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Professor Peter M. Higgins
November 22, 2018

The purpose of real analysis is to provide a rigorous foundation for the
techniques of calculus, which are based on the notion of limit. The exercises
assume familiarity with the basic ideas of convergence of a sequence of real
numbers and the definition of continuity of a function in terms of the standard
symbols ¢ > 0 and § > 0 along with the definition of derivative. We also assume
the Fundamental theorem of Calculus and take for granted the integrability of
any continuous function. The known nature of the real numbers is assumed,
including the existence of the greatest lower bound of a set bounded below
and similarly the least upper bound of a set bounded above. Set 1 establishes
the elementary properties of convergent sequences of real numbers. Set 2 is
concerned with certain limits that are especially important, particularly those
involving the number e. Set 3 introduces results and examples on continuity
of a function. Throughout we will work mainly with one variable mappings
although we occasionally expand to matters of several variables. Sets 4 and 5
concern series. We introduce and work with the standard tests for convergence
and examples include the binomial series for non-integral powers. We draw on
all this knowledge in the second part of the module.

In Set 6 we study continuous functions on closed intervals (the prototype
of so-called compact sets, which we shall meet in Level 3 modules in a more
general setting). We prove the Intermediate value and Extreme value theorems
for continuous functions on a closed interval and illustrate the ideas involved
with relevant examples. Set 7 introduces the concept of uniform continuity for
individual and for sequences of functions. This condition is key in justifying
many of the techniques of calculus that involve the interchange of limiting op-
erations, such as term-by-term differentiation and integration of series. In Set
8 we study power series where the uniform convergence of the series within its
radius of convergence is a crucial property in calculations involving power series
representation of functions of interest. In particular the Weierstrass M-test is a
tool we first meet here. Set 9 introduces and proves another fundamental result
of calculus, that being the Mean value theorem in various forms and we use the
MVT to prove theorems often used in calculus including Equality of mized par-
tial derivates. Set 9 and all of Set 10 are about Taylor series and we introduce
a study of the Remainder term both in the Lagrange form, based on the Mean
value theorem, and the Integral form. We close with some practical calculations
including a brief visit into the realm of Taylor series of several variables.



Solutions and Comments for the Problems

Problem Set 1

1. Suppose to the contrary that M < A. Put e = A— M > 0. Since a,, - A
there exists N such that for all n > N,

|A—an| <e

=A—-a, <|A—ay|<A-M
= a, > M,

a contradiction, and so lim,,_, o, a,, < M, the given upper bound of the sequence.

2. Given ¢ > 0 taken Np, N such that |a, — A| < ¢ for all n > N; and
|b, — B| < € for all n > Ny. Put N = max{Ny, No} . Then for all n > N we
have by the triangle inequality:

[Aan + pbp — (AA + uB)| = [Man — A) + p(bn — B)|

< |AMlan — Al + [pl|bn — Bl < |Me + |pule = e(|A] + [u])

and since || 4 |u| is a fixed constant, it follows that (Aa, + pb,) = AA + uB.

Comment We can end the argument with e rather than a multiple of ¢ if we
wish by taking |a, — A| < \/\ITEW\ etc. (while also dealing with the trivial case
where A = g = 0). It is a matter of taste whether or not to introduce such a

contrivance in order to satisfy the formal definition of convergence.

3. (a) Let A be the limit of the sequence (ay),>1 and put € = 1. Then there
exists N such that for all n > N we have |a,, — A| < 1. Then for any n > N we
have

|an| = lan — A+ A| < lan — A[+[A] < |A[+1 (1)

Next let B = max{|a,|:n < N —1}. Then for all n > 1 we have
lan| < M =: max{B,1+ |A|},

and so (an)n>1 is bounded.

Comment The conclusion may be written as —M < a, < M so that the
sequence itself has both a lower and an upper bound.

(b) Any convergent sequence is bounded above and below by 3(a). Con-
versely, suppose that (a,)n>1 is a monotonic increasing sequence that is bounded
above. (The argument in the decreasing case is the same except for the direc-
tion of the inequalities involved.) Since (a,)n>1 is bounded above, the sequence
has a least upper bound (also known as the supremum) A and we claim that



an, — A. Too see this, let ¢ > 0 be given. Then there exists N such that
A —¢e < any < A for if there were no such N, then A — ¢ would be an upper
bound of the sequence that was less than the least upper bound, which is a
contradiction. Then, since (a,),>1 is increasing in n, it follows that for any
n > N we have A —e¢ < ay < a, < A and in particular |A — a,| < € for all
n > N. Therefore it follows that a,, — A, as required.

(c) Let € > 0 be given and take N such that for all n > N we have |a, — A| <
€. Then by the Triangle inequality we have

llan| = |All < an — A <&,

whence it follows that |a,| — |A].
(d) The converse is false: for example let a,, = (—1)™. Then |a,| = 1 so that
(lan])n>1 — 1 but the sequence (ay),>1 has no limit at all.

4. By Question 3 there exists a common positive upper bound M for the
convergent sequences (ay)n>1 and (b, ),>1. Similarly, for any given ¢ > 0, there
is a common index N such that for all n > N we have |a, — A| < ¢ and
|b, — B| < . Then

\anbn — AB| = |anby — Aby, + Ab, — AB| < |(an — A)by + A(by — B)|
< lan — Allba] + [Allb, — B| < eM + |Ale = (M +]A)),

which is a constant multiple of € and so we conclude that a,b, — AB.

5. It is enough to prove this in the case where a,, is the constant sequence
1, for given this and Question 3 we have

a 1 1 A
n _ 0L LA
b, "y T BT B
Now 1 1. B-—b
P T = @

Choose N such that for all n > N, |b, — B| < |Ble and |b,| > %|B| (so that

\b_lnl < ITE\) To prove that the latter is possible first we note by Question 3(c)

that |b,| — |B|. Take ¢ = ILS\ > 0. Then we may take N such that for all
n > N, ||by]| — |B|| < € so that

—e<|by| —|Bl<e

|B| |B]
= |ba| > |B| - = = =L
bul > 18]~ 21 = 12
Then for all n > N we have by (4) that
1 1 |Ble € 2e
_ < = <=

= -3l < mm = ;
bn B 7 |Bllba|  |bn| T |B]



from which follows that 1 — é, as required.

Comment Even w1thout the condition that b # 0 for all n > 1 we have
that the convergence of the tail of the sequence 3> to the limit A still holds as
b, — B # 0 implies that only finitely many of the b, can equal O and we may
simply consider the behaviour of the sequence after the point where there are

no further zero values in the b,,

6. Let ¢ > 0 and take N such that for all n > N, |a, — A] < e. For
the sequence (an,);>1 take j such that n; > N. Then for any ¢ > j we have
n; > n; > N so that |a,, — A| < e and so it follows that a,, — A.

7. Take N such that for all n > N, |a, — | <
obtain the required inequality as follows:

%. Then for any m,n > N we

e €
|am—an|:|amflf(anfl)|§|amfl|+|an—l|§§+—:€

[\

8. We have that some interval Iy = [—M, M] contains all members a,, of
our sequence. It follows that at least one of the intervals [—M, 0] and [0, M]
contains infinitely many members of the sequence. Choose such an interval Iy
and repeat the argument, splitting I; into two closed intervals of equal length
with common endpoint. In this way we define a nested sequence of intervals

IhyhoLoDLD>---D1,D---

with |I,| = 524;. We then form a subsequence (am)po by choosing a,, € I;.
Now let € > 0 and take i € Z* such that 21-71 < e. Take any j,k > . Then
since an,, an, € I; we have

M
|an]‘ 7a”n)€| S F <€,

which shows that the subsequence (an,)i>0 of (an)n>0 is Cauchy convergent.
Hence, by the completeness of R, it follows that (ay,,);>0 converges, as required
to complete the proof.

Comment We shall take the results of the previous questions, and simple
consequences thereof, for granted in future proofs without explicit reference.
Another point to note is that the convergence or otherwise of a sequence is
unaltered if we adjoin or omit a finite number of terms.

9. Let € > 0. Take N such that for all n > N, |a,, — A| < 5 and let M be

an upper bound for (|ay|)n>1. Then for any n > N such that 2% < £ we have
EOORNIEIED RS S e
k=N+1



k=N-+1
<ty n(e/2) _
-2 n
10. We have
1 L%
Sn =177 >k —Fk)
3] k=1

for n = 2m we have, using standard formulas for the sums of powers, that

_ Sp 1 (2m2(m+1) B m(m+1)(2m+1))
n2  4m3 2 6

L(Gm(m—l—l)—(2771—1—1)(7714—1))— ! (dm—1)(m+1)

= 24m? = 24m?
1 1 1 4 1
— (4 )1+ —) > — ==,
24( m)( +m) 24 6
For n = 2m + 1 we have
Sn 1 ((2m+ Dm(m+1) m(m+1)(2m+ 1))
n2  m(2m+1)2 2 6
L m m 1) = by 2 L
= —_ m m = =
6(2m + 1)2 32m+1’ 3'2+1
11 1
==
32 6

Problem Set 2




and the term indexed by k is given by

) = (-1 2y -

n n n

)- (3)

We observe that t; > 0 and is increasing in n as this is true of each of the
factors. Also e(n+ 1) has one more term than does e(n), whence it follows that
2<e(n) <e(n+1).

