all the s2n (and so by their limit A) and so 
onverges
to a limit B; it follows that B ≤ A. We 
omplete the proof by showing that

A = B.

12



Suppose to the 
ontrary that B < A so we may write A = B + ε for some

ε > 0. Sin
e an → 0 it follows that the same is true of both of the subsequen
es

(a2n)n≥0 and (a2n+1)n≥0. Take N su
h that for any n ≥ N , an <
ε
2 . Then

(s2n ≥ A) ⇒ (s2n+1 = s2n − a2n+2 ≥ A− ε

2
= B +

ε

2
);

howeverB is the least upper bound of the sequen
e (s2n+1)n≥0, and in parti
ular

B is an upper bound, and that is 
ontradi
ted by s2n+1 > B. Therefore A = B
is the limit of the sequen
e (sn)n≥0.

5. For p > 0, the fun
tion f(x) = x−p
is monotoni
ally de
reasing for x ≥ 1,

and so we have

I =

ˆ ∞

1

dx

xp
>

∞
∑

n=2

1

np
.

For p > 1 we have

I =
x1−p

1− p
|∞1 = 0− 1

1− p
=

1

p− 1

so that ∞
∑

n=1

1

np
< 1 +

1

p− 1
=

p

p− 1
.

Sin
e the sequen
e of partial sums of this series is monotoni
 in
reasing and

bounded above, the series 
onverges.

On the other hand if p < 1 we may observe that:

N
∑

n=1

1

np
>

ˆ N

1

dx

xp
=
x1−p

1− p
|N1 =

N1−p − 1

1− p

and sin
e the latter expression approa
hes in�nity as N → ∞, it follows that

∑∞
n=1

1
np diverges if p < 1. If p = 1 we obtain

N
∑

n=1

1

n
>

ˆ N

1

dx

x
= lnx|N1 = lnN → ∞.

Therefore

∑∞
n=1

1
np 
onverges if and only if p > 1.

6. Suppose that r < 1. Let 2ε = 1− r > 0. Note that s = r+ ε = 1− ε < 1.
There exists N su
h that

−ε < |an+1

an
| − r < ε ∀n ≥ N

⇒ 0 < |an+1| < s|an|
⇒ |an+1| < sn−N |aN | ∀n ≥ N.

13



Let sN denote

∑N
n=0 |an|. Then

∞
∑

n=0

|an| = sN +

∞
∑

n=N+1

|an| ≤ sN + |aN |
∞
∑

n=N+1

sn−N

= sN + |aN |
∞
∑

n=1

sn = sN + |aN | s

1− s
.

Therefore sin
e the partial sums sn of the series (|an|)n≥1 are monotoni
ally

in
reasing and bounded above, it follows that the series

∑∞
n=0 an is absolutely


onvergent, and so 
onvergent.

Next suppose that r > 1. Take ε > 0 su
h that s = r − ε > 1. Then

take N su
h that for all n ≥ N , |an+1

an
| > s. Hen
e we have |an+m| > sm|an|.

In parti
ular limn→∞ an 6= 0, when
e it follows by Question 1 that the series

∑∞
n=0 an is divergent.

7. ex ∼ ∑∞
n=0

xn

n! . In this 
ase

|an+1

an
| = | n!xn+1

(n+ 1)!xn
| = |x|

n+ 1
→ 0 ∀x ∈ R

and so by the Ratio test, the series 
onverges for all x.

sinx ∼ ∑∞
n=0

(−1)nx2n+1

(2n+1)! and cosx ∼ ∑∞
n=0

(−1)nx2n

(2n)! . The test ratios are

respe
tively:

| (−1)n+1(2n+ 1)!x2(n+1)+1

(−1)n(2(n+ 1) + 1)!x2n+1
| = | x2

(2n+ 2)(2n+ 3)| | → 0 ∀x ∈ R

| (−1)n+1(2n)!x2(n+1)

(−1)n(2(n+ 1))!x2n
| = | x2

(2n+ 1)(2n+ 2)| | → 0 ∀x ∈ R

and so, by the Ratio test, both these series also 
overge for all real x.

8. Note that sN =
∑N

n=1 an is a stri
tly monotoni
 in
reasing sequen
e in

N and that sN ≤ ∑N
n=1 bn ≤ B =

∑∞
n=1 bn. Therefore S =

∑∞
n=1 an 
onverges

(to a limit no more than B). On the other hand if the series S is divergent then

so is

∑∞
n=1 bn, for if this series were 
onvergent then so would S be 
onvergent

(by the previous argument).

9.

(i) |an+1

an
| = | 2

3(n+1)

(n+ 1)!
· n!
23n

| = | 23

n+ 1
| → 0 so series 
onverges;

(ii) |an+1

an
| = | 2(n+1)2

(2(n+ 1))!
· (2n)!
2n2 | = | 22n+1

(2n+ 2)(2n+ 1)
| → ∞ so series diverges;

14



(iii) The Ratio test limit here is 1 so that test is in
on
lusive. However, for

n ≥ 3, lnn
n > 1

n and sin
e

∑∞
n=3

1
n diverges then so does

∑∞
n=1

lnn
n .

10.

(i) lim
n→∞

n
√

|an| = lim
n→∞

(1 + n2)2

1− 2n2
= ∞, so series diverges;

(ii) lim
n→∞

n
√

|an| = lim
n→∞

n

53+
2
n

= ∞, so series diverges;

(iii) lim
n→∞

n
√

|an| = lim
n→∞

( n

1 + n
)n = lim

n→∞

(

1− 1

1 + n

)n
= e−1 < 1, so series 
onverges.

Problem Set 5

1. From Question 3 of Set 1, we prove this by showing that one of these

series is bounded above if and only if the other is as well. Let sn and tn denote

the respe
tive sequen
es of partial sums of the two series:

sn = a1 + a2 + · · ·+ an

tk = a1 + 2a2 + · · ·+ 2ka2k .

Sin
e the an are de
reasing, it follows that for n ≤ 2k,

sn ≤ a1+(a2+a3)+· · ·+(a2k−1+a2k−1+1+· · ·+a2k−1)+(a2k+a2k+1+· · ·+a2k+1−1)

≤ a1 + 2a2 + · · ·+ 2k−1a2k−1 + 2ka2k = tk,

so that sn ≤ tk for n ≤ 2k. On the other hand, if n ≥ 2k,

sn ≥ a1 + a2 + (a3 + a4) + · · ·+ (a2k−1 + a2k−1+1 + · · ·+ a2k)

≥ a1
2

+ a2 + 2a4 + · · ·+ 2k−1a2k =
tk
2

so that 2sn ≥ tk. It follows that the sequen
es (sn)n≥1 and (tn)n≥1 are both

bounded above, or both not bounded above, and therefore the 
orresponding

series,

∑∞
n=1 an and

∑∞
n=1 2

na2n both 
onverge or both diverge.

2. Let an = n−p (p 6= 1). Then the sequen
e 
onsists of positive monotoni-


ally de
reasing terms and so we may apply Question 1. Applying the ratio test

to (2na2n)n≥1 gives in this 
ase

2n+1(2n+1)−p

2n(2n)−p
=

2 · 2np
2(n+1)p

=
2

2p
=

1

2p−1
;

15



now if p > 1 then p− 1 > 0 and the ratio is less than 1, telling us that the series
in question both 
onverge. On the other hand if p < 1 then p − 1 < 0 and the

ratio ex
eeds 1, indi
ative of divergent series.

3. Here we have an = 1
n(logn)p , whi
h is a monotoni
 de
reasing sequen
e of

positive terms and so we may apply Cau
hy 
ondensation and instead look at

the sum of the 
ondensed series:

∞
∑

n=2

2n

2n(log(2n))p
=

∞
∑

n=2

1

np(log 2)p
=

1

(log 2)p

∞
∑

n=2

1

np
;

and by Question 2, we know this series 
onverges if and only if p > 1.

4. Sin
e the terms of the series are positive and monotoni
ally de
reasing

we may apply the integral test to

∑∞
n=2

1
n logn(log(logn)) and so 
onsider the


orresponding integral:

I =

ˆ ∞

2

dx

x log x(log(log x))
.

