Mathematics 205 Abstract Algebra

Professor Peter M. Higgins
March 10, 2018

The purpose of modern abstract algebra is to study important aspects of
algebra in their own right without binding it to particular mathematical ideas
or applications. This pursuit set much of mathematics free as the underlying
structure of the subject was revealed. To decide on which aspects are important,
standard examples are used as motivation and so in this module we will never
be far away from familiar objects such as the integers or matrices. However the
feel is decidely pure mathematical with much more emphasis on proof that on
calculations.

The first problem set recounts basic ideas of functions and relations. Set
2 introduces algebras with a single operation, they being semigroups, monoids
and groups. The emphasis will be on group theory throughout. However Set
3 introduces algebras with two operations linked by distributivity, these being
rings and fields. Set 4 introduces more fundamental ideas such as generating
sets and subalgebras as they apply to groups and rings.

In Set 5 we begin classical group theory and here we meet Lagrange’s theorem
based on counting cosets of subgroups. In Sets 5 and 6 we meet the idea of
normal subgroup and its relationship to homomorphisms and quotient groups.
In Set 7 we run through the three basic isomorphism theorems for groups and
the 1st isomorphism theorem as it applies to rings. Set 8 is about commutativity
within groups and here we meet the Fundamental structure theorems for abelian
groups and other asepcts of group commutativity including centralizers, the
centre of a group, and the class equation.

The final two problem sets investigate the Symmetric group and we work
through the proof of Cayley’s theorem. Finally we meet the Alternating group
and the notion of even and odd permutations.



Problem Set 1 Sets and Relations

A relation R between sets A and B is a subset R C A x B. If A = B then
R is a relation on A. The composition R o S of a relation R C A X B and a
relation S C B x C is the relation Ro S C A x C :

RoS ={(a,c):3be B,(a,b) € R, (b,c) € S}.
1. Let A={1,2,3,4},B={a,b,c,d}, C = {v,w,z,y, 2}

R={(1,a),(1,0),(2,0),3,d), 4, d)}, S = {(a,w), (a, ), (b,2), (d,y)}.

Calculate Ro S.

A relation R on a set A is reflexive if (a,a) € RVa € A; R is symmetric
if (a,b) € R — (b,a) € R, and transitive if (a,b),(b,c) € R — (a,c¢) € R.
If R possesses all three properties then R is an equivalance relation and the
equivalance classes of R partition A into disjoint blocks. We say R is anti-
symmetric if (a,b) € R and (b,a) in R implies that a = b. We say R is a
partial order on A if R is reflexive, transitive and anti-symmetric; we say R is
total if for all a,b € A, (a,b) € R or (b,a) € R. Decide which of the preceding
properties are possessed by each of the following relations.

2. Let A = Z and aRb means that ab > 0.

3. Let A =77" and aRb means that a|b (a is a factor of b).

4. Let A =Z% with a = b (mod n).

5. Show that if R is a symmetric and transitive relation on a set A and if
for all @ € A, it is the case that{(a,b) : a € A} # 0, then R is an equivalence
relation on A.

6. Show that a relation R on A is both symmetric and anti-symmetric if and
only if R C ¢, where ¢ is the equality relalation.

7. Let A={1,2,---,9} and define a relation ~ on A x A by (a,b) ~ (¢, d)
if a+d = b+ c. Show that ~ is an equivalence and find the equivalence class

[(2’5)] = {(a’b) : (2’5) ~ (aab)}'

Although relations are generally composed from left to right, however for
function (Questions 8-10) composition g o f will mean first f then g, in the
tradition of calculus.

8. Show that the composition of two injective (one-to-one) functions is
injective.

9. Repeat Question 8 for surjective (onto) functions and deduce that the
composition of two bijections is a bijection.

10. Let f : A — B be a function. Show that fo f~! is the identity function
on the range of f but that f~! o f is an equivalence relation that induces a
partition of A.