2(a) Replacing each bracketed term of ¢(k) by 1 we see that

(4)

Mﬁ
S

=

(b) Then observe that 2~! < k! for all k > 1 so that ; < 5r—; we obtain:

11 1 1—(1/2)" 2" —1
<l+1l+=S+—=+- =1 =1
e(n) tltmtmt ot o + =12 + e

=14+2—

1 < 3.

3. The McLaurin series for e” is given by
D RCEOIE, ot
k=0 k=0

and putting x = 1 then gives:

=3 (5)
k=0

4. If m > n we have

e(m) > 1414 (1= D)4 (1= ) (1w o)1) (12

) (6)

as e(m) is comprised of the sum on the right hand side of (8) together with more
positive terms (see (5) above). Letting m — oo then gives that for all n > 0

e= lim e(m) > s(n) =: Z% (7)

m—o0

On the other hand by (6) we have e(n) < s,. Hence we have e(n) < s, < e;
letting n — oo we then have e limy, o0 Sp. Therefore we have equality
throughout and arrive at two equivalent definitions for the number e:

=1
e—nlirrgo — :;E



Comment The expression e(n) was first introduced in Bernoulli’s compound
interest problem, which asks for the limiting amount of interest gained when
interest accrues continuously. Looked at this way, it is clear that (1 + %)” is
increasing in n as this expression represents the interest accruing when interest
is paid at n equally spaced intervals per annum (and interest rate is 100%) and
interest on interest will accrue earlier if interest is paid more often.

5(a) Let I(x) = log,(z) (z > 0). Then for any a > 0 we have I(£) =
{(x) — l(a). Differentiating both sides by gives:

'3

putting x = a then gives

or using the symbol z instead of a:

A
(logy()) = 2. A = (ogy(2) 1.
(b) Hence we have

X\ = lim log, (1 + h) — log, (1)
h—0 h

_ N 1/h: . 1
lim log, (1+ h)!/" = log(lim (1 + h)F),

where we have assumed that the limit and the taking of log may be interchanged
(which is valid because of the continuity of the log function). Putting n = h~!
we get

1 1
lim (14 A)% = lim (1+=)" =e.
h—0 n—o0 n

Therefore A = log, e = 1 if and only if b = e. This shows in particular that

(Inz) =z~ L

6. For n =2 we have (1+h)?> =1+2h+h? > 1+2h as h # 0. Suppose the
claim holds for some n > 2 and consider

(1+h)" T = (1+h)"(1+h) > (1+nh)(1+h) = 1+ (n+1)h+h* > 1+ (n+1)h,

and so the induction continues, thus completing the proof.

7. Since p > 1, we have p'/” > 1 so that a, = 1 + h,, for some h, > 0.
Hence by Question 6,
p=(14hy,)" >1+nh,
-1
=0<h, < P=2 1o
n

=a, >1+0=1.



Otherwise for 0 < p < 1 we have that 0 < p% < 1 and so p% =1-—r, for some
1
0 <7, <1. We seek to write this as p» = H;h so we solve

—1-r,
1+, "

Tn

1
< h, = —1=
1—r, 1—r,

and since 0 < r, < 1 it follows that 0 < h,,, as we require. Since (1 + hy,)" >
1+ nh, we get that (1 + h,)™™ < (1 +nh,)~! and so

1 < 1
1+ h,)™ 14 nh,

"

1
=1+nh, < -
p

1

:O<hn<—5 — 0.
n

Therefore in the case where 0 < p < 1 it also follows that a,, = ﬁ — 1.

8. Note that b = (n27)" = \/n so that

vn=1+h,)">1+nh,

9. We now have

2 1
1<a, =0} =1+2h, +h) <14+——=+——1
n n

NG

and so
an = ¥Yn —1, as n — oo.

10. Put a, = X so that \/a, = @%n Since a > 1, so is v/a and so we
may write /o = 1+ h for some h > 0. Then
var = (14 h)" > 1+ nh, so that
(A+h)" = 1+nh— nh  hyn
1

n




Problem Set 3

1. Let € > 0 and take § > 0 such that |[x—I| < § implies that | f(x)—f(])| < ¢,
which is possible as f(z) is continuous at = [. Take N such that for alln > N,
|an, — 1] < 6. Then |f(a,) — f(1)| < ¢, and therefore (f(an))n>1 — f(1)-

Comment Note this is saying that lim, o f(an) = f(limp—e0 ay), or in
words, the actions of taking the limit and acting a continuous function on a
convergent sequence may be interchanged.

2. For any a € R including a = 0 we may also put § = ¢ > 0. For a = 0
if |x —a] = |z| < e then ||z] —|0|] = |z| < e and so |z| is continuous at
x = 0. For a # 0 assume without loss that ¢ is chosen sufficiently small so that
|z — a|] < e implies that z and a have the same sign. Then for a > 0 we have
||z] —la|| = |x—a| < € while for a < 0 we have ||z|—|a|| = |-z +a| = |z —a] < e.
In either case, this serves to show that |z| is continuous for all a € R.

3. Since g(z) is continuous at x = f(a) it follows that for any € > 0 there
exists d; > 0 such that |f(z) — f(a)| < 61 implies that |g(f(z) — gf(a)| < e.
Since f(z) is continuous at x = a if follows that there exists § > 0 such that
|z — a] < § implies that |f(z) — f(a)| < 1. Therefore for any x such that
|z — a] < 0 we obtain

|f(z) = fa)] < b1 = [g(f(x)) —g(f(a))] <&,

thus proving that g(f(z)) is continuous at x = a.

By Question 2 we know that |z| defines a continuous function so that by what
we have just proved (putting g(z) = |z|) we have that if f(x) is continuous then
so is | f(z)].

To see that the converse is false as we may take f(x) to be the function that
takes the value 1if x € Q and —1 if z ¢ Q. Then |f(z)| = 1, the constant
function 1, which is clearly continuous, yet f(z) is not a continuous function.
Indeed f(z) is discontinuous at every point as each point has arbitrarily small
neighbourhoods where the function values of points within the neighbourhood
differ by 2.

4. Given ¢ > 0, let 61,02 > 0 be such that |x — a| < §; implies that
|f(z) — f(a)] < € and |z — a| < &1 implies that |g(z) — g(a)] < . Put § =
min{dq,d2}. Then |z — a|] < ¢ implies that

|h(x) = h(a)] = [Mf(z) = f(a)) + pg(z) — g(a)|

<Af (@) = fla)l + [pllg(x) = g(a)] < (A + [ul)e

and since A and p do not depend on ¢, it follows that h(x) = Af(x) + pg(x) is
continuous at x = a.



5. Let a € R. Then
sin(a 4+ h) —sina = sinacosh — cosasinh — sina = sina(cos h — 1) — cos a sin h.
Given that limj_,gcosh = 1 and limj,_,¢ sinx = 0 we obtain:
}llig%)(sin(ath)fsin a) = sina lim (cos h—1)—cosa(lim sin h) = sina(1—1)—cosa(0) = 0.

h—0 h—0

6. It suffices to prove the case where p(n) = n* for some k > 1, with the
k =1 case being dealt with in Question 10 Set 2. We proceed by induction on
k. Let kK > 2 and let b = \/a > 1. Then by induction and the k = 1 case we
obtain:

n n .
7. We are given that
. f(a + h) — f(a) l
1 _— =
Lim Y f'(a)
Define the function £(h) by the equation
fla+h)— f(a
n) = LOFN =IO _ g
= lim £(h) = f'(a) - f'(a) = 0;

h—0
s fla+h) = f(a) = hf'(a) + he(h)
= lim (f(a+h) - f()) = lim hf'(a) + Jim he(h) = 0+0 = 0.

Therefore f(a+h) — f(a) as h — 0, which is to say that f(x) is continuous at
T =a.

8. Using polar coordinates we have 22 + 4> = r2 and 23 = r3cos® 6. The
required limit then takes the form:

r3 cos® 6

im —s = lim rcos® @ = 0
r—0 T r—0

as | cos® f] < 1 independently of the value of . Hence if we define f(0,0) = 0
the function f(z,y) is continuous throughout all of the domain R?.

9. Putting y = ma the limit takes the form:

w2 —m22?  2?2(1-m?)  1-—m?
lim ———— = lim = ;
250 22 + m2x2 250 22(1+m?2) 1+ m?

10



since the limit is not constant but rather its value depends on the gradient of
the line of approach to the origin, it follows that no single limiting value may
be assigned to f(0,0) that makes the function continuous at the origin.