Put u = log(log x). Then du = dx
x log x so we get:

I =

ˆ ∞

log(log 2)

du

u
= [log u]∞log(log 2),

whi
h is in�nite, and so the series in question also diverges.

5(a) Suppose to the 
ontrary that f were not 
ontinuous at u, when
e there
exists some ε > 0 su
h that for any δ > 0 there exists x ∈ S su
h that |x−u| < δ
but |f(x)−f(u)| > ε. In parti
ular we may 
hoose un ∈ S su
h that |xn−u| < 1

n
but |f(un) − f(u)| > ε. But then (un)n≥1 is a sequen
e in S 
onverging to u
but for all n we have |f(un) − f(u)| > ε. Hen
e if f is not 
ontinuous at u
there exists a sequen
e in S that 
onverges to u but the sequen
e of images,

f(un), does not 
onverge to f(u). By the 
ontrapositive, we 
on
lude that if

every sequen
e in S that 
onverges to u has its image sequen
e 
onverging to

f(u), then f is 
ontinuous at u.
(b) The 
onverse is also true for suppose that f is 
ontinuous at u and let

(un)n≥1 be a sequen
e in S that 
onverges to u. Let ε > 0. Sin
e f is 
ontinuous

at u, there exists δ > 0 su
h that if x ∈ S with |x−u| < δ then |f(x)−f(u)| < ε.
Then there exists N su
h that for all n ≥ N we have |un − u| < δ, when
e
|f(un)− f(u)| < ε, thereby showing that (f(un))n≥1 → f(u), as required.

6(a) We note that

n

(n+ 1)!
=

(n+ 1)− 1

(n+ 1)!
=

1

n!
− 1

(n+ 1)!
, hen
e
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N
∑

n=1

n

(n+ 1)!
=

N
∑

n=1

( 1

n!
− 1

(n+ 1)!

)

=
1

1!
− 1

(N + 1)!
= 1− 1

(N + 1)!

⇒
∞
∑

n=1

n

(n+ 1)!
= lim

N→∞
(1− 1

(N + 1)!
) = 1.

(b)

ex − 1 =

∞
∑

n=1

xn

n!
⇒ ex − 1

x
=

∞
∑

n=1

xn−1

n!
=

∞
∑

n=0

xn

(n+ 1)!

⇒ xex − ex + 1

x2
=

∞
∑

n=1

nxn−1

(n+ 1)!

⇒ 1− ex + xex

x
=

∞
∑

n=1

nxn

(n+ 1)!
.

We now put x = 1 and so obtain the same result:

∞
∑

n=1

n

(n+ 1)!
=

1− e+ e

1
= 1.

7(a) Di�erentiating f(x) = (1 + x)α gives f ′(x) = α(1 + x)α−1
, when
e

(1 + x)f ′(x) = α(1 + x)α = αf(x).

(b) Write f(x) =
∑∞

n=0 anx
n
so that our equation takes on the form:

(1 + x)f ′(x) = (1 + x)

∞
∑

n=1

nanx
n−1 = (1 + x)

∞
∑

n=0

(n+ 1)an+1x
n = α

∞
∑

n=0

anx
n

⇒ (n+ 1)an+1 + nan = αan ∀n ≥ 0

⇒ an+1 =
α− n

n+ 1
an =

(α− n)(α− n+ 1)

(n+ 1)n
an−1 =

(α− n)(α − n+ 1)(α− n+ 2)

(n+ 1)n(n− 1)
an−2 =

· · · = (α− n)(α− n+ 1) · · · (α− 1)α

(n+ 1)n(n− 1) · · · 2 · 1 a0

and sin
e a0 = f(0) = 1 we 
on
lude, upon repla
ing n+1 by n in the pre
eding


al
ulation, that

an =
(α− n+ 1)(α− n+ 2) · · ·α

n!
∀n ≥ 1.

Note that a0 = 1, a1 = α, a2 = (α−1)α
2 , · · ·.
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8. We apply the ratio test:

|an+1x
n+1

anxn
| = | (α− n)(α− n+ 1) · · ·α

(n+ 1)!
· n!x

(α− n+ 1)(α− n+ 2) · · ·α | =
|α− n||x|
n+ 1

→ |x|;

hen
e the series 
onverges if |x| > 1 and diverges if |x| < 1.

9. Sin
e

φ(x) =
f(x)

(1 + x)α
⇒ φ′(x) =

f ′(x)(1 + x)α − α(1 + x)α−1f(x)

(1 + x)2α
.

However this numerator 
an be worked using the equation (1+x)f ′(x)−αf(x) =
0 as follows:

= (1+x)f ′(x)(1+x)α−1−αf(x)(1+x)α−1 = ((1+x)f ′(x)−αf(x))(1+x)α−1 = 0.

Hen
e φ(x) is 
onstant, and the value of that 
onstant is

φ(1) =
a0

(1 + 0)α
=

1

1
= 1;

∴ (1 + x)α =

∞
∑

n=0

(

α

n

)

xn ∀ − 1 < x < 1.

10. We have

√
1 + x = (1+ x)

1
2
so that the general 
oe�
ient in the expan-

sion takes on the form:

(1
2

n

)

=
(12 − n+ 1)(12 − n+ 2) · · · 12

n!

∴

√
1 + x = 1 +

1

2
x− 1

2 · 4x
2 +

1 · 3
2 · 4 · 6x

3 − 1 · 3 · 5
2 · 4 · 6 · 8x

4 + · · ·

Putting x = 1 gives:

√
2 ≈ 1 +

1

2
− 1

8
+

1

16
− 5

128
= 1

64− 16 + 8− 5

128
= 1

51

128
= 1 · 40 (2 d.p).

Problem Set 6

1. Put 2ε = f(a) > 0. Then sin
e limx→a+ f(x) = f(a), there exists δ > 0
su
h that if 0 < x− a < δ then |f(x)− f(a)| < ε, so that

−ε < f(x)− f(a) < ε

18



⇒ ε = f(a)− ε < f(x) < f(a) + ε;

in parti
ular f(x) > 0 for all x su
h that 0 ≤ x− a < δ.
Comment Similarly if f(a) < 0 we 
an �nd δ > 0 su
h that f(x) < 0 for

all 0 ≤ x − a < δ. Moreover, it is 
lear that the same holds in ea
h 
ase for a

suitably 
hosen 
losed interval [0, δ].

2. Let A = {x : a ≤ x ≤ b, f(y) < 0 ∀ a ≤ y ≤ x}. Sin
e f(a) < 0 we have

that A 6= ∅. Sin
e f(b) > 0 and f(x) is 
ontinuous, there exists a δ > 0 su
h

that f(x) > 0 for all x ∈ [b− δ, b]. Hen
e there exists a least upper bound α to

A and a ≤ α < b. We show that f(α) = 0.
Suppose to the 
ontrary that f(α) < 0. There there exists δ > 0 su
h that

for all x ∈ (α − δ, α + δ), f(x) < 0. Now there is some x0 ∈ A that satis�es

α− δ < x0 < α be
ause otherwise α would not be the least upper bound of A.
This means that f is negative on [a, x0]. But then for any x1 ∈ [α, α + δ) then
f is negative on [x0, x1]. Then f is negative on [a, x1]. This gives x1 ∈ A and

α < x1, 
ondtradi
ting that α is an upper bound of A. Hen
e the assumption

that f(α) < 0 must be false.

On the other hand, suppose that f(α) > 0. Then, again by 
ontinuity, there

exists δ > 0 su
h that for all x ∈ [α−δ, α] we have f(x) > 0. But then α−δ is a
smaller upper bound for A than α, again a 
ontradi
tion. Therefore f(α) = 0.
Sin
e f(a), f(b) are both non-zero we 
on
lude that a < α < b.

Comment By applying this argument to −f , it follows that the 
on
lusion

of the IVF also holds if f(a) > 0 and f(b) < 0.