Problem Set 2 Semigroups, Monoids, and Groups

A semigroup (S,0) is a set S with an associative binary operation o (often
not explicitly written and often known as multiplication) o : S x S — S so that
ao(boc) = (aob)oc. A semigroup S is a monoid if there exists an identity
element e € S such that ex = xe = x for all x € S. A homomorphism between
semigroups « : S — T is a function that satisfies a(ab) = a(a)a(b) (a,b € S).
A monoid homomorphism must also map the identity of S to that of T.

1. Full transformation semigroup Let X be a set. Show that
Tx ={a: X — X}

under the operation of function composition is a monoid and give its identity
element.

2 (i) Show that the identity element of a monoid is unique.
(ii) Show that if f : S — T and g : T — V are homomorphisms then
go f:S — V is also a homomorphism.

3. Let S be any semigroup. Let S! be the same as S if S is a monoid and
otherwise let 1 stand for a symbol not in .S and extend the multiplication on S
to S' by defining 1z = 21 = z. Show that S' is a monoid.

4. Free monoid Fy = {x1z2- -2, :n > 0,2; € X} under the operation of
concatention meaning that

(:L'LTQ .o :L-n)(yly2 .o ym) = X1ZT9 - .xnylyQ .o ym

(z;,y; € X). Show that F% is a monoid and give its identity element.

A group G is a monoid (with identity element e) in which for every a € G

there exist an element, denoted by a~! (the inverse of a) such that aa=! =

a la =e.

5. Symmetric group A subsemigroup U of a semigroup S is a subset of S
that is a semigroup when the binary operation is restricted to U x U. Show
that the subsemigroup of all permutations on X (that is bijections from X to
X) is a subsemigroup Sx of Tx. Show further that Sx is a group.

6. Direct product of two (or more) semigroups. Let Si,Ss be semigroups.
Then show that S; x Ss is a semigroup if we define the pointwise product

(s1,82)(t1,t2) = (s182,%1t2), s1,t1 € S1, S2,t2 € Sa.



Show that if S; and Sy are both monoids (resp. groups), then so is S; x So.
7. An abelian group is a group in which the group operation is commutative.

(i) Show that (Z,,+), the set of integers {0,1,2,---,n — 1} under addition
modulo n is an abelian group with identity element 0.

(ii) The order of an element a of a group G is the least power n (if it exists)
such that a™ = e, the identity of G. Show that if every non-identity element of
a group has order 2 then G is abelian.

8. Let S be the set of 2 x 2 matrices with real entries and T' the subset of S
of all matrices with non-zero determinant. Show that under multiplication S is
a monoid that is not a group and that T is a subsemigroup of S that is a group.

9. Show that a non-empty subset H C G of a group G is a subgroup of G if
and only if H satisfies the condition that a,b € H — ab™! € H.

10. Show that a semigroup S is a group if and only if the equations ax = b
and ya = b (a,b € S) are always solvable in S. Show that in a group the
solutions to these equations are unique.



Problem Set 3 Rings and Fields

A ring (R,+,-) is a non-empty set R such that (R,+) is an abelian group
(with identity element denoted by 0), (R, -) is a semigroup and these operations
are linked by the Distributive law of addition over multiplication: a - (b+ ¢) =
a-b+a-cand (b+c)-a=b-a+c-a (a,b,c€R).

If a ring has a multiplicative identity e then R is a unital ring. If the operation
() is also commutative, then R is a commutative ring. An integral domain
is a commutative ring with no zero divisors, meaning that whenever ab = 0
(a,b € R) then at least one of a,b is 0. A unital ring R is a divison ring if
(R\ {0},) is a group; R is a field if (R\ {0}, ) is an abelian group. The idea of
subring is defined as the obvious analogue to that of subgroup, subsemigroup,
subspace (for vector spaces) etc.

1. Show that the collection R of all n x n matrices with real entries is a
unital ring under matrix addition and multiplication but is not a commutative
ring.