10(a) Again putting y = max gives the limit:

mx3 mx

lim = lim ;
250 x4 +m2x2 250 22 + m?2’

if m # 0, this limit is % =0. If m =0 (i.e. we approach along the line y = 0)

we also get lim, ¢ £—4 =0.
(b) However if we approach the origin along the curve y = 22, the limit
exists but takes on a different value:

xt 1

1
lim lim - = —.
x—0 2 2

im ——
z—0 x4 + x4

Problem Set 4

1. Let s, = 22:1 a. We have that s, — S, where S is the sum of the
series. The sequence (sp)n>1 is Cauchy convergent and in particular for any
e > 0 there exists N such that for all n > N, |s,4+1 — sp| < &, which is to say
|an+1] < e for all n > N. Since ¢ was arbitrary it follows that a, — 0.

2. Suppose that ¥ converges so that s, — S say. Let us write ¢, ,, for

Z:igﬂ" ap = Sp+m — Sn. Then for any € > 0 there exists N such that for all
n >N, |s, —s| < 5. Hence for all m > 0 we have

g
|Sntm — 8| = [tam — 5+ sn)| < 9

9 9
:>—§<tn_m+(8n—8)<§
= - <tpm<EE [thm| <e¥Vm >0

o0

= lim |tym| =:tn =| Z an| <e.
m—oo M

Since € > 0 was arbitrary it follows that |t,,| — 0 as n — o0, so the same is true
of t,, ie.

lim i an = 0. (8)

n—00
k=n+1

11



Conversely suppose that (8) is true. Let ¢ > 0 and take N such that for all
n > N, |t,| < 5. Then for any m > 0 we have

—&€ < Spaem — Sp <&,

and so for all n > N and m > 0, |Sp4m — S| < €, and since € was arbitrary it
follows that >~ a, converges.

3. We have that > 7, |a,| converges so given any € > 0 there exists N
such that for all n > N, and m > 1, ZZ;TH |ar| < e. Hence, by the Triangle
inequality we obtain:

n+m n+m
[ 2 ads ) lul<e
k=n+1 k=n-+1

== |Sn+m — 5n| S g

and so > p—, a, converges.

4. We show inductively that the series (2, )n>0 and (S2n+1)n>0 are respec-
tively monotonically increasing and monotonically decreasing. Suppose that we
have sg > s9 >+ -+ > $9,, for some n > 0 (the n = 0 case being vacuously true).
Then

82(n+1) = S2n42 = S2n + (@2n+2 — G2nt1)

and by hypothesis the bracketed term is non-positive (as aspio < a2,+1) and
SO S2n > S2(n41) and the induction continues. Similarly suppose we have s1 <
83 < -+ < 8941 for some n > 0, the base case again being clear. Then

59(nt1)+1 = 52n+3 = S2n41 + (@2n42 — G2n41) > S2n+1,

and the induction continues; therefore (agn+1)n>0 is decreasing. The claim is
thus established.

Next we observe that sg, > So;,41 for any n,m > 0. To see this, suppose
to the contrary that for some n,m we have sg;,11 > S2,. Take k > m,n. It
follows from the claim that

$2k+1 = S2m+1 > Son = Sok.

This gives sok4+1 = Sok — @ok+1 > Sok, a contradiction. Therefore we conclude
that so, > Sopm41 for all n,m > 0.

The sequence (s2y,)n>0 is monotonic decreasing and is bounded above by sg
so converges to a limt A, while similarly (s2,+1)n>0 iS @ monotonic increasing
sequence bounded above by all the sq,, (and so by their limit A) and so converges
to a limit B; it follows that B < A. We complete the proof by showing that
A= B.

12



Suppose to the contrary that B < A so we may write A = B + ¢ for some
e > 0. Since a,, — 0 it follows that the same is true of both of the subsequences
(a2n)n>0 and (a2n41)n>0. Take N such that for any n > N, a,, < 5. Then

€ €
(s2n > A) = (52041 = Son — Q2n42 > A — 5= B+ 5),

however B is the least upper bound of the sequence ($25,+1)n>0, and in particular
B is an upper bound, and that is contradicted by so,+1 > B. Therefore A = B
is the limit of the sequence (sp)n>0.

5. For p > 0, the function f(x) = 2P is monotonically decreasing for x > 1,

and so we have
oo

>~ d 1
I:/ —$> —.
1 v n:2np
For p > 1 we have
7z1’p007 1
1 p1 o 1—p7p—1
so that -
1 1
Z—p<1+—1:L1.
1t p— p-

Since the sequence of partial sums of this series is monotonic increasing and
bounded above, the series converges.
On the other hand if p < 1 we may observe that:

Mo Ndz a'-P , NIP_1
SL [Tt
P 1 xP 1—p 1—p

and since the latter expression approaches infinity as N — oo, it follows that
S L diverges if p < 1. If p = 1 we obtain

n=1 np
N N
1 d
Z—>/ —leanV:lnN—M)o.
n 1 X
n=1
Therefore | -L converges if and only if p > 1.

6. Suppose that r < 1. Let 26 =1 —r > 0. Note that s=r4+e=1—¢ < 1.
There exists N such that

| an-‘,—l

— < |—-r<eVn>N

n
=0 < |apnt1]| < slan]

= |ani1] < 5" Nan| Vn > N.

13



Let sy denote Zfzvzo |ar|. Then

Z|an|—3N+ Z lan| < sn + |an] Z s"

n=N+1 n=N+1

o0 N S
= sy + |an] Zs = sy + |aN|1—_S.

Therefore since the partial sums s, of the series (|a,|)n>1 are monotonically
increasing and bounded above, it follows that the series Y  a, is absolutely
convergent, and so convergent.

Next suppose that » > 1. Take ¢ > 0 such that s = r —¢ > 1. Then
take N such that for all n > N, [25| > 5. Hence we have |a;im| > 5™ |an].
In particular lim,_ a, # 0, whence it follows by Question 1 that the series
oo o an is divergent.

7. €" ~ > L . In this case

| -n+1
RS i N VA
an, (n+Dlzn’ n+1

and so by the Ratio test, the series converges for all z.

sinz ~ Y7 % and cosz ~ > % The test ratios are
respectively:
-1 n+1 2 1)! 2(n+1)+1 2
() Cnt Dl = i | 50Vz eR
CO" R+ )+ D~ Gnr2)@n +3)]
1 n+1 m)! 2(n+1) 2
(D Erle v | > 0VzeR

COmEm+ 1)z (2n+ 1) (2n+2)|

and so, by the Ratio test, both these series also coverge for all real x.

8. Note that sy = 25:1 ay is a strictly monotonic increasing sequence in
N and that sy < 25:1 b, < B =37, by. Therefore S =73 a, converges
(to a limit no more than B). On the other hand if the series S is divergent then
0 is > | by, for if this series were convergent then so would S be convergent
(by the previous argument).

9.
n 23+l 23
(i) |aa:1| = |(n o ;ﬁ| = |n——|—1| — 0 so series converges;
2
oy Onl 2(nt1) (2n)! 22n+1 L
= . — — d .
(ii) | o | CEI | |(2n+ @n T 1)| 0o so series diverges;

14



(iii) The Ratio test limit here is 1 so that test is inconclusive. However, for

n>3, 12 > L and since Y07, L diverges then so does > 00 | 22,

10.

() lim fan] = lim G0N ies di :
1 nL}II;o Ap| = nl)ngo 1_ 2n2 = 00, S0 series diverges;

(iii) lim {/|an|= lim (

Problem Set 5

1. From Question 3 of Set 1, we prove this by showing that one of these
series is bounded above if and only if the other is as well. Let s,, and ¢, denote
the respective sequences of partial sums of the two series:

Sp=ay+az+---+an

tk:a1+2a2+~~~+2ka2k.

Since the a,, are decreasing, it follows that for n < 2%,
sp < art(aztaz)+ - H(age1tage-1 e Fagr 1) +(agk+agk g+ Hagei_q)

<a+2a+---+ 2k71a2k71 + 2ka2k = tg,

so that s, < t, for n < 2*. On the other hand, if n > 2%,
Sp > a1+ ag+ (a3 +aq) + -+ (age-1 + age-149 + -+ agr)

t
2%+a2+2a4+---+2k71a2k:§

so that 2s,, > t;. It follows that the sequences (sp)n>1 and (t,)n>1 are both
bounded above, or both not bounded above, and therefore the corresponding
series, > >~ an and Y o2 | 2"asn both converge or both diverge.

2. Let a, =n"P (p # 1). Then the sequence consists of positive monotoni-
cally decreasing terms and so we may apply Question 1. Applying the ratio test
to (2"agn)p>1 gives in this case

2n+1(2n+1)7p _ 9.9np _ 2 _ .
2n(2n) =P T 9(n+lp T 9p T 9p—1°
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now if p > 1 then p—1 > 0 and the ratio is less than 1, telling us that the series
in question both converge. On the other hand if p < 1 then p — 1 < 0 and the
ratio exceeds 1, indicative of divergent series.