3(i) Let f(x) = x − cosx. Then f(0) = 0 − 1 = −1 < 0; f(π2 ) =
π
2 − 0 =

π
2 > 0 and sin
e f is 
ontinuous, by the Intermediate value theorem, there exists

x ∈ (0, π2 ) su
h that f(x) = x− cosx = 0, whi
h is to say that x = cosx.
(ii) Let f(x) = x − 1 − sinx. Then f(0) = 0 − 1 − 0 = −1 < 0 while

f(2) = 2 − 1 − sin 2 = 1 − sin 2 > 0. Again by the IVT it follows that there

exists x ∈ (0, 2) su
h that f(x) = x− 1− sinx = 0, so that sinx = x− 1.
(iii) Without loss we may take the leading 
oe�
ient of p(x) to be 1, so that

p(x) = a0 + a1x + · · · + an−1x
n−1 + xn, with n odd. Then for x 6= 0 we may

write:

p(x) = xn(
a0
xn

+
a1
xn−1

+ · · ·+ an−1

x

)

+ xn.

By the IVF it is enough to show that p(x) takes on values of both signs. Let

A be the maximum of the numbers |a0|, |a1|, · · · , |an−1|, 1. Then for any x su
h

that |x| ≥ 2(n− 1)A we have by the Triangle inequality that

| a0
xn

+
a1
xn−1

+ · · ·+ an−1

x
| ≤ A

2(n− 1)A
+

A

2(n− 1)A
+ · · ·+ A

2(n− 1)A
=

1

2
.

It follows that for any x su
h that x ≥ 2(n− 1)A we have p(x) ≥ xn − 1
2x

n =
1
2x

n
and if x < 2(n − 1)A then p(x) ≤ xn + 1

2x
n
; in parti
ular, p(x) > 0 if

x > 2(n− 1)A and, sin
e n is odd, p(x) < 0 if x < −2(n− 1)A. It now follows

the the IVT that p(x) has a real root.
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4(a) Let a ∈ f−1(U) so that f(a) = u ∈ U . Sin
e U is open there exists

ε > 0 su
h that if |y − u| < ε then y ∈ U . Now sin
e f(x) is 
ontinuous there
exists δ > 0 su
h that |x − a| < δ implies that |f(x) − f(a)| = |f(x) − u| < ε
so that f(x) ∈ U and x ∈ f−1(U). This shows that the sphere of radius δ > 0

entred at x lies in f−1(U) and sin
e x was an arbitrary member of f−1(U) it
follows that f−1(U) is open.

Conversely, suppose that for every open set U ⊆ Rm,f−1(U) is open. Let

ε > 0, let a ∈ Rn
, and 
onsider the open sphere U of radius ε 
entred at f(a).

By hypothesis, f−1(U) is an open set, whi
h 
ontains a. Let δ > 0 be su
h that

for the sphere V of radius δ 
entred at a we have V ⊆ f−1(U). Then f(V ) ⊆ U
so that if b ∈ Rn

is su
h that |b− a| < δ then |f(b)− f(a)| < ε, thereby showing
that f(x) is 
ontinuous at the arbitrary point a.

(b) Yes, for it is equivalent to the result of part (a). Let U ⊆ Rm
and let

U ′ = Rm \ U . Then Rn
is a disjoint union of f−1(U) and f−1(U ′). Now by

part (a) f is 
ontinuous if and only if f−1(U) is open for all open sets U ⊆ Rm
,

whi
h is equivalent to f−1(U ′) is 
losed for every 
losed set U ′ ⊆ Rm
.

5.

lim
h→0

((x+ h)2 − x2) = lim
h→0

2hx = 0;

and so f(x) = x2 is 
ontinuous for all x ∈ R.

However, take the open interval I = (−1, 1). Then f(I) = [0, 1), whi
h is

not open (as it 
ontains the boundary point 0). Therefore a 
ontinuous map

does not ne
essarily map open sets to open sets.

Comment An even simpler example of this kind is a 
onstant mapping, whi
h

maps every set, open or otherwise, to the a one-point 
losed set. Similarly the

sine fun
tion maps any subset of the real line that 
ontains an interval of length

2π onto the 
losed interval [−1, 1]. It is possible to 
onstru
t some (rather

strange) mappings on the real line that do map open sets to open sets yet are

not themselves 
ontinuous. A 
ontinuous mapping that does map open sets to

open sets is 
alled an open mapping.

6. Setting ε = 1 we may take δ > 0 su
h that for all x ∈ (a − δ, a + δ)
|f(x)− f(a)| < 1. Therefore for all x in this interval we have

−1 < f(x)− f(a) < 1

⇒ −1 + f(a) < f(x) < f(a) + 1

whi
h gives lower and upper bounds for f(x) on (a− δ, a+ aδ).

7. Let A = {x : a ≤ x ≤ b and f is bounded on [a, x]}. Then a ∈ A and A is

bounded above by b. Let α be the least upper bound of A. Suppose that α < b.
Then by Question 6, we have that f is bounded on some interval (a− δ, a+ δ)
for some δ > 0 (where, without loss, we may take δ su�
iently small so that

a+δ ≤ b) and f is bounded on [a, α− δ
2 ] (for otherwise α− δ

2 would be a smaller
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upper bound for A), when
e it follows that f is bounded on the union of these

two intervals, whi
h is [a, α + δ). However this 
ontradi
ts that α is an upper

bound for A. Therefore α = b. Take δ < b−a
2 . It now follows that f is bounded

on [a, b− δ].
By the same argument but with the interval [a, x) repla
ed by (x, b] in A, we


on
lude that f is bounded on [a+δ, b] and so f is bounded on [a+δ, b]∪[a, b−δ] =
[a, b].

8. By Question 7 we have that f(x) is bounded on [a, b]. Let M be the

least upper bound of f([a, b]). For any n ∈ Z+
there exists xn ∈ [a, b] su
h that

f(xn) > M − 1
n . Consider the sequen
e (xn)n≥1. Sin
e [a, b] is bounded, this

sequen
e has a 
onvergent subsequen
e (xni
)i≥1 with limit x say. Sin
e [a, b] is


losed, this limit x is a member of [a, b]. We 
laim that f(x) = M . To see this

we note that

1
ni

≤ 1
i → 0 as i→ ∞.

Suppose that, 
ontrary to our 
laim, that f(x) = M − ε for some ε > 0.
Choose i su
h that

1
ni
< ε

2 and, sin
e f is 
ontinuous, we may simultaneously

take i su
h that |f(x)− f(xni
)| < ε

2 . But then we infer that

−ε
2
< f(x)− f(xni

) <
ε

2

⇒ f(x) > f(xni
)− ε

2
> M − 1

ni
− ε

2
> M − ε

2
− ε

2
=M − ε,

a 
ontradi
tion. Therefore f(x) = M and so that f(x) attains a maximum on

[a, b].

9. Note that −f(x) is 
ontinuous on [a, b] so that by what we have just

proved, −f(x) attains its maximum, m say at x ∈ [a, b] say. Then f(x) = −m
and we 
laim this is the minimum value for f on [a, b] for if not, there exists some

y ∈ [a, b] su
h that f(y) = p < −m. But then −f(y) = −p > m, 
ontradi
ting

that m is the maximum value for −f on [a, b].
Comment The theorem represented by the pair of results of Questions 8 and

9 is 
alled the Extremum theorem, in that it says that a 
ontinuous fun
tion on

a bounded 
losed interval has extreme values (maxima and mininma).

10. Sin
e we are assuming that f(x) 6= M for all x ∈ [a, b], it follows that
g(x) is 
ontinous on [a, b] and so bounded (by Question 7). On the other hand

sin
e M is the least upper bound of the set of values f(x) (a ≤ x ≤ b) it follows
that for any ε > 0 there exists x ∈ [a, b] su
h that 0 ≤M − f(x) ≤ ε. But then
g(x) ≥ 1

ε . Sin
e ε 
an be taken to be arbitrarily small, we gain the 
ontradi
tion

that g(x) is unbounded above on [a, b]. Therefore we 
on
lude that for some

y ∈ [a, b], f(y) =M .
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Problem Set 7

1. A fun
tion is 
ontinuous throughout its domain D if for any ε > 0 and

ea
h a ∈ D there exists δ > 0 su
h that |x−a| < δ implies that |f(x)−f(a)| < ε.
The value of δ here may depend on a and there is no stipulation that there is a

single value of δ > 0 for whi
h this 
on
lusion applies for all a ∈ D. However, for

uniform 
ontinuity we insist that there is some δ > 0 that 'works' for all a ∈ D
(although δ will still in general depend on the given value of ε > 0). For that

reason uniform 
ontinuity is a stronger 
ondition that 
ontinuity throughout the

domain of de�nition of the fun
tion. That it is indeed stri
tly stronger is shown

by the example of Question 2.