2. Show that the collection S of all non-singular members of R (of Question
1) is not a subring of R.

3. Show that (Z,+,-) is an integral domain that is not a field.

4. Show that in any ring R and r,s € R we have:
(i) r0 = Or = 0;

(i) (=r)s =r(=s) = —(rs);

(iii) (—7)(—s) =7rs

5. Prove that a commutative unital ring R is an integral domain if and only
if R is cancellative meaning that if ab = ac and a # 0 then b = c.

6. Construct a finite field with four elements.
7. Let R[z] be the collection of all polynomials with coefficients from the
field R. Show that R[z]| together with the operations of polynomial addition and

multiplication is an integral domain but is not a field.

8. Clearly (Z,,,+, ") is a commutative unital ring but for what values of n is
it an integral domain?

9. Show that every field is an integral domain and that every finite integral
domain is a field.

10. Show that R = {a + bW2:a,be Z} is an integral domain.



Problem Set 4 Further ideas for semigroups, groups, and rings

Throughout let S denote a semigroup, G denote a group, and R a ring.

1. A semigroup S is left cancellative (right cancellative) if whenever ab = ac
(resp. ca = ba) then b = ¢. Show that any group G is cancellative (both left and
right cancellative). Find a semigroup that is niether left nor right cancellative
and a semigroup that cancels on one side but not the other.

2. Show that a finite semigroup S is a group if and only if S is cancellative.
Deduce that a finite subsemigroup of a group is a group.

3. The collection of quaternion units Q@ = {x1,+i,+j, £k} forms a non-
abelian group (the Quaternion group), under multiplication. Given that (—1)x =
x(—1) and so can be written as —z for all x € @, display the multiplication table
for @ given that % = j2 = k? = ijk = —1.

4. Let A be a non-empty subset of S. Let (A) be the intersection of all
subsemigroups of S that contain A. Show that (A) is a subsemigroup of S,
that it is the smallest in the sense it is contained in all subsemigroups of .S that
contain A and that

(A) = {a1a2---an,a; € A,n > 1}.
5. Repeat Question 4 for a group G and any subset A C G and show that
(A) = {biby -~ bn,b; € AUA™" 0 >0},

where the empty product (n = 0 case) is taken to mean the identity element e
and A=t ={a"!:a € A}.

6. A group is called G is called cyclic if G = (a) for some a € G and a is
called a generator of G. The order of a set (resp. a generator a) is the cardinal
of that set (resp. of (a)). Describe the set of generators of the cyclic group
(Zy,,+). What is the order of this set?

A subring I of a ring R is called an ideal if it satisfies the condition that
al C T and Ia C I for all a € R and we write I < R to denote this.

7. Show that the only ideals of a field F' are the improper ideals of {0} and
F itself.

8. In the case of R an integral domain, we call an ideal I = aR the principal
ideal generated by a. Show that aR is indeed an ideal in this case.

9. Show that every ideal of (Z,+,-) is principal. (We call such an integral
domain a principal ideal domain).

10. An ideal I of a ring R is called mazimal if the only ideal of R that
properly contains [ is R itself. Find all the maximal ideals of the ring of integers.



Problem Set 5 Cosets and Lagrange’s theorem

Let H < G ( meaning H is a subgroup of G) and let @ € G. Then aH is a
left coset of H in G.

1. Show that the mapping h +— ah is a bijection from H onto aH, so that
all cosets are equicardinal with H.

2. Show that either aH = bH or these two cosets are disjoint.

3. Show that the (left) cosets of H partition G into subsets of equal cardi-
nality.

4. Prove that aH = bH if and only if a='b € H.

5. The dihedral group Dy is the group of symmetries of a square S = ABCD.
Let Ry (k € {0,1,2,3}) represent a rotation of S about its centre O through
k right angles anticlockwise and let Sy represent the reflection of S in the line
through O making an angle of “Tk with the horizontal line through O. Draw up
the group table of D4 and find the left and right cosets of H = (Sp) in Djy.