3. Here we have a,, = m, which is a monotonic decreasing sequence of
positive terms and so we may apply Cauchy condensation and instead look at
the sum of the condensed series:

oo

> om 1 1 1
;2 2n(log(2n))P D nP(log2)?  (log2)P ZQ np’

n=2 n=

oo

and by Question 2, we know this series converges if and only if p > 1.

4. Since the terms of the series are positive and monotonically decreasing

we may apply the integral test to > -, m and so consider the

corresponding integral:

I*/OO dx
/s xlogz(log(logx))’

Put u = log(log ). Then du = —%— so we get:

x logx

& du
I:/ — = [log U] 1og 25
log(log 2) w [ ]l g(log 2)

which is infinite, and so the series in question also diverges.

5(a) Suppose to the contrary that f were not continuous at u, whence there
exists some € > 0 such that for any 6 > 0 there exists © € S such that |z —u| < &
but | f(z)— f(u)| > e. In particular we may choose u,, € S such that |z, —u| < &
but |f(un) — f(u)| > €. But then (uy)n>1 is a sequence in S converging to u
but for all n we have |f(u,) — f(u)| > e. Hence if f is not continuous at u
there exists a sequence in S that converges to u but the sequence of images,
f(uy), does not converge to f(u). By the contrapositive, we conclude that if
every sequence in S that converges to u has its image sequence converging to
f(u), then f is continuous at w.

(b) The converse is also true for suppose that f is continuous at u and let
(un)n>1 be a sequence in S that converges to u. Let € > 0. Since f is continuous
at u, there exists 6 > 0 such that if x € S with |z —u| < § then |f(z)— f(u)| < e.
Then there exists N such that for all n > N we have |u, — u| < d, whence
|f(un) — f(u)| < &, thereby showing that (f(un))n>1 — f(u), as required.

6(a) We note that

n__+h-l 11 hence
(n+1)! w4+l (n+D)V
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n=1 n=1
=3 = i (- e =
(n+1)! N-oo (N +1)!
n=1
(b)
z >~ z" e’ —1 o~ "L > z"
- _;W x _nz::l n! Z(n+1)!
ze® —e® +1 . nan !
x? N n;l (n+1)!
1—e” + xe® = na"
T B ; (n+ 1)!

We now put z = 1 and so obtain the same result:

> n _1—e—|—e

) R

=1

3

7(a) Differentiating f(z) = (1 + x)® gives f'(z) = (1 + )~ !, whence
1+ a)f'(z) = a(l + 2)" = af(z).

(b) Write f(z) = >.°7 ,a,x™ so that our equation takes on the form:

n=0
(1+2)f'(z) =1 +2) Z napz™ ' = (14 x) Z(n + Dapp12™ =« Z anx”
n=1 n=0 n=0
= (n+ 1)apt1 + na, = aa, ¥n >0
- ) —n+1 )@ —n+D(a—n+2
oy = o nan _ (o —n)(a—n+ )anil _ (a—n)la—n+1)(a—n+ )an72 _
n+1 (n+1)n (n+1)n(n—1)

(a—n)(a—n+1) - (a—1a
e = aO
(n+1)nn-1)---2-1
and since ag = f(0) = 1 we conclude, upon replacing n+ 1 by n in the preceding

calculation, that

(a—n+1l)(a—n+2) -«

Vn>1.
n!

Ay —

Note that ag =1, a1 = a, as = (”‘}1)“, T

17



8. We apply the ratio test:

apnx™ (n+1)! (a—n+1)(a—n+2) -«

|an+1$"+1|_|(a—n)(a—n—|—1)---a nlx |_|a—n||:13|

n+1

hence the series converges if |x| > 1 and diverges if |z| < 1.

9. Since

f@)(A+2)* —a(l+2)* " f(2)
1+ )2

e = 0 =

¢(z) =

However this numerator can be worked using the equation (14z) f'(z)—af(x) =
0 as follows:

= (L) /(@) (1+2)* —af (@) (142)* " = (L+a) (@) —af (2))(L+2)* " = 0.
Hence ¢(x) is constant, and the value of that constant is

ap 1

fb(UZm:I:l;
L4 a)= NV 1<z <1
> ()

10. We have /T4 = (1+ )2 so that the general coefficient in the expan-
sion takes on the form:

<i) _ (%—n-ﬁ-l)(%n!—n-i-Q)---%

1 1 1-3 1-3-5
,'_\/1+x:1+—zf—z2 3 4

2" T 2.1 5.4.6° 2.4.6.8° T

Putting x = 1 gives:

1 1 1 5 64—-164+8—5 51
Ixl4+-—-———=1—"—"T"— — =1— =1-40(2d.p).
V2 + 2 8 + 16 128 128 128 0(2d.p)

Problem Set 6

1. Put 2¢ = f(a) > 0. Then since lim,_,,+ f(z) = f(a), there exists § > 0
such that if 0 < 2 — a < § then |f(z) — f(a)| < ¢, so that

—e< f(z)— fla) <e

18
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=e=fla) —e < f(x) < f(a) + ¢

in particular f(z) > 0 for all  such that 0 < x —a < ¢.

Comment Similarly if f(a) < 0 we can find § > 0 such that f(z) < 0 for
all 0 <z —a < §. Moreover, it is clear that the same holds in each case for a
suitably chosen closed interval [0, ¢].

2. Let A={z:a <z <bh f(y) <0Va <y <z} Since f(a) < 0 we have
that A # (). Since f(b) > 0 and f(x) is continuous, there exists a 6 > 0 such
that f(z) > 0 for all x € [b— 9, b]. Hence there exists a least upper bound « to
A and a < a < b. We show that f(a) =0.

Suppose to the contrary that f(«) < 0. There there exists 6 > 0 such that
for all z € (o — d,a +0), f(z) < 0. Now there is some zg € A that satisfies
a — 0 < xg < « because otherwise o would not be the least upper bound of A.
This means that f is negative on [a, z¢]. But then for any z1 € [, @ + §) then
f is negative on [zg,x1]. Then f is negative on [a,z;]. This gives 1 € A and
a < z1, condtradicting that « is an upper bound of A. Hence the assumption
that f(a) < 0 must be false.

On the other hand, suppose that f(«) > 0. Then, again by continuity, there
exists 0 > 0 such that for all x € [a— ¢, a] we have f(z) > 0. But then o —d is a
smaller upper bound for A than «, again a contradiction. Therefore f(a) = 0.
Since f(a), f(b) are both non-zero we conclude that a < o < b.

Comment By applying this argument to — f , it follows that the conclusion
of the IVF also holds if f(a) > 0 and f(b) < 0.

3(i) Let f(x) = o —cosz. Then f(0) =0—-1=-1<0; f(3) =5 —-0=
5 > 0 and since f is continuous, by the Intermediate value theorem, there exists
x € (0,%) such that f(x) = x — cosz = 0, which is to say that x = cos .

(i) Let f(x) = 2 —1 —sinz. Then f(0) = 0—-1—-0 = —1 < 0 while
f(2)=2-1-sin2 =1-sin2 > 0. Again by the IVT it follows that there
exists z € (0,2) such that f(z) =2 —1—sinz =0, so that sinx =2 — 1.

(iii) Without loss we may take the leading coeflicient of p(z) to be 1, so that
p(r) = ao+ a1z + -+ + ap_12"" ! + 2", with n odd. Then for z # 0 we may
write: a1 P

_.n ﬂ n
pl@) =a" (5 + )+
By the IVF it is enough to show that p(z) takes on values of both signs. Let
A be the maximum of the numbers |ag|, |a1],- -, |an—1], 1. Then for any x such

that || > 2(n — 1) A we have by the Triangle inequality that

a a Ay A A A 1
|+ = -| +o s =
X X

L s s R T 2ln— 1A 2
It follows that for any z such that & > 2(n — 1)A we have p(z) > 2™ — 12" =
12" and if x < 2(n — 1)A then p(z) < 2" + $2"; in particular, p(z) > 0 if
x > 2(n — 1)A and, since n is odd, p(z) < 0 if z < —2(n — 1)A. It now follows

the the IVT that p(z) has a real root.
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4(a) Let a € f~1(U) so that f(a) = uw € U. Since U is open there exists
e > 0 such that if |y — u| < e then y € U. Now since f(z) is continuous there
exists § > 0 such that |z — a|] < § implies that |f(z) — f(a)| = |f(z) —u| < e
so that f(z) € U and # € f~}(U). This shows that the sphere of radius § > 0
centred at x lies in f~1(U) and since z was an arbitrary member of f~(U) it
follows that f~*(U) is open.