2. Let ε > 0 and let a ∈ (0, 1]. Take δ su
h that δ < a. For |x− a| < δ then
a− x < δ so that 0 < a− δ < x and

1
x <

1
a−δ . Hen
e

|f(x)− f(a)| = | 1
x
− 1

a
| = |a− x

ax
| = |x− a|

ax
<

δ

ax
<

δ

a(a− δ)

Now

δ

a(a− δ)
< ε⇔ δ < a2ε− δaε⇔ δ <

a2ε

1 + aε
.

It follows that if we take δ < a2ε then |f(x) − f(a)| < ε, as required to show


ontinuity at a. Sin
e a represents an arbitrary member of (0, 1], it follows that
f(x) = 1

x is 
ontinuous on (0, 1].
Now put ε = 1. Then for any δ > 0 we shall show that we may �nd a ∈ (0, 1]

su
h that there exists x ∈ (0, 1] with |x− a| < δ but |f(x)− f(a)| > 1. We shall

for 
onvenien
e take x < a and so we need x su
h that

1

x
− 1

a
> 1 ⇔ a− x

ax
> 1 ⇔ a− x > ax⇔ x(a+ 1) > a

⇔ x >
a

a+ 1
.

Now sin
e 0 < a
a+1 = 1 − 1

a+1 < 1 we may take x to be any member of the

interval ( a
a+1 , a). (Note that

a
a+1 < a.) Therefore any value of x su
h that

a− δ < x < a
a+1 shows that uniform 
ontinuity fails for ε = 1.

3. Suppose to the 
ontrary that f(x) were not uniformly 
ontinous on [a, b].
Then there would exist some ε > 0 su
h that for any δ > 0 there exist x, y ∈ [a, b]
su
h that |x − y| < δ but |f(x) − f(y)| > ε. Let (δn)n≥1 be any sequen
e of

positive numbers monotoni
ally de
reasing to 0. Then for ea
h δn there exists

xn, yn ∈ [a, b] su
h that |xn − yn| < δn but |f(xn)− f(yn)| > ε. Now sin
e [a, b]
is bounded there exists a subsequen
e xnk

of the xn su
h that xnk
approa
hes

some limit x and sin
e [a, b] is 
losed, x ∈ [a, b]. Sin
e f is 
ontinuous at x
there is a η > 0 su
h that for all y ∈ [a, b] su
h that |x − y| < η, implies
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|f(x) − f(y)| < ε
2 . Now take k su�
iently large so that so that |xnk

− x| < η
and |x− ynk

| < η. Then we have:

|f(xnk
)−f(ynk

)| = |f(xnk
)−f(x)+f(x)−f(ynk

)| ≤ |f(xnk
)−f(x)|+|f(x)−f(ynk

)|

<
ε

2
+
ε

2
= ε,


ontradi
ting our 
hoi
e of xnk
and ynk

. It follows that f is uniformly 
ontinuous

on [a, b].

4. We note that

|f(x)− fn(x)| =
|x|n
1− x

≤ an

1− a
∀ |x| ≤ a.

Given ε > 0, 
hoose N su�
iently large so that

aN

1− a
< ε,

then we have the required inequality |f(x) − fn(x)| < ε for all n ≥ N and all

x ∈ S.

5(a) We have fn(x) = (n+ 1)(n + 2)x(1 − x)n n = 1, 2, · · · , when
ef(0) =
f(1) = 0. For 0 ≤ x ≤ 1 we have 0 ≤ y = 1 − x ≤ 1 also and so |fn(x)| ≤ (n+

1)(n+2)yn. Now for any polynomial p(n) we have for any a > 1, limn→∞
p(n)
an =

0; here we have p(n) = (n+ 1)(n+ 2) and a = 1
y . Hen
e limn→∞ fn(x) = 0, so

that fn → 0 pointwise.

(b)

ˆ 1

0

fn(x) dx = (n+ 1)(n+ 2)

ˆ 1

0

x(1 − x)n dx.

Let Fn =
´ 1

0 x(1 − x)n dx. Integration by parts gives:

Fn = [−x(1− x)n+1

n+ 1
]10 +

ˆ 1

0

(1− x)n+1

n+ 1
dx = 0− 1

(n+ 1)(n+ 2)
[(1− x)n+2]10

=
1

(n+ 1)(n+ 2)
.

It follows that

lim
n→∞

ˆ 1

0

fn(x) dx = lim
n→∞

1 = 1.

On the other hand

ˆ 1

0

lim
n→∞

fn(x) dx =

ˆ 1

0

0 dx = 0.
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We 
on
lude that

lim
n→∞

ˆ 1

0

fn(x) dx = 1 6= 0 =

ˆ 1

0

lim
n→∞

fn(x) dx.

(
) Suppose to the 
ontrary that fn → 0 uniformly. Put ε = 1. Then there

exists N su
h that for all x, y ∈ [0, 1] for any n ≥ N , we have |fn(x)−fn(y)| < 1.
If parti
ular, if we put y = 0 we have 0 ≤ fn(x) < 1. However, if we take n ≥ N
and also put x = 1

n we then have

fn(
1

n
) =

(n+ 1)(n+ 2)(1− 1
n )

n

n
= (1 +

1

n
)(1− 1

n
)n(n+ 2);

lim
n→∞

(1 +
1

n
)(1− 1

n
)n = e−1;

in parti
ular, for all su�
iently large n we have fn(
1
n ) >

n+2
2e and the latter

in
reases without bound as n→ ∞, 
ontrary to our 
hoi
e of N . Hen
e no su
h

N exists and the sequen
e of fun
tions fn does not 
onverge uniformly to its

pointwise limit of the zero fun
tion.

6(a) Let ε > 0. Then there exists N1 and N2 su
h that |fn(x) − f(x)| < ε
for all n ≥ N1 and |gn(x) − g(x)| < ε for all n ≥ N2. Put N = max(N1, N2).
Then both the previous inequalities hold for all n ≥ N . Then for n ≥ N we

have:

|afn(x) + bgn(x)− (af(x) + bg(x))| = |a(fn(x)− f(x)) + b(gn(x) − g(x))|

≤ |a||fn(x) − f(x)|+ |b||gn(x) − g(x)| ≤ |a|ε+ |b|ε = (|a|+ |b|)ε;
and sin
e this is a �xed multiple of ε, we may 
onn
lude that afn+bgn → af+bg
uniformly on S.

(b) Sin
e |f(x)| and |g(x)| are both bounded above for all n and for all

x ∈ S, there exists a 
ommon positive boundM say for both. Take ε > 1 in the

de�nition of uniform 
onvergen
e, as in part (a) take N su
h that for all n ≥ N
we have |fn(x) − f(x)| < 1 and |gn(x) − g(x)| < 1, from whi
h it follows that

|fn(x)| < M +1 and |gn(x)| < M +1. For any ε > 0 we may take N1 ≥ N su
h

that for all n ≥ N1, |fn(x)− f(x)| < ε, |gn(x) − g(x)| < ε
2M+1 . Then

|fn(x)gn(x)− f(x)g(x)| = |fn(x)gn(x)− fn(x)g(x) + fn(x)g(x) − f(x)g(x)|

≤ |fn(x)(gn(x)−g(x))|+|g(x)(fn(x)−f(x)| ≤ |fn(x)||gn(x)−g(x)|+|g(x)||fn(x)−f(x)|
< (M + 1)

ε

2M + 1
+M

ε

2M + 1
= ε.

This establishes that fngn → fg uniformly on S.