6. Lagrange’s theorem Let H < G, where G is a finite group. Define the
index of H in G, denoted by [G : H] be the number of (left) cosets of H in G.
Show that

G| =[G : H]|H];

in particular show that the order (i.e. the cardinal) of the subgroup H is a
divisor of the order of the containing group G.

7. Show that any group of prime order is cyclic.

8. Find all groups of order less than 6 and find a group of order 6 that is
not abelian.

9. A subgroup H < G is called normal if aH = Ha for all « € G. In
particular all subgroups of an abelian group are normal.

(i) Show that H is normal in G if and only if aHa~! C H for all a € G.

(ii) Show that if for all @ € G there exists b € G such that aH = Hb, then
H is normal in G.

(iii) Find an example of a group G with an abelian subgroup H such that
H is not normal in G.

(iv) Let H be a subgroup of G of index 2. Prove that H is normal in G.

10. In Set 3 we used the fact that any intersection of subgroups of a group
is a subgroup. In contrast:

(i) Show that the union of two subgroups H U K of a group G is not a
subgroup of G unless one of H, K is contained in the other.

(ii) Find an example of a group G that is a union of three of its subgroups,
with none of the three contained in any of the others.



Problem Set 6 Homomorphisms of semigroups and of groups

A function f:S — T between two semigroups is a homomorphism if

f(ab) = f(a)f(b).

If f is also one-to-one then f is a monomorphism, if f is surjective then f is an
epimorphism, and if f is a bijection then f is an isomorphism; an automorphism
if S =T. In the case of isomorphism we write S ~ T'. An endomorphism is any
homomorphism from a semigroup to itself.

2. (i) Show that for any group homomorphism ¢ : G — H, ¢(eq) = en.
(ii) Show that the composition of any two semigroup homomorphism is itself
a homomorphism.

2 (i) Let G = (i), the subsemigroup of the complex numbers under multipli-
cation. Show that G = (Z4, +).

(ii) Show that Z4 and Zs x Zo are not isomorphic to each other.

3. Show that the image f(S) of a semigroup S under a homomorphism

f:S — T is a subsemigroup of T. Show that if S (but not necessarily T') is a
group, then so is f(.9).

4. Continuing with Question 3, show that, if not empty, the inverse image
U = f~1(V) of a subsemigroup V of T is a subsemigroup of S.

5. Show that if f : G — T is a homomophism from a group into a group, then
f(a=t) = (f(a))~!. Show also that if V is a subgroup of T, then U = f~(V)
is a subgroup of G.

6. Suppose that T is a homomorphic image of a group G, meaning that
there exists an epimorphism ¢ : G — T'.
(i) Show that if G is finite, or is abelian, the same is true of T’

(ii) Show that if A is a generating set for G then ¢(A) generates T’
(iii) Show that if V < T then U = ¢~ (V) < G.
7. Let S = C\{0} with the operation (o) defined by acb = |a|b (a,b € C\{0}).

(i) Show that S is a left cancellative semigroup satisfying aS = S for all
a€sS.

(ii) Express the semigroup S as a direct product G x E where G is a group
and F is a right zero semigroup (meaning that ef = f for all e, f € E).



8. Define the kernel of a group homomorphism ¢ : G — H as

keré = {g € G : 6lg) = en.
(i) Show that the kernel of a homomorphism is a normal subgroup of G.
(ii) Show that a homomorphism is one-to-one if and only if the kernel of ¢
is trivial, meaning that ker(¢) = {eg}.
1

9 (i) For any g € G show that the mapping ¢, : G — G, where ¢4(a) = gag™
(9 € G) is an automorphism of G, known as an inner automorphism of G.

(i) Show that Inn(G), the set of all inner automorphisms of G is a group
under function composition. Indeed Inn(G) < Aut(G), the group of all auto-
morphisms of G.