Conversely, suppose that for every open set U C R™ f~1(U) is open. Let
e >0, let a € R", and consider the open sphere U of radius ¢ centred at f(a).
By hypothesis, f~!(U) is an open set, which contains a. Let § > 0 be such that
for the sphere V of radius  centred at a we have V. C f~1(U). Then f(V) CU
so that if b € R™ is such that |b—a| < 0 then |f(b) — f(a)| < €, thereby showing
that f(z) is continuous at the arbitrary point a.

(b) Yes, for it is equivalent to the result of part (a). Let U C R™ and let
U’ = R™\ U. Then R" is a disjoint union of f~1(U) and f~1(U’). Now by
part (a) f is continuous if and only if f~1(U) is open for all open sets U C R™,
which is equivalent to f~(U’) is closed for every closed set U’ C R™.

lim ((z + h)? — 2%) = lim 2hx = 0;
h—0 h—0
and so f(x) = 22 is continuous for all z € R.

However, take the open interval I = (—1,1). Then f(I) = [0,1), which is
not open (as it contains the boundary point 0). Therefore a continuous map
does not necessarily map open sets to open sets.

Comment An even simpler example of this kind is a constant mapping, which
maps every set, open or otherwise, to the a one-point closed set. Similarly the
sine function maps any subset of the real line that contains an interval of length
27 onto the closed interval [—1,1]. Tt is possible to construct some (rather
strange) mappings on the real line that do map open sets to open sets yet are
not themselves continuous. A continuous mapping that does map open sets to
open sets is called an open mapping.

6. Setting ¢ = 1 we may take § > 0 such that for all x € (a — d,a + 9)
|f(z) — f(a)] < 1. Therefore for all x in this interval we have

—1< f(z)— f(a) <1
= -1+ f(a) < f(z) < f(a)+1

which gives lower and upper bounds for f(z) on (a — §,a + ad).

7. Let A={z:a <z <band fis bounded on [a,z]}. Then a € A and A is
bounded above by b. Let « be the least upper bound of A. Suppose that o < b.
Then by Question 6, we have that f is bounded on some interval (a — §,a + 9)
for some § > 0 (where, without loss, we may take § sufficiently small so that
a+6 < b) and f is bounded on [a, a — §] (for otherwise o — § would be a smaller
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upper bound for A), whence it follows that f is bounded on the union of these
two intervals, which is [a,« + 0). However this contradicts that « is an upper
bound for A. Therefore o = b. Take § < ”‘T“ It now follows that f is bounded
on [a,b—4].

By the same argument but with the interval [a, z) replaced by (x,b] in A, we
conclude that f is bounded on [a+d, b] and so f is bounded on [a+6, b]U[a, b—4] =
[a, b].

8. By Question 7 we have that f(z) is bounded on [a,b]. Let M be the
least upper bound of f([a,b]). For any n € ZT there exists z,, € [a,b] such that
f(xn) > M — L. Consider the sequence (z,)n>1. Since [a,b] is bounded, this
sequence has a convergent subsequence (z,,);>1 with limit « say. Since [a, b] is
closed, this limit = is a member of [a,b]. We claim that f(x) = M. To see this
we note that nl S%%Oasi%oo.

Suppose thét, contrary to our claim, that f(z) = M — e for some ¢ > 0.

Choose i such that ni < 5 and, since f is continuous, we may simultaneously

i

take 7 such that |f(x) — f(xn,)| < 5. But then we infer that

-5 < @) = flen) <
:>f(:c)>f(:cni)f%>Mf%f%>Mf§f%:M75,

a contradiction. Therefore f(z) = M and so that f(x) attains a maximum on
[a,b].

9. Note that —f(z) is continuous on [a,b] so that by what we have just
proved, — f(x) attains its maximum, m say at « € [a,b] say. Then f(z) = —m
and we claim this is the minimum value for f on [a, b] for if not, there exists some
y € la,b] such that f(y) = p < —m. But then — f(y) = —p > m, contradicting
that m is the maximum value for —f on [a, b].

Comment The theorem represented by the pair of results of Questions 8 and
9 is called the Extremum theorem, in that it says that a continuous function on
a bounded closed interval has extreme values (maxima and mininma).

10. Since we are assuming that f(z) # M for all « € [a, b], it follows that
g(x) is continous on [a,b] and so bounded (by Question 7). On the other hand
since M is the least upper bound of the set of values f(z) (a < 2 <) it follows
that for any € > 0 there exists = € [a,b] such that 0 < M — f(z) < e. But then
g(z) > L. Since € can be taken to be arbitrarily small, we gain the contradiction
that g(z) is unbounded above on [a,b]. Therefore we conclude that for some

ye[avb]af(y):M'
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Problem Set 7

1. A function is continuous throughout its domain D if for any ¢ > 0 and
each a € D there exists § > 0 such that |z —a| < § implies that | f(z) — f(a)| < e.
The value of § here may depend on a and there is no stipulation that there is a
single value of 6 > 0 for which this conclusion applies for all a € D. However, for
uniform continuity we insist that there is some § > 0 that 'works’ for all ¢ € D
(although 6 will still in general depend on the given value of € > 0). For that
reason uniform continuity is a stronger condition that continuity throughout the
domain of definition of the function. That it is indeed strictly stronger is shown
by the example of Question 2.

2. Let € > 0 and let a € (0,1]. Take 6 such that 6 < a. For |x — a| < § then
af:c<5sothat0<a75<:cand%<ﬁ. Hence

I O R N ] 0 J
|f($)_f(a)|_|5_a|_| ar |_ azx <ax<a(a7(5)
Now
—  _<esd<d’e—lbaces i< a’e
ala —9) 1+as

It follows that if we take § < a®c then |f(z) — f(a)| < €, as required to show
continuity at a. Since a represents an arbitrary member of (0, 1], it follows that
f(z) = 1 is continuous on (0, 1].

Now put ¢ = 1. Then for any § > 0 we shall show that we may find a € (0, 1]
such that there exists z € (0,1] with |z —a| < § but |f(x) — f(a)| > 1. We shall
for convenience take z < a and so we need z such that

1 1 a—x
———>le—>lea—z>arsz(a+l)>a
r a ar
a
ST > —.
a-+1
Now since 0 < % = 1 — 5 < 1 we may take x to be any member of the

a
interval (f7,a). (Note that _f5 < a.) Therefore any value of z such that

a+1
a—d<x< shows that uniform continuity fails for e = 1.

_a
a+1

3. Suppose to the contrary that f(z) were not uniformly continous on [a, b].
Then there would exist some € > 0 such that for any § > 0 there exist z,y € [a, ]
such that |x —y| < ¢ but |f(xz) — f(y)] > e. Let (dn)n>1 be any sequence of
positive numbers monotonically decreasing to 0. Then for each d,, there exists
Tn, Yn € [a,b] such that |z,, —yn| < &, but |f(z,) — f(yn)| > €. Now since [a, b]
is bounded there exists a subsequence x,,, of the z,, such that z,, approaches
some limit = and since [a,b] is closed, z € [a,b]. Since f is continuous at x
there is a 7 > 0 such that for all y € [a,b] such that |x — y| < 7, implies
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|f(xz) — f(y)] < §. Now take k sufficiently large so that so that |z,, —z| <n
and |x — yn, | <7n. Then we have:

[f @)= f ()| = [f @)= F @)+ F (2) = F (yn )| < [f (@) = F (@)1 1f (@)= f (yn)]

contradicting our choice of z,,, and y,, . It follows that f is uniformly continuous
on [a, b].

4. We note that

||™ a”
@)= < L v <.
(@)~ fal@)] = 17— < <= V]al <a
Given € > 0, choose N sufficiently large so that

aN

1—a

<eg,

then we have the required inequality |f(z) — fn(z)| < e for all n > N and all
zxeSs.

5(a) We have f,(z) = (n+ 1)(n+2)z(1 —2z)" n=1,2,--- , whencef(0) =
f(1)=0.For 0 <a <1wehave 0 <y=1—x <1 also and so |f,(z)] < (n+
1)(n+2)y™. Now for any polynomial p(n) we have for any a > 1, lim,, péﬁ) =
0; here we have p(n) = (n+ 1)(n+2) and a = % Hence lim, o fn(z) =0, so
that f, — 0 pointwise.

(b)

/01 fo(x)dr = (n+ 1)(71—}—2)/01 (1 —x)" dx.

Let F,, = fol x(1 — )™ dz. Integration by parts gives:

(-t A—z)ntt 1 nt2ql
Fn_[—T]O‘i‘/O niﬂdl'—o—m[(l_‘r)Jr]O

1
(n+1)(n+2)

It follows that L

lim [ fo(z)dz= lim 1=1.
n—o0 0 n— o0

On the other hand

1 1
/ lim f,(x)dx = / 0dx = 0.
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We conclude that
1

1
nh_}n;o ; fa(x)de =1#£0= /0 nh_}rrgo fn(x)de.