7(a) Sin
e |f(x)| − f(x) ≥ 0 it follows that

ˆ b

a

(|f(x)| − f(x)|) dx ≥ 0
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⇒
ˆ b

a

|f(x)| dx ≥
ˆ b

a

f(x) dx.

Repla
ing f(x) by −f(x) and noting that | − f(x)| = |f(x)| we also see that

´ b

a |f(x)| dx ≥
´ b

a −f(x) dx. We therefore 
on
lude that:

ˆ b

a

|f(x)| dx ≥ |
ˆ b

a

f(x) dx|.

(b) Take n ≥ N , where N is 
hosen so that for all su
h n, |fn(x) − f(x)| <
ε

b−a . Then we have from part (a) that:

|
ˆ b

a

fn(x) dx −
ˆ b

a

f(x) dx| = |
ˆ b

a

(fn(x)− f(x)) dx|

≤
ˆ b

a

|fn(x)− f(x)| dx ≤
ˆ b

a

ε

b − a
dx = (b− a)

ε

b− a
= ε.

Sin
e ε > 0 was arbitrary, it follows that

lim
n→∞

|
ˆ b

a

fn(x) −
ˆ b

a

f(x) dx| = 0

⇔ lim
n→∞

ˆ b

a

fn(x) dx =

ˆ b

a

lim
n→∞

fn(x) dx.

8. Let sn(x) denote
∑n

k=0 uk(x). Then by de�nition,
∑∞

k=0 un(x) = limn→∞ sn(x).
We may write this as limn→∞ sn(x) = s(x) in whi
h 
ase to say that (sn(x))n≥0


onverges uniformly on S means that for any ε > 0 there exists N su
h that for

all n ≥ N,

|s(x)− sn(x)| = |
∞
∑

k=n+1

uk(x)| < ε ∀x ∈ S.

If this is the 
ase then by Question 5 we have:

lim
n→∞

ˆ b

a

n
∑

k=0

uk(x) dx =

ˆ b

a

lim
n→∞

n
∑

k=0

uk(x) dx (9)

Now, by the linearity of the integral we have:

ˆ b

a

n
∑

k=0

uk(x) dx =

n
∑

k=0

ˆ b

a

uk(x) dx

⇒ lim
n→∞

ˆ b

a

n
∑

k=0

uk(x) dx = lim
n→∞

n
∑

k=0

ˆ b

a

uk(x) dx =

∞
∑

k=0

ˆ b

a

uk(x) dx.
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Hen
e (11) be
omes the required equation:

∞
∑

k=0

ˆ b

a

uk(x) dx =

ˆ b

a

∞
∑

k=0

uk(x) dx.

9. By applying Question 7(b) we may 
hange the order of the limiting

operations and then by the Fundamental theorem of 
al
ulus we obtain:

ˆ x

a

g(t) dt =

ˆ x

a

lim
n→∞

f ′
n(x) dx = lim

n→∞

ˆ x

a

f ′
n(t) dt = lim

n→∞
[fn(t)]

t=x
a

= lim
n→∞

[fn(x)− fn(a)] = f(x)− f(a)

⇒ f ′(x) = g(x) = lim
n→∞

f ′
n(x) ∀x ∈ [a, b].

10. This is a spe
ial 
ase of the result of Question 9 where we take fn(x) =
∑n

k=0 uk(x).

Problem Set 8

1. The sequen
e of fun
tions under 
onsideration here is the sequen
e of

partial sums sn(x) =
∑n

k=0 uk(x). For any x ∈ S we have:

∞
∑

k=0

|uk(x)| ≤
∞
∑

k=0

vk <∞.

Hen
e the series is absolutely 
onvergent, and so the series

∑∞
k=0 uk(x) 
onverges

pointwise to some limiting fun
tion u(x) for x ∈ S. What is more, given any

ε > 0 we may take N su
h that for all n ≥ N :

∞
∑

k=n+1

vk < ε.

Hen
e we have

|u(x)− sn(x)| = |
∞
∑

k=n+1

uk(x)| ≤
∞
∑

k=n+1

|uk(x)| ≤
∞
∑

k=n+1

vk < ε,

thus showing that the partial sums sn(x) 
onverge uniformly to the limiting

sum u(x) on S.
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2(a) Applying the ratio test:

|uk+1

uk
| = a2(k+1)+1k!

a2k+1(k + 1)!
=

a2

k + 1
→ 0 as k → ∞,

so the series

∑∞
k=0

a2k+1

k! 
onverges.

(b) Putting x = −t2 in the exponential series (whi
h 
onverges for all values

of x) we have

e−t2 =

∞
∑

k=0

(−1)kt2k

k!
.

Hen
e

ˆ x

0

e−t2 dt =

ˆ x

0

∞
∑

k=0

(−1)kt2k

k!
dt.

If we inter
hange the taking of the two limits on the right hand side we are led

to required 
on
lusion:

=

∞
∑

k=0

(−1)k

k!

ˆ x

0

t2k dt =

∞
∑

k=0

(−1)k

(2k + 1)k!
[t2k+1]x0

=
∞
∑

k=0

(−1)kx2k+1

(2k + 1)k!
.

The ex
hange of the order of summation and integration is justi�ed using the

result of Question 1 providing we show that the series is uniformly 
onvergent,

and we do this using the Weierstrasss M-test as follows. Here we have for any

x su
h that |x| ≤ a that

|uk(x)| =
x2k+1

(2k + 1)k!
≤ a2k+1

k!
;

if we put vk = a2k+1

k! we have that by (a) that

∑∞
k=0 vk 
onverges. Therefore,

by the M-test, the series

∑∞
k=0

(−1)kx2k+1

(2k+1)k! 
onverges uniformly on every �nite

interval of the real line. In parti
ular, taking a > x justi�es the ex
hange of

integral and summation used above.

3. Sin
e

∑∞
n=0 anr

n

onverges it follows that |anrn| → 0 as n → ∞ so that

the sequen
e |anrn| < M for some upper bound M . Then for any x su
h that

|x| < |r| put |xr | = ρ < 1. Then

|anxn| = |anrn||
x

r
|n < Mρn.

Now

∑∞
n=0Mρn 
onverges (to the limit

M
1−ρ ) so it follows from the 
omparison

test that

∑∞
n=0 |anxn| 
onverges, whi
h is to say our original series 
onverges

absolutely for x ∈ (−r, r).

27



4. Certainly f(0) = a0 in all 
ases. Suppose that f(r) 
onverges for some

r 6= 0. By Question 1 we have that f(x) 
onverges for all x su
h that |x| < |r|.
Consider the non-empty set C = {r : f(x) 
onverges for all x : |x| < r} . If

C has no upper bound then for any x ≥ 0 we 
ould 
hoose r > c su
h that

x ∈ C. It would then follow that C = R+
and sin
e absolute 
onvergen
e

implies 
onvergen
e, it would follow that f(x) were de�ned for all x ∈ R. In

this 
ase we say that R = ∞.

Otherwise we may let R be the least upper bound of the set C. Then

R ≥ |r| > 0. Take any x0 ∈ (0, R), but suppose that x0 6∈ C. Then by de�nition

of R it follows that x0 is not an upper bound of C so there exists r ∈ C su
h that

x0 < r; moreover r ≤ R as R is an upper bound of C. But then by Question 1

we have x0 ∈ C, 
ontradi
ting our 
hoi
e of x0. Hen
e no su
h x0 exists and so

f(x) 
onverges for all x ∈ (0, R). If −R < x < 0 then −x ∈ C, when
e it follows
that f(x) also 
onverges (again as asbolute 
onvergen
e implies 
onvergen
e).

Therefore f(x) 
onverges for all x ∈ (−R,R).
On the other hand, for any x0 su
h that |x0| > R we have f(x0) does not


onverge for if f(x0) were de�ned, then by Question 1, the same would be true of

any y ∈ (R, |x0|), whereupon |x0| ∈ C, 
ontrary to the de�nition of R. Therefore
the series diverges for all x > R or x < −R.

5. Let

r = lim
n→∞

|an+1x
n+1

anxn
| = |x| lim

n→∞
|an+1

an
|.