A commutator in a group G is defined to be an element [a,b] of the form
a=1b~tab (a,b € G) and the commutator subgroup G, of G is that generated by
the commutators.

(iii) Prove that for any homomorphism ¢ : G — G we have
¢(la, b)) = [6(a), ¢(b)].

10. We say that g is conjugate to h (g,h € G) if g = xha~1! for some x € G,
in which case we write ¢ ~ h. Show that conjugacy defines an equivalence
relation on G. (The ~-classes are known as the conjugacy classes of G.)



Problem Set 7 Homomorphic images for groups and for rings

A subgroup N of a group G (we write N < G) is called normal if aNa™ = N
for all @ € G (we write N < G). Equivalently aN = Na for all a € G. (Recall
Questions 9 and 10 of Set 5.) Throughout this problem set N will denote a
normal subgroup.

1. Show that if N < G then (aN)(bN) = abN for all a,b € N.

2. Let G/N denote the collection of cosets of a normal subgroup. Show
that G/N is itself a group, (with identity element N), under multiplication as
defined in Question 1.

3. First isomorphism theorem Let ¢ : G — T be a group homomorphism.
Put N = ker(¢) and U = ¢(G). Show that the mapping ® : G/N — U whereby
aN +— ¢(a) is an isomorphism. Conversely for any normal subgroup of G, the
group G/N is itself a homomorphic image of G under the natural mapping
n: G — G/N whereby n(a) = aN and ker(n) = N.

4. Let H < G (meaning that H is a subgroup of G) and N < G. Then
HN =NH and HN < G. Also N< HN.

5. Prove that HN N < H.

6. Second isomorphism theorem For H < G and N < G
(HN)/N ~ H/HNN.

7. Third isomorphism theorem Let N < M with N, M < G. Show that
N < M and that
(G/N)/(M/N) = G/M.

Define a ring homomorphism f : R — S to be a mapping between rings R
and S such that f(a+0) = f(a) + f(b) and f(ab) = f(a)f(b) for all a,b € R.
The kernel of f is then ker(f) ={a € R: f(a) = 0}.

8. Show that the kernel of a ring homomorphism is an ideal of R and that
f is one-to-one if and only if ker(f) = {0}.

9. Given an ideal I of a ring R show that the set of cosets R/I form a ring
under the operations (I +a)+ (I +b) =1+ (a+b) and (I +a)(I+b) =1+ ab
(a,b € R).

10. Prove the First isomorphism theorem for rings: for an epimorphism
of rings f : R — S show that R/kerf =~ S under the homomorphism ¢ :
R/ker(f) — S whereby I + a +— f(a), where I stands for the ideal ker(f) and
conversely, for I < R the natural homomorphism 1 : R — R/I where an = ol is
an epimorphism with ker(n) = I.

10



Problem Set 8 Commutativity and Abelian groups

Any finitely generated abelian group G (so that G = (A) for some finite
subset A of G) is isomorphic to a direct product of a number of cyclic groups
(Zy,+) and infinite cyclic groups, (Z,+), each of which is isomorphic to the
integers under addition. The group G can be displayed uniquely in two different
ways: the invariant factor decomposition:

Ga (Lpy XLy X+ X Lny) X (ZX -+ X L)
where nj|ns| - - |ng, or alternatively the prime power factor decomposition:

Gx (L oy XL gy X+ XDoto) X (L X -+ XTZ)
Py Do Pm

where p; < py < --- < pg are primes and k; > 1.

1. Use the Chinese Remainder Theorem (see Comment to solution of Ques-
tion 6, Set 1 of MA202) to show that Z,, X Z, & Z, if and only if m and n
have no common factor other than 1.