(c) Suppose to the contrary that f,, — 0 uniformly. Put ¢ = 1. Then there
exists N such that for all 2,y € [0,1] for any n > N, we have |f,(z)— fn(y)] < 1.
If particular, if we put y = 0 we have 0 < f,,(x) < 1. However, if we take n > N
and also put x = % we then have

oy = DDAy Ly Ly o
Jim (14 )1 )t = e

in particular, for all sufficiently large n we have fn(%) > "Q—Jff and the latter
increases without bound as n — oo, contrary to our choice of N. Hence no such
N exists and the sequence of functions f,, does not converge uniformly to its
pointwise limit of the zero function.

6(a) Let € > 0. Then there exists N; and Ny such that |f,(z) — f(z)| < e
for all n > N; and |gn(z) — g(z)| < € for all n > Na. Put N = max(Ny, Na).
Then both the previous inequalities hold for all n > N. Then for n > N we
have:

|afn() +bgn(z) = (af (x) + bg(z))| = |a(fn(x) = f(2)) + b(gn(z) — g(2))]

< lal|fa(x) = f(@)] + [bllgn(2) — g(x)| < lale + |ble = (la] + [b])e;

and since this is a fixed multiple of £, we may connclude that af,,+bg, — af+bg
uniformly on S.

(b) Since |f(x)| and |g(z)| are both bounded above for all n and for all
x € S, there exists a common positive bound M say for both. Take ¢ > 1 in the
definition of uniform convergence, as in part (a) take N such that for all n > N
we have |fp(z) — f(z)] < 1 and |gn(z) — g(z)| < 1, from which it follows that
[fr(z)] < M +1 and |gn(z)] < M + 1. For any € > 0 we may take N; > N such

that for all n > Ni, [fu(2) — f(z)| <&, |gn(z) — 9(2)| < 537377 Then

|fn(@)gn(z) — f(2)g(2)| = | fn(@)gn(2) — fu(2)g(z) + fr(x)g(x) — f(x)g(2)]
< [fn(@)(gn () =g (2)) |19 (@) (fn(2)=f ()] < |fo(@)llgn () =g ()| +]g(@)[| fn(x) = f ()]
<M Donret T Mo T
This establishes that f,g, — fg uniformly on S.

E.

7(a) Since | f(z)| — f(z) > 0 it follows that
b
[ 1@ r@has =0
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;s/ab|f(x)|d:cz /abf(z)dz.

Replacing f(z) by —f(z) and noting that | — f(z)| = |f(x)| we also see that
f; |f(z)|dz > fab —f(z) dx. We therefore conclude that:

/ablf(w)ldcc > I/abf(:v) dal.

(b) Take n > N, where N is chosen so that for all such n, |f,(z) — f(z)] <
7=+ Then we have from part (a) that:

—a’

| / o) e - / " fla)ds] = | / (@) = @) e

b b
< [ 1) - f@lde < [ ;o de= (-0t ==

o b—a b—a

Since ¢ > 0 was arbitrary, it follows that

n—oo

lim I/abfn(w)—/:f(w)dwl —0

b
< lim fn(2) d:z::/ nh_}n;o fn(z) de.

n—oo a

8. Let s,,(2) denote Y ux(x). Then by definition, "7 ) un () = limy o0 s ().
We may write this as lim,,—,« $p(2) = s(z) in which case to say that (s, (2))n>0
converges uniformly on S means that for any ¢ > 0 there exists NV such that for
alln > N,

o0

|s(2) = sn(@)| =| > w(x)| <eVazeS

k=n+1

If this is the case then by Question 5 we have:

b n b n

nh—>Ir<>lo Z ug(z) de = / nh_}n;o Zuk(:n) dx 9)
¢ k=0 @ k=0

Now, by the linearity of the integral we have:

/abiuk(z) dz = :;)/abuk(z) dz

k=0

b n n b oo b
= lim ) kZOUk(x)dx:"ILH;OkZOA uk(x)dx:Z/a ug(z) dz.

k=0
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Hence (11) becomes the required equation:
0 b b
Z / ug(z) de = /
k=070 a

9. By applying Question 7(b) we may change the order of the limiting
operations and then by the Fundamental theorem of calculus we obtain:

ug () dx.
k=0

[ o= [t gide =t [ g =t 07

n—oo

= lim [fu(2) = fu(a)] = f(z) = f(a)

n—oo

= f/(x) = g(x) = lim_fi(x) Va € [a,1]

10. This is a special case of the result of Question 9 where we take f,(z) =

D h—o Uk(T).
Problem Set 8

1. The sequence of functions under consideration here is the sequence of
partial sums s, (z) = >, _, ux(z). For any z € S we have:

o0 (o9}
Z luk(x)] < ka < 0.
k=0 k=0

Hence the series is absolutely convergent, and so the series > .°  u () converges
pointwise to some limiting function u(z) for z € S. What is more, given any
e > 0 we may take N such that for all n > N:

oo
Z v < E.

k=n+1
Hence we have
o oo oo
(@)~ su@) = 3 w@l< Y ju@l < Y w<e
k=n-+1 k=n-+1 k=n+1

thus showing that the partial sums s, (x) converge uniformly to the limiting
sum u(z) on S.
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2(a) Applying the ratio test:

a2k 1) +1 ) a2

Uk+1
= = — 0 as k — oo,
| U a?tHk+ 1) k+1
so the series 7o # converges.
(b) Putting = = —t2 in the exponential series (which converges for all values
of x) we have

e 0 (_1)kt2k
D
k=0

Hence

g e _ z (71)kt2k
A e dt[;§:‘_zr_dt
k=0

If we interchange the taking of the two limits on the right hand side we are led
to required conclusion:

o~ (D8 [T —_ (DF o
:kzzo k! /Otkdt:kz(%ﬂ)k![tkﬂo

=0

k 2k+1

2k+1 (2k+ D)k

Mg

k=0

The exchange of the order of summation and integration is justified using the
result of Question 1 providing we show that the series is uniformly convergent,
and we do this using the Weierstrasss M-test as follows. Here we have for any
x such that |z|] < a that

$2k+1 a2k+1
e < M
()] Ck+ D& = &

if we put v, = er we have that by (a) that >~ ,vx converges. Therefore,
vk 2k+1

by the M-test, the series Y~ % converges uniformly on every finite

interval of the real line. In particular, taking a > z justifies the exchange of

integral and summation used above.

3. Since ) a,r™ converges it follows that |a,r"| — 0 as n — oo so that
the sequence |a,r"™| < M for some upper bound M. Then for any x such that
|z| < |r| put |£] = p < 1. Then

ana"| = lanr™||=|" < Mp".

Now > Mp" converges (to the limit 5 ) so it follows from the comparison

test that Y7 |a,z"| converges, Wthh is to say our original series converges
absolutely for z € (—r, 7).
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4. Certainly f(0) = ap in all cases. Suppose that f(r) converges for some
r # 0. By Question 1 we have that f(x) converges for all z such that |z| < |r|.
Consider the non-empty set C' = {r : f(z) converges for all x : |x| <r} . If
C has no upper bound then for any x > 0 we could choose r > ¢ such that
x € C. Tt would then follow that C = R™ and since absolute convergence
implies convergence, it would follow that f(x) were defined for all x € R. In
this case we say that R = co.

Otherwise we may let R be the least upper bound of the set C. Then
R > |r| > 0. Take any zg € (0, R), but suppose that zo ¢ C. Then by definition
of R it follows that x( is not an upper bound of C so there exists r» € C' such that
xo < r; moreover r < R as R is an upper bound of C. But then by Question 1
we have xg € C, contradicting our choice of zy. Hence no such z( exists and so
f(z) converges for all z € (0, R). If —R < « < 0 then —z € C, whence it follows
that f(x) also converges (again as asbolute convergence implies convergence).
Therefore f(x) converges for all z € (—R, R).

On the other hand, for any xo such that |zo| > R we have f(zo) does not
converge for if f(xo) were defined, then by Question 1, the same would be true of
any y € (R, |xo|), whereupon |zg| € C, contrary to the definition of R. Therefore
the series diverges for all z > R or x < —R.

5. Let

an+12"

+1
| = |2] lim |,
n— oo

r= lim |

n—00 Apx™ A

By the ratio test the series f(z) converges if 0 < r < 1, which is to say that

|z]

7 < 1;that is if —R <2 < R, and f(z) diverges if r > 1, which is to say that
|z| > R. Therefore R is indeed the radius of convergence of f(x).

6. We have from Question 2 that f(z) converges absolutely on (—R, R) and
so does the same on [—r,7]. Choose any number = with |z| < r. Then

lanz™| = |an||z]" < |an|r™ = |anr™|.

Put M, = |a,r"| so then > °° M, < co. We then have by the Weierstrass
M-test that f(z) converges uniformly on [—r, r].