By the ratio test the series f(x) 
onverges if 0 ≤ r < 1, whi
h is to say that

|x|
R < 1; that is if −R < x < R, and f(x) diverges if r > 1, whi
h is to say that

|x| > R. Therefore R is indeed the radius of 
onvergen
e of f(x).

6. We have from Question 2 that f(x) 
onverges absolutely on (−R,R) and
so does the same on [−r, r]. Choose any number x with |x| < r. Then

|anxn| = |an||x|n < |an|rn = |anrn|.

Put Mn = |anrn| so then

∑∞
n=0Mn < ∞. We then have by the Weierstrass

M-test that f(x) 
onverges uniformly on [−r, r].

7. We are 
onsidering

f(x) =

∞
∑

n=0

an(x− a)n.

Substitute y = x − a so that we have a series 
entred at 0, that being g(y) =
∑∞

n=0 any
n
. By Question 6 the series is uniformly 
onvergent on (−r, r) for

any 0 ≤ r < R, where R is the radius of 
onvergen
e of g(y). Therefore f(x)

onverges uniformly on ea
h interval of the form

−r < x− a < r ⇔ −r + a < x < r + a.
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8. Suppose that f(x) =
∑∞

n=0 anx
n

onverges for all 0 ≤ x < r. Fix an x0

with 0 < |x0| < r, and 
hoose x su
h that |x| < |x0| < r. The series
∑∞

n=0 anx
n
0


onverges and therefore limn→∞ anx
n
0 = 0. We 
an thus �nd a number bound

M su
h that |anxn0 | < M for all n. We now write

nanx
n−1 = nanx

n−1x
n
0

xn0
=
nan
x0

xn0
( x

x0

)n−1
.

Putting ρ = x
x0
< 1 we have

|nanxn−1| = |nan
x0

xn0
( x

x0

)n−1| = |nan
x0

xn0 ρ
n−1| ≤M

n

|x0|
ρn−1.

Now

∑∞
n=0 nρ

n−1

onverges by the ratio test as the asso
iated quotient limit is:

lim
n→∞

| (n+ 1)ρn

nρn−1
| = lim

n→∞
(1 +

1

n
)ρ = ρ < 1.

Therefore, by the M-test, the original series 
onverges uniformly for all x su
h

that |x| < |x0|. Sin
e x0 was an arbitrary number sastisfying |x0| < r, the series

onverges uniformly for |x| < R. It follows that the radius of 
onvergen
e R0

of the series of derivatives satis�es R0 > R, the radius of 
onvergen
e of our

original series. If R = ∞, then R0 = ∞.

If R0 > R we may 
hoose r0 > R and x su
h that R < |x| < r0. Then, eval-
uated at x, the series of derivatives is absolutely 
onvergent, while the original

series diverges. But, then for all n su
h that | xn | < 1 we have:

|anxn| = |nanxn−1||x
n
| ≤ |nanxn−1|.

This means that the original series 
onverges upon substituting this value x,
whi
h is false. Therefore we may 
on
lude that R = R0, as required.

Comment From whi
h it follows that a series that results by term-by-term

integration also has the same radius of 
onvergen
e as the original series.

9(a)

1

1 + x
=

∞
∑

n=0

(−1)nxn, ∀ |x| < 1.

Integrating both sides now gives

ˆ

dx

1 + x
=

∞
∑

n=0

ˆ

(−1)nxn dx

⇒ log(1+x) =

∞
∑

n=0

(−1)n
xn+1

n+ 1
=

∞
∑

n=1

(−1)n+1x
n

n
= x−x

2

2
+
x3

3
−x

4

4
+· · · , ∀ |x| < 1;

although we should not negle
t the integration 
onstant: however both sides

agree when x = 0 so the integration 
onstant is 0.
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(b) Repla
ing x by −x (noting that |x| < 1 if and only if | − x| < 1) we
obtain:

− log(1 − x) = x+
x2

2
+
x3

3
+
x4

4
+ · · · .

10. We have

f(x) =
x2

2
− x3

3 · 2 +
x4

4 · 3 − x5

5 · 4 + · · · |x| < 1

f(x) =

∞
∑

n=2

(−1)nxn

n(n− 1)
.

We apply the ratio test:

|an+1

an
| = | (−1)n+1n(n− 1)

(−1)nn(n+ 1)
| = n− 1

n+ 1
= 1− 2

n+ 1
→ 1.

Hen
e the radius of 
onvergen
e of f(x) is 1. Di�erentiating term-by-term gives:

f ′(x) =
∞
∑

n=2

(−1)nxn−1

n− 1
=

∞
∑

n=1

(−1)n+1xn

n
= log(1 + x).

Hen
e

f(x) =

ˆ

log(1 + x) dx.

We integrate by parts with u = log(1+x), dv = dx so that du = dx
1+x and v = x

to give

f(x) = x log(1 + x)−
ˆ

x

1 + x
dx = x log(1 + x)−

ˆ

(1− 1

1 + x
) dx

= x log(1 + x)− x+ log(1 + x) + c

⇒ f(x) = (1 + x) log(1 + x)− x+ c.

Put x = 0 we get f(0) = 0 = 0 + c so that c = 0 and indeed

f(x) = (1 + x) log(1 + x) − x

Problem Set 9

1. Sin
e f is 
ontinuous on [a, b] it takes on both a minimum m and a

maximum value M on [a, b]. If these values o

ur at the endpoints a and b,
then sin
e f(a) = f(b), it follows that f is a 
onstant fun
tion and we may take
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c to be any member of (a, b) in order to satisfy the 
on
lusion of the theorem.

Otherwise one of these extrema, let us say M o

urs at some point c ∈ (a, b).
Then we have for h > 0:

f(c+ h)− f(c)

h
=
f(c+ h)−M

h
≤ 0

⇒ f ′(c) = lim
h→0+

f(c+ h)−M

h
≤ 0 (10)

For h < 0 the 
al
ulation is the same ex
ept for the 
hange of sign in the

denominator giving:

f ′(c) = lim
h→0−

f(c+ h)−M

h
≥ 0 (11)

It follows from (12) and (13) that f ′(c) = 0, as required.
Comment A

ording to Wikipedia the Indian mathemati
ian Bh	askara II

(1114�1185) is 
redited with knowledge of Rolle's theorem, although the theo-

rem is named after Mi
hel Rolle. Rolle's 1691 proof 
overed only the 
ase of

polynomial fun
tions. His proof did not use the methods of di�erential 
al
u-

lus, whi
h at that point in his life he 
onsidered to be falla
ious. The theorem

was �rst proved by Cau
hy in 1823 as a 
orollary of a proof of the mean value

theorem.

2. Let [a, b] = [−1, 1] and f(x) = |x|. Then f(x) is 
ontinuous on [a, b] with
f ′(x) = −1 if x ∈ [−1, 0), f ′(x) = 1 if x ∈ (0, 1] but f ′(0) is not de�ned (as the


orresponding limit is ±1 a

ording as h → 0− or h → 0+.) Therefore Rolle's

theorem does not generally hold if f(x) is not di�erentiable at some point in

(a, b).

3(a) De�ne g(x) = f(x) − rx. Put g(a) = f(a) − ra = g(b) = f(b) − rb.
Solving for r then gives r(b − a) = f(b)− f(a) so that

r =
f(b)− f(a)

b− a
.

(b) Clearly g(x) is also 
ontinuous on [a, b] and di�erentiable on (a, b) and
what is more, with the 
hoi
e of the 
onstant r as in part (a), g(x) satis�es

g(a) = g(b) and so Rolle's theorem applies to g(x). Hen
e there exists c ∈ (a, b)
for whi
h g′(c) = 0, whi
h is to say thatf ′(c)− r = 0 when
e

f ′(c) =
f(b)− f(a)

b− a
.

4(a) We have P (a) = f(a) so the 
laim holds for k = 0. When di�erentiating

Pn(x) k times, (k ≤ n) all terms involving (x − a)m with m ≤ k − 1 vanish.
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The kth derivative of

f(k)(a)
k! (x− a)k is the 
onstant term f (k)(a) while the kth

derivative of powers of x − a higher than k ea
h takes the value 0 under the

substitution x 7→ a. Therefore P
(k)
n (a) = f (k)(a) for all k = 0, 1, · · · , n.