2. Find (up to isomorphism) all abelian groups G of the following orders,
writing each in both forms provided by the theorem above:

(i) 12; (ii) 72; (iii) 1176.
(iv) Group the following abelian groups by isomorphism:
Z24, Z3 X Z4XZ2, Zg X Z3, ZG X Z4, ZQ X Zlg, Zg X ZQ X ZQ X ZQ, Z4 X Z3 XZQ.

3. Converse of Lagrange’s theorem for abelian groups Show that if G is a
finite abelian and n is a factor of |G| then there exists a subgroup H of G of
order n.

4. The centre of a group G is defined as
Z(G)={a € G:ax =xaVx € G}.

Show that Z(G) is a normal abelian subgroup of G and that G/Z(G) ~
Inn(G), the group of all inner automorphisms of G.

5. Show that for the quaternion group @ and the dihedral group D that
Z(Q) = Z(D) and that Q/Z(Q) ~ D/Z(D), yet Q and D are not isomorphic.

6. Recall the commutator group G; < G (Question 9 Set 6). Prove that
G1 < G and that G/G; is abelian.

7. Define the centralizer C(a) of a € G as C(a) = {g € G : ag = ga}. Show
that C(a) < G.

11



8 (i) Show that the index [G : C(a)] is equal to the number of elements in
the conjugacy class Cl(a) of a.

(ii) Hence deduce the Class equation:
Y [G:Cla)] =G|

where the sum is taken over representatives a for the set of all conjugacy classes
of G.

9. Use the class equation to show that a group of prime power order p"
(n > 1) has a non-trivial centre.

10 (i) Use Question 9 to show that every group of order p?, where p is a
prime, is abelian.
(ii) Hence find all groups of order 9.

12



Problem Set 9 Cayley theorems and the symmetric group

In this set mappings are composed from left to right. Let S be a semigroup
and consider T = Tg1, the full transformation semigroup on S*. Let p, € T
be the right translation mapping whereby a — ax (a € S,z € S'). Define the
mapping ® : S' — Tq1 by 2® = p,.

1. Show that ® is a monomorphism and deduce Cayley’s theorem for semi-
groups, any semigroup S is embeddable in a full transformation semigroup.
(Meaning is isomorphic to some subsemigroup of ... )

Cayley’s theorem for groups

2. Let @ : G — S¢ be the mapping by which 2® = p,. Show that & embeds
the group G into the group of permutations Sg.
3. What is the order of T'x and of Sx when |X|=n > 17

Any permutation on X,, = {1,2,---,n} can be written as a disjoint product
of cycles (i1 i2 - - i) where i1 — i3 — -+ — iy — i1. Products of cycles are
composed from left to right so, for example (12)(23) = (132). The inverse of
a permutation « is the permutation a~! such that aa™' = a~la = e, where
e is the identity permutation that fixes each base point. The collection of all
permutations on X, under function composition forms the symmetric group S,,.

4. Express as a product of disjoint cycles in Sg the product of the cycles
(142)(218)(78)(6351).

5. Repeat Question 4 for the product (123)(412)71(21).

6. Write (12 --- n) as a product of transpositions (2-cycles). Deduce that
the symmetric group is generated by its set of transpositions.

7. For o = (324)(164) and 0 = (4681)(23) on Xg calculate the conjugate
o tao.

8. Verify that the conjugate of Question 7 is equal to

((6(3)o(2) o(4))(a(1) o(6) 7(4)).
9. Use the general fact that
o Mirig -+ ix)o = (0(i1) o(ia) --- o(ip)),

to solve 071(134)(25)0 = (432)(15) for o € S;.
10 (i) Show that

(12---n)7*12)12 - n)f=(k+1k+2)

(addition modulo n).
(ii) Deduce from Question 6 and (i) that any permutation on X, can be
generated as a product of the two cycles (12 --- n) and (12).

13



Problem Set 10 Even and odd permutations; the Alternating group

1. Let A, be the subset of S, of all permutations that may be written as a
product of an even number of transpositions. Show that A, <1.5,.