7. We are considering
f@) =" an(z —a)".
n=0

Substitute y = x — @ so that we have a series centred at 0, that being g(y) =
> pany™. By Question 6 the series is uniformly convergent on (—r,r) for
any 0 < r < R, where R is the radius of convergence of g(y). Therefore f(x)
converges uniformly on each interval of the form

—r<zrz—a<r&-r+a<z<r+4a.
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8. Suppose that f(z) = Y7 an,z™ converges for all 0 < z < r. Fix an z
with 0 < |zo| < r, and choose z such that || < |z¢| < r. The series Y.~ j anz{
converges and therefore lim,,_,c a,zg = 0. We can thus find a number bound
M such that |a,xfy| < M for all n. We now write

n
1 4T nay, T \n-1
nanz” ' = na,z" 122 o (—) .

g - x—oxo To
Putting p = xio < 1 we have
[nane” 1 = |22 ()" = B < M
T To To |zol

Now > np" ! converges by the ratio test as the associated quotient limit is:

1)p" 1
D a4 Y=<t
n

n—1 | T noo

lim |
n—o0 ’)’I,p
Therefore, by the M-test, the original series converges uniformly for all z such
that |x| < |zo|. Since xy was an arbitrary number sastisfying |xg| < r, the series
converges uniformly for |z| < R. It follows that the radius of convergence Ry
of the series of derivatives satisfies Ry > R, the radius of convergence of our
original series. If R = oo, then Ry = oo.
If Ry > R we may choose 79 > R and « such that R < |z| < rg. Then, eval-
uated at x, the series of derivatives is absolutely convergent, while the original
series diverges. But, then for all n such that || < 1 we have:

lanx™| = |nanz"71||%| < |nanpaz™ .

This means that the original series converges upon substituting this value z,
which is false. Therefore we may conclude that R = Ry, as required.

Comment From which it follows that a series that results by term-by-term
integration also has the same radius of convergence as the original series.

9(a)
1
1+

= (-1)"a", V|z| < L.

n=0

Integrating both sides now gives

0
oo gl o0 " J- T R
= log(l4x) = Z(fl) e Z( )y — = :cf?Jr?*ZwL“, Vx| < 1;
n=0 n=1

although we should not neglect the integration constant: however both sides
agree when x = 0 so the integration constant is 0.
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(b) Replacing by —x (noting that |z| < 1 if and only if | — x| < 1) we
obtain:

22 a3 2t
_ 1) = Lo o o
log(1 — x) x+2+3+4+
10. We have
x? a3 xt x®
A R N <1
f@) =5 -3 +4~3 5t

We apply the ratio test:

|an+1 = (-1 nn-1), n-1 2

= = =1- — 1.
an, (=D)rn(n+1) | n+1 n+1

Hence the radius of convergence of f(x) is 1. Differentiating term-by-term gives:
= log(1 + x).

Hence

We integrate by parts with u = log(1+ z), dv = dx so that du = -£& + andv=r=x
to give

(@) = zlog(1 + ) xd—1(1+)/(1 Ly

z) = xlog T T35 9% =2log x T

=zlog(l+z)—z+log(l+x)+c
= f(r)=(1+42z)log(l+z) —x +c
Put 2 = 0 we get f(0) =0 =0+ ¢ so that ¢ = 0 and indeed

fl)y=042z)log(l+2z) — =z

Problem Set 9

1. Since f is continuous on [a,b] it takes on both a minimum m and a
maximum value M on [a,b]. If these values occur at the endpoints a and b,
then since f(a) = f(b), it follows that f is a constant function and we may take
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¢ to be any member of (a,b) in order to satisfy the conclusion of the theorem.
Otherwise one of these extrema, let us say M occurs at some point ¢ € (a,b).
Then we have for h > 0:
fleth) = fe) _ fleth) =M _
h h -
h)—M

M <0 (10)
h—0+ h

For h < 0 the calculation is the same except for the change of sign in the
denominator giving;:

>0 (11)

It follows from (12) and (13) that f/(c) = 0, as required.

Comment According to Wikipedia the Indian mathematician Bhaskara II
(1114-1185) is credited with knowledge of Rolle’s theorem, although the theo-
rem is named after Michel Rolle. Rolle’s 1691 proof covered only the case of
polynomial functions. His proof did not use the methods of differential calcu-
lus, which at that point in his life he considered to be fallacious. The theorem
was first proved by Cauchy in 1823 as a corollary of a proof of the mean value
theorem.

2. Let [a,b] = [—1,1] and f(x) = |z|. Then f(z) is continuous on [a, b] with
fl(x)=-1ifz €[-1,0), f'(z) =1if z € (0,1] but f'(0) is not defined (as the
corresponding limit is +1 according as h — 0~ or h — 07.) Therefore Rolle’s
theorem does not generally hold if f(x) is not differentiable at some point in

(a,b).

3(a) Define g(z) = f(z) — rx. Put g(a) = f(a) —ra = g(b) = f(b) — rb.
Solving for r then gives r(b — a) = f(b) — f(a) so that

f() — f(a)
b—a

(b) Clearly g(x) is also continuous on [a,b] and differentiable on (a,b) and
what is more, with the choice of the constant r as in part (a), g(z) satisfies
g(a) = g(b) and so Rolle’s theorem applies to g(x). Hence there exists ¢ € (a, b)
for which ¢’(¢) = 0, which is to say thatf’(c) — r = 0 whence

7b) = fla)

o ==

4(a) We have P(a) = f(a) so the claim holds for ¥ = 0. When differentiating
P,(x) k times, (kK < n) all terms involving (z — a)™ with m < k — 1 vanish.
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The kth derivative of f(kk),(“) (x — a)¥ is the constant term f(*)(a) while the kth

derivative of powers of # — a higher than % each takes the value 0 under the
substitution 2 — a. Therefore P" (a) = f®)(a) for all k = 0,1,---,n.

(b)

@)y (n=1)
Fla) = £~ £@) ~ F@)b-2) - LDy L0 gy,

buti / ARIC)) ks
the contribution to F'(x) from the entry —+—7=(b — x)" is

FOHD (@) ARIC))
I O Al ey

(b— )"

the second term here cancels the same term with a negative sign in the previous
entry. It follows that the full expression for F”(z) telescopes down with the only

£ ()
(n—1)!

remaining contribution being — (b — )", as required.

©
o) = Fa)— (7=2) " Fla)

clearly g(b) = F(b) =0 and g(a) = F(a) — F(a) = 0. Moreover, since F(x) may
be differentiated on (a,b) at least once, the same is true of g(x). Hence we may

apply Rolle’s theorem to g(z) to conclude that there exists ¢ € (a,b) such that
g'(¢) = 0, which is to say that

(b—c)" !

F’(c) +7’LW

FO) b=
= o =g T
_fMQb—ar

n!

= F(a)
We may now put = a in (14) to obtain Taylor’s theorem:

f?(a) f"D(a) o1 S -

o (b Ty !

fb) = fa)+f'(a)+

(b—a)

5. Put f(x) = cosx so that f/'(x) = —sinz, f"(x) = —cosz, f"(z) =sinzx.
We consider the Taylor series for f(z) about a = 0; f(0) = 1, f’(0) = 0,
f”(0) = —1. By Taylor’s theorem there exist ¢ between 0 and x such that

f70)x*  f"(c)z? 1 , (sinc)a?
—_— / — —_ - —_——
cosz = f(0) + f'(0)x + TR =1 5% 5
For |z| < 7 observe that (sinc)z® > 0. On the other hand if || > 7 then

1—12? < =3 < cos . Therefore for all values of z we have that cosz < 1— 3.
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6(a) Apply Taylor’s theorem. In this case the fact that f)(zq) = 0 for all

k =1,2,---,n — 1 means all the corresponding terms vanish and we are left
with =)
fn & n
1) = o) + L 0 ) (13)

for some c in the open interval with endpoints xg and x.

(b) Suppose now that f(")(z¢) > 0 and n is even, so that (z — x¢)" > 0.
Since f(™(z) is continuous at z there is an open interval I containing z such
that £ (z) > 0 for all z € I. By Taylor’s theorem, the equation (15) holds for
some ¢ € [ from which it follows that f(z) > f(x¢) for all € I so that z¢ is a
local minimum of f(x).