(b)

F (x) = f(b)− f(x)− f ′(x)(b−x)− f (2)(x)

2!
(b−x)2 −· · ·− f (n−1)(x)

(n− 1)!
(b−x)n−1;

(12)

the 
ontribution to F ′(x) from the entry − f(k)(x)
k! (b − x)k is

−f
(k+1)(x)

k!
(b − x)k +

f (k)(x)

(k − 1)!
(b − x)k−1;

the se
ond term here 
an
els the same term with a negative sign in the previous

entry. It follows that the full expression for F ′(x) teles
opes down with the only

remaining 
ontribution being − f(n)(x)
(n−1)! (b − x)n−1

, as required.

(
)

g(x) = F (x)−
(b− x

b− a

)n

F (a);


learly g(b) = F (b) = 0 and g(a) = F (a)−F (a) = 0. Moreover, sin
e F (x) may

be di�erentiated on (a, b) at least on
e, the same is true of g(x). Hen
e we may

apply Rolle's theorem to g(x) to 
on
lude that there exists c ∈ (a, b) su
h that

g′(c) = 0, whi
h is to say that

F ′(c) + n
(b − c)n−1

(b− a)n
F (a) = 0

⇒ − f (n)(c)

(n− 1)!
(b − c)n−1 = −n(b− c)n−1

(b− a)n
F (a)

⇒ F (a) =
f (n)(c)(b − a)n

n!

We may now put x = a in (14) to obtain Taylor's theorem:

f(b) = f(a)+f ′(a)+
f (2)(a)

2!
(b−a)2+· · ·+ f (n−1)(a)

(n− 1)!
(b−a)n−1+

f (n)(c)(b − a)n

n!
.

5. Put f(x) = cosx so that f ′(x) = − sinx, f ′′(x) = − cosx, f ′′′(x) = sinx.
We 
onsider the Taylor series for f(x) about a = 0; f(0) = 1, f ′(0) = 0,
f ′′(0) = −1. By Taylor's theorem there exist c between 0 and x su
h that

cosx = f(0) + f ′(0)x+
f ′′(0)x2

2!
+
f ′′′(c)x3

3!
= 1− 1

2
x2 − (sin c)x3

6
.

For |x| ≤ π observe that (sin c)x3 ≥ 0. On the other hand if |x| ≥ π then

1− 1
2x

2 < −3 < cosx. Therefore for all values of x we have that cosx ≤ 1− 1
2x

2
.
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6(a) Apply Taylor's theorem. In this 
ase the fa
t that f (k)(x0) = 0 for all

k = 1, 2, · · · , n − 1 means all the 
orresponding terms vanish and we are left

with

f(x) = f(x0) +
f (n)(c)

n!
(x− x0)

n
(13)

for some c in the open interval with endpoints x0 and x.
(b) Suppose now that f (n)(x0) > 0 and n is even, so that (x − x0)

n ≥ 0.
Sin
e f (n)(x) is 
ontinuous at x0 there is an open interval I 
ontaining x0 su
h
that f (n)(x) > 0 for all x ∈ I. By Taylor's theorem, the equation (15) holds for

some c ∈ I from whi
h it follows that f(x) ≥ f(x0) for all x ∈ I so that x0 is a

lo
al minimum of f(x).

7. We take f(x) = log(1 + x), f ′(x) = (1 + x)−1, f ′′(x) = −(1 + x)−2
,

f (3)(x) = 2(1+x)−3, · · · , f (n)(x) = (−1)n−1(n−1)!(1+x)−n
. We apply Taylor's

theorem with a = 0 in whi
h 
ase f(a) = 0 and

f (n)(a)

n!
=

(−1)n−1

n
;

hen
e by Taylor's theorem, for any x > 0 there exists c ∈ (1, 1 + x) su
h that

log(1 + x) = x− 1

2
x2 +

1

3
x3 − · · ·+ (−1)n−1

n
xn +

(−1)n

(n+ 1)(1 + c)n+1
xn+1.

The �nal remainder term is positive if n is even and negative if n is odd. There-

fore we obtain:

x− 1

2
x2+

1

3
x3−· · ·− 1

2k
x2k < log(1+x) < x− 1

2
x2+

1

3
x3−· · ·+ 1

2k + 1
x2k+1.

8(a) We work with the 
ase of g(x) ≥ 0, with the g(x) ≤ 0 
ase very similar.

By the Extreme value theorem there exists bounds m and M for f(x) su
h that

m ≤ f(x) ≤M for all x ∈ [a, b] and f attains these bounds (whi
h is important

in part (b)). Hen
e it follows that

m

ˆ b

a

g(x) dx ≤
ˆ b

a

f(x)g(x) dx ≤M

ˆ b

a

g(x) dx. (14)

If

´ b

a
g(x) dx = 0 then it follows from (16) that

´ b

a
f(x)g(x) dx = 0 also and we

may take any c ∈ [a, b] to satisfy the 
on
lusion of the theorem. Otherwise we

may divide to obtain:

m ≤
´ b

a
f(x)g(x) dx
´ b

a g(x) dx
≤M.

(b) Sin
e f(x) attains the bounds of m and M in the interval [a, b] it follows
by the Intemediate value theorem that there exists c ∈ [a, b] su
h that f(c) =
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´

b

a
f(x)g(x) dx
´

b

a
g(x) dx

, when
e we gain the required 
on
lusion that:

ˆ b

a

f(x)g(x) dx = f(c)

ˆ b

a

g(x) dx.

9(a)

A = φ(x + h)− φ(x), where φ(x) = f(x, y + k)− f(x, y).

Sin
e φ is di�erentiable with respe
t to x (keeping k and y �xed) we may invoke

the MVT on the interval [a, a+ h] to 
on
lude that

A

(x+ h)− x
= φ′(x + θh)

⇒ A = hφ′(x + θh)

for some 0 < θ < 1.
(b) Now

φ′(x) = fx(x, y + k)− fx(x, y),

and sin
e the mixed partial derivative fyx exists we may apply the MVT to the

fun
tion de�ned by the expression on the right as a fun
tion of y to 
on
lude,

again by the MVT , that

A

h
=
fx(x+ θh, y + k)− fx(x+ θh, y)

(y + k)− y
= fyx(x+ θh, y + θ′k)

⇒ A = hkfyx(x+ θh, y + θ′k), (15)

where 0 < θ, θ′ < 1.
(
) By inter
hanging the roles of x and y in the the previous argument,

(beginning with the fun
tion ψ(y) = f(x + h, y) − f(x, y)), we may likewise


on
lude that

A = hkfxy(x + θ1h, y + θ′1k) (16)

Equation the two expressions for A from (17) and (18) we have

A = fyx(x+ θh, y + θ′k) = fxy(x+ θ1h, y + θ′1k);

we now let h, k → 0, when
e by the assumed 
ontinuity of fyx and fxy at (x, y)
we 
on
lude that fyx(x, y) = fxy(x, y).

Comment Many important theorems in 
al
ulus 
ome down to equality being

maintained when the order of two limiting operations is reversed. The proofs

often depend on the Mean value theorem. Equality of mixed partial derivatives

is a key example as it is assumed in many of the big theorems of Ve
tor analysis

su
h as Green's theorem and Stokes Theorem in its various forms.
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10(a)

f(x, y) = xy
x2 − y2

x2 + y2

fx(0, y) = lim
x→0

f(x, y)− f(0, y)

x
= lim

x→0
y
x2 − y2

x2 + y2
= −y;

fy(x, 0) = lim
y→0

f(x, y)− f(x, 0)

y
= lim

y→0
x
x2 − y2

x2 + y2
= x.

(b) Consequently fxy(x, 0) = 1 and fyx(0, y) = −1. In parti
ular fxy(0, 0) =
1 6= −1 = fyx(0, 0).