2. Show that any cycle 7 € S, of odd length is a member of A,,.

We know that any member of S,, can be written as a product of transpo-
sitions. The following exercises show that although a particular member of S,
may be factorized as a product of transpositons in many ways, the number of
transpositions used is either always even or always odd. Consider the polynomial

P=P(x1,22, -, 2n) = Wicj(z; — 25).
3. Write out P explicitly for the case of n = 4.
For o € S,, define the signature of o to be

_ P(@s,1)Z0(2)s 5 Ta(n))
Sgn(g) o P(117I2,“‘7ln) '

4. Work out sgn (o)for

o= (124)(45) € Ss.

5. Explain why in general it is always the case that sgn(c) = £1.

6. Show that sgn is a homomorphism of S,, onto the two-element group
{£1} under multiplication.

7. Deduce from this that o cannot equal to products of transpositions of
different parities, which is to say one product of even length and the other of
odd length.

8. What is the kernel of the homomorphism o7
9. Show that A,, is generated by the set of 3-cycles of .S,,.

10. Prove that the converse of Lagrange’s theorem fails for the group Ay4.

14



Hints for Problems

Problem Set 1

Work directly with the definitions throughout.
7. Don’t lose sight of the fact that the relation is between pairs of integers,
and not between the integers themselves.

Problem Set 2

10. For any a there exists z such that ax = a. Work to show that z is a
right identity element. Then show there is a left identity element and that it
must equal z, and continue from there.

Problem Set 3

1. Associativity of matrix multiplication can be taken as granted, (although
it is worth going through the verification of that at least once) as can the left
and right distributive laws.

3. Again take all the ordinary laws of algebra as they apply to the integers
for granted.

6. It can be shown that any field with 2" members has characterstic 2,
meaning that a + a = 0 is always true. You must have elements 0,1 and a say.
Also 1 + a cannot equal any of the other three members.

9. To show we have a field take any a € R\ {0} and study the mapping on
R\ {0} where z — az.

Problem Set 4

2. Apply the argument of Question 9 Set 3 to allow the conclusion from
Question 10 of Set 2.

6. Express the property of being a generator in terms of existence of solutions
of linear congruences modulo n.

9. Any ideal I consists of all multiples of its least positive member, n; to get

15



a contradiction to I not contained in nZ use the Euclidean algorithm in reverse
(Bezout Lemma) to find a smaller positive member of I.

10. Show that the principal ideals generated by primes are maximal, again
getting a contradiction to that claim by using the Euclidean algorithm in reverse.

Problem Set 5

2. Prove that if aH NbH # () then a H C bH.

6, 7, 8. Apply Lagrange’s theorem

8. Apply the result of Question 7.

9 (iii) Use Question 6.

10 (i) Look at the product of members that are in one subgroup and not the
other. Where can it lie?

(ii) There is a counterexample of order 4.

Problem Set 6

1(i) First show that the identity of a group is the group’s one and only
idempotent.

2 (i) Write down a specific isomorphism between the two groups and check
that it is a function, that it is one-to-one and onto, and that it is a homomor-
phism.

(ii) What feature does Z,4 have that Zs x Zs does not?

3. Any isomorphism must preserve the order of each member.

5. To show that f(a=!) = (f(a))~! you just need to show that f(a=!)f(a) =
f(a)f(a=?) = er.

7 (i) First we need to check that C\ {0} is closed under this binary operation,
and that operation is associative. Then check that S is left cancellative and that
the equation a o x = b can be solved in S.

(ii) Show that S =~ G X E where G = R™ under multiplication and E is the
set of complex numbers of modulus 1.

9 (ii) To show closure under conjugacy just check that for any automorphism

o we get aggat = Pug).

Problem Set 7

3. You need first to check that the mapping is well-defined: if aN = bN is
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it true that ¢(a) = ¢(b)?

6. Show that the mapping from H to HN/N where h — hN is an epimor-
phism with kernel H N N and the apply the 1st Isomorphism