7. We take f(x) = log(1 + z), f'(z) = (1 + )7, f'(z) = —(1 +2)72,
O (x) =2(1+2)73,---, fO)(z) = (=1)" " Yn—1)!/(1+x)~". We apply Taylor’s
theorem with a = 0 in which case f(a) = 0 and

fM@) (=t

= ;

n! n

hence by Taylor’s theorem, for any a > 0 there exists ¢ € (1,1 4 x) such that

1 1 (=™ 1 (=™
1 1 _ 2 3. n n+1-

The final remainder term is positive if n is even and negative if n is odd. There-
fore we obtain:

1 1 1 1 1 1
1'*51'24’5:03*"'*%1'2]6 <10g(1+1') <I*§I2+§$3*"'+2I€—H$2k+l

8(a) We work with the case of g(z) > 0, with the g(z) < 0 case very similar.
By the Extreme value theorem there exists bounds m and M for f(x) such that
m < f(z) < M for all x € [a,b] and f attains these bounds (which is important
in part (b)). Hence it follows that

m/abg(:n) do < /abf(x)g(x) do < M/abg(x) da. (14)

If f;g(x) dx = 0 then it follows from (16) that f; f(x)g(z) dz = 0 also and we
may take any ¢ € [a,b] to satisfy the conclusion of the theorem. Otherwise we
may divide to obtain:

B ICTEYI
[, g(z)da

(b) Since f(x) attains the bounds of m and M in the interval [a, ] it follows
by the Intemediate value theorem that there exists ¢ € [a,b] such that f(c) =
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[z f(@)g(x) de

@) da whence we gain the required conclusion that:

[ rnerar = s [ ot ar

9(a)
A= ¢(x+h) - ¢(x), where ¢(z) = f(z,y+ k) — f(z,y).

Since ¢ is differentiable with respect to x (keeping k and y fixed) we may invoke
the MVT on the interval [a,a + h] to conclude that

A

m = ¢'(x + 0h)

= A=h¢(z + 0h)

for some 0 < 0 < 1.
(b) Now
(b/((E) = fw(xay + k) - fl(xay)a

and since the mixed partial derivative f,, exists we may apply the MVT to the
function defined by the expression on the right as a function of y to conclude,
again by the MVT | that

A _ folx+0h,y+k)— folz+0h,y) /
2 = fya Oh,y +0'k
h FOE fya(x 4+ 60h,y + 0'k)

= A= hkfy.(x+60h,y+0k), (15)

where 0 < 0,6 < 1.

(c) By interchanging the roles of z and y in the the previous argument,
(beginning with the function ¥(y) = f(xz + h,y) — f(z,y)), we may likewise
conclude that

A = hkfpy(x+ 601h,y + 01k) (16)

Equation the two expressions for A from (17) and (18) we have
A= fy(xz+0h,y+0'k)= foy(x+61h,y+01k);

we now let h, k — 0, whence by the assumed continuity of f,, and f., at (z,y)
we conclude that fy.(z,y) = foy(x,v).

Comment Many important theorems in calculus come down to equality being
maintained when the order of two limiting operations is reversed. The proofs
often depend on the Mean value theorem. Equality of mixed partial derivatives
is a key example as it is assumed in many of the big theorems of Vector analysis
such as Green’s theorem and Stokes Theorem in its various forms.
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10(a)

22— y?
f(:lc,y)=ﬂcyz2+y2
o fay) - fOy) 2ty
fI(Ovy)ilhlg) T 7illg)yx2+y2 =Y
o flay) = f@0) L a2y
fy(x,O)—ggg)#—;%xm—

(b) Consequently fry(x,0) =1 and fy(0,y) = —1. In particular f,,(0,0) =
1# —1= f,2(0,0).

Problem Set 10

1. We have f(z) = Y.° janz". Since f(z) may be differentiated term-by-
term and the resulting series have the same radius of convergence it follows that
the constant term of the series expansion of f(™)(z) that results is n!a,. Putting
x = 0 now gives

£™(0)

an = ' Vn=0,1,2,---.
n!

Comment We conclude that a smooth function cannot have two different
series expansions about the same centre. Hence if we arrive at the series in
two different ways, we may use equating of coefficients to assist in the deter-
mination of those coefficients. This is the basis of justification for finding the
series for functions that result from several series combined using arithmetic
operations (linear combinations, multiplication and division) and composition
(substitution). However, a smooth function does not necessarily have a con-
vergent Taylor series. For example, it may be shown that f(*)(0) = 0 for all
k > 0 for the function defined by the rule f(z) = e 37 (with f(0) = 0). The
resulting Taylor series is shared with the zero function and clearly converges
to the latter and not the former. Despite being ‘completely flat’ at the origin,
this function manages to pick itself up off the real line away from zero. This
baffling behaviour is partly explained when we extend the function to a complex
variable as there we find infinitely many singularities in every neighbourhood of
the origin, although none on the real line itself.

2. Ri(z) = f(z) — Pi(x) = f(z) — f(a) — f'(a)(z — a). We check this agrees
with the integral, which for n =1 is:

1

@ =3 [ -0
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Put u =z —t and dv = f®(t) dt,so du = —dt and v = f'(t):
h@) = - oros+ [ roa
=0-(z—a)f(a) + f(z) - f(a) = f(z) — f(a) — f'(a)(z — a).

3. Now we assume inductively that for some n = k we have:

1 T
Rie) = 35 [ o= 0" de
and consider ) N
Iy1 = m/ (:L' — t)k+1f(k+2) (t) dt.

Put u = (z — t)*! so du = —(k + 1)(z — t)*dt and dv = f*+2)(t) so that
v = f*+1)(¢). We obtain upon integrating by parts in this way:

Lpir = i i o (@ — )R pOHD ()i=e % /:(96 — )k FOED (4 e
—0— ﬁ(z B a)kJrlf(kJrl)(a) " %/az(z B t)kf(kJrl)(t) dt
(+1) (4
= —7f(k n 1()') (z —a)*™ + Ry(x)
(k1) (g
— @) = Pulo) - L - 0

= f(z) = Pry1(z) = Ri41(2).

4. With ¢ = 0 the remainder term has the form:

R, (x) = i' /Om(x — t)nf(nJrl)(t) dt;

n!

for x > 0 we have
1 xT
Rofe) < 7 [ (@7l 0
n! Jo

In the case of f(z) = sinz we have that —1 < f(™)(¢) < 1 so this simplifies to

1 :L.nJrl :L.nJrl

1 [ n g, L _
N Ry e e e

For x < 0 we have

1 O
Rola) = —o [l =t o) e
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1 0 (_.T)n+1
= |R, < — t—x)"dt = ——.
[ B (2)] < n!/gE (t—2) (n+1)!
Therefore in either case we may conclude that
a1

(n+1)!—>Oasn—>oo.

|Rn(2)] <

We conclude that sin z is equal to the sum of its McLaurin series for all € R.

5(a) f(z) = a5, f'(2) = 275, f"(2) = —Fa 5, fO(2) = a5 f(8) =2,
f'®) =%, f"8) = —4. Hence we obtain:
Poa) = £8) + L& )+ L1 g2
1
=24 12( —8) — 288(95—8)

(b) Using the Lagrange form of the remainder we have that for some ¢ with
7T<ec<8:
@) 1 10 5
f (C)(778)2:—'—C_ —_ -
3! 6 27 8lcs

Since we are looking for an (upper) bound on |Rz(x)| we maximize this quantity
by taking c to be as small as possible, so we conclude that

wloo

Ro(7) =

[Ra(7)] <

5
~ < 0-0004.
3

6(a) By replacing by —z? in the exponential series we obtain:

2 4 ,CCG ,CCS (_1)n$2n
e =1-27 +———+—+ -+

a3 T T

(b)

Lo, 1 4 345 1 1 23
T dr ~ 172 x—d = 71‘ x = 1—-=-—4+—=—=0- .
/Oe x /0( :c+2):c [z 3+10] 3710 30 0-766

Since the series has alternating signs and the terms approach 0 monotonically
(for 0 < & < 1), the remainder is bounded by the magnitude of the next term
and the product of the length of the interval of integration (1 in this case).
Since the next term is negative, our answer is an over-estimate and the error
in the approximation is no more than the maximum of the next term in the
integration, which is

I SN 0-024
7-30 42 0 T
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2 +y* =y, y(0) =1

éyl(o):mz(),
w20 =2y)+2yy" o, o 2(1-2)+2(1)(0) -2
ST a-yy VO Tt
y(z):y(0)+y’(0)z+@x2+m:1+0+%2x2+~~

syl =1—a? 4.

afm—i—n
= m!nla,, » + non-constant terms in powers of z and y

N
8zmayn
afern
= sz,y):(a,b) =mnlan, »
1 gfmtn "

S Qmon = min! amxanykz,y):(a,b)

9(a) Using subscript notation for partial derivatives, the linear approximat-
ing polynomial in 2 and y involves all terms as in (19) with m +n < 1 giving
f(z,y) = f(a,b) + fo(a,b)(x — a) + fy(a,b)(y —b),
which is the equation of the tangent plane to the surface z = f(x,y) at the
point (a,b).

(b) As in (a) but now we proceed with constraint m 4+ n < 2.

f(z,y) = fla,b) + fa(a,b)(z — a) + fy(a,b)(y — D)
—I—%flz(a,b)(x - a)Q + %fyy(aab)(y - b)2 + fay(a,b)(x — a)(y —b).

10. f(xvy) = (1 7$7y)717

O y) = (m 4 (1 — 3 — g) D)
omxdny "’
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afm-i-n
= Grggy =00 = (m+ )

= (m )

represents the Taylor series expanded about the origin for (1 —x —y)~'.
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