Problem Set 10

1. We have f(x) =
∑∞

n=0 anx
n
. Sin
e f(x) may be di�erentiated term-by-

term and the resulting series have the same radius of 
onvergen
e it follows that

the 
onstant term of the series expansion of f (n)(x) that results is n!an. Putting
x = 0 now gives

an =
f (n)(0)

n!
∀n = 0, 1, 2, · · · .

Comment We 
on
lude that a smooth fun
tion 
annot have two di�erent

series expansions about the same 
entre. Hen
e if we arrive at the series in

two di�erent ways, we may use equating of 
oe�
ients to assist in the deter-

mination of those 
oe�
ients. This is the basis of justi�
ation for �nding the

series for fun
tions that result from several series 
ombined using arithmeti


operations (linear 
ombinations, multipli
ation and division) and 
omposition

(substitution). However, a smooth fun
tion does not ne
essarily have a 
on-

vergent Taylor series. For example, it may be shown that f (k)(0) = 0 for all

k ≥ 0 for the fun
tion de�ned by the rule f(x) = e−
1
x2

(with f(0) = 0). The
resulting Taylor series is shared with the zero fun
tion and 
learly 
onverges

to the latter and not the former. Despite being `
ompletely �at' at the origin,

this fun
tion manages to pi
k itself up o� the real line away from zero. This

ba�ing behaviour is partly explained when we extend the fun
tion to a 
omplex

variable as there we �nd in�nitely many singularities in every neighbourhood of

the origin, although none on the real line itself.

2. R1(x) = f(x)−P1(x) = f(x)− f(a)− f ′(a)(x− a). We 
he
k this agrees

with the integral, whi
h for n = 1 is:

I1(x) =
1

1!

ˆ x

a

(x− t)f (2)(t) dt.
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Put u = x− t and dv = f (2)(t) dt,so du = −dt and v = f ′(t):

I1(x) = (x− t)f ′(t)]t=x
t=a +

ˆ x

a

f ′(t) dt

= 0− (x− a)f ′(a) + f(x)− f(a) = f(x)− f(a)− f ′(a)(x − a).

3. Now we assume indu
tively that for some n = k we have:

Rk(x) =
1

k!

ˆ x

a

(x− t)kf (k+1)(t) dt

and 
onsider

Ik+1 =
1

(k + 1)!

ˆ x

a

(x− t)k+1f (k+2)(t) dt.

Put u = (x − t)k+1
so du = −(k + 1)(x − t)k dt and dv = f (k+2)(t) so that

v = f (k+1)(t). We obtain upon integrating by parts in this way:

Ik+1 =
1

(k + 1)!
(x− t)k+1f (k+1)(t)]t=x

t=a +
k + 1

(k + 1)!

ˆ x

a

(x − t)kf (k+1)(t) dt

= 0− 1

(k + 1)!
(x− a)k+1f (k+1)(a) +

1

k!

ˆ x

a

(x− t)kf (k+1)(t) dt

= −f
(k+1)(a)

(k + 1)!
(x− a)k+1 +Rk(x)

= f(x)− Pk(x)−
f (k+1)(a)

(k + 1)!
(x− a)k+1

= f(x)− Pk+1(x) = Rk+1(x).

4. With a = 0 the remainder term has the form:

Rn(x) =
1

n!

ˆ x

0

(x− t)nf (n+1)(t) dt;

for x > 0 we have

|Rn(x)| ≤
1

n!

ˆ x

0

(x− t)n|f (n+1)(t)| dt.

In the 
ase of f(x) = sinx we have that −1 ≤ f (n)(t) ≤ 1 so this simpli�es to

|Rn(x)| ≤
1

n!

ˆ x

0

(x− t)n dt =
1

n!

xn+1

(n+ 1)
=

xn+1

(n+ 1)!
.

For x < 0 we have

Rn(x) = − 1

n!

ˆ 0

x

|x− t|n|f (n+1)(t)| dt
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⇒ |Rn(x)| ≤
1

n!

ˆ 0

x

(t− x)n dt =
(−x)n+1

(n+ 1)!
.

Therefore in either 
ase we may 
on
lude that

|Rn(x)| ≤
|x|n+1

(n+ 1)!
→ 0 as n→ ∞.

We 
on
lude that sinx is equal to the sum of its M
Laurin series for all x ∈ R.

5(a) f(x) = x
1
3
, f ′(x) = 1

3x
− 2

3 ,f ′′(x) = − 2
9x

− 5
3
, f (3)(x) = 10

27x
− 8

3
; f(8) = 2,

f ′(8) = 1
12 , f

′′(8) = − 1
144 . Hen
e we obtain:

P2(x) = f(8) +
f ′(8)

1!
(x− 8) +

f ′′(8)

2!
(x− 8)2

= 2 +
1

12
(x− 8)− 1

288
(x − 8)2.

(b) Using the Lagrange form of the remainder we have that for some c with
7 ≤ c ≤ 8:

R2(7) =
f (3)(c)

3!
(7− 8)2 =

1

6
· 10
27
c−

8
3 =

5

81c
8
3

.

Sin
e we are looking for an (upper) bound on |R2(x)| we maximize this quantity

by taking c to be as small as possible, so we 
on
lude that

|R2(7)| ≤
5

81 · 7 8
3

< 0 · 0004.

6(a) By repla
ing x by −x2 in the exponential series we obtain:

e−x2

= 1− x2 +
x4

2!
− x6

3!
+
x8

4!
+ · · ·+ (−1)nx2n

n!
+ · · · .

(b)

ˆ 1

0

e−x2

dx ≈
ˆ 1

0

(1−x2+ x4

2
) dx = [x− x3

3
+
x5

10
]10 = 1− 1

3
+

1

10
=

23

30
≈ 0 ·766.

Sin
e the series has alternating signs and the terms approa
h 0monotoni
ally

(for 0 < x < 1), the remainder is bounded by the magnitude of the next term

and the produ
t of the length of the interval of integration (1 in this 
ase).

Sin
e the next term is negative, our answer is an over-estimate and the error

in the approximation is no more than the maximum of the next term in the

integration, whi
h is

17

7 · 3! =
1

42
≈ 0 · 024.
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7.

x2 + y2 = y, y(0) = 1

⇒ 2x+ 2yy′ = y′ ⇒ y′(1 − 2y) = 2x⇒ y′ =
2x

1− 2y

⇒ y′(0) =
0

1− 2
= 0;

y′′ =
2(1− 2y) + 2yy′

(1− 2y)2
⇒ y′′(0) =

2(1− 2) + 2(1)(0)

(1− 2)2
=

−2

(−1)2
= −2.

y(x) = y(0) + y′(0)x+
y′′(0)

2!
x2 + · · · = 1 + 0 +

−2

2
x2 + · · ·

∴ y(x) = 1− x2 + · · · .

8.

f(x, y) =

∞
∑

m,n=0

am,n(x − a)m(y − b)n

⇒ ∂fm+n

∂xm∂yn
= m!n!am,n + non-
onstant terms in powers of x and y

⇒ ∂fm+n

∂mx∂ny
|(x,y)=(a,b) = m!n!am,n

∴ am,n =
1

m!n!

∂fm+n

∂mx∂ny
|(x,y)=(a,b) (17)

9(a) Using subs
ript notation for partial derivatives, the linear approximat-

ing polynomial in x and y involves all terms as in (19) with m+ n ≤ 1 giving

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b),

whi
h is the equation of the tangent plane to the surfa
e z = f(x, y) at the

point (a, b).
(b) As in (a) but now we pro
eed with 
onstraint m+ n ≤ 2.

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2
fxx(a, b)(x − a)2 +

1

2
fyy(a, b)(y − b)2 + fxy(a, b)(x− a)(y − b).

10. f(x, y) = (1− x− y)−1
,

∂fm+n

∂mx∂ny
(x, y) = (m+ n)!(1− x− y)−(m+n+1)
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⇒ ∂fm+n

∂mx∂ny
|(x,y)=(0,0) = (m+ n)!

∴

∞
∑

m=0

∞
∑

n=0

(m+ n)!

m!n!
xmyn

represents the Taylor series expanded about the origin for (1− x− y)−1
.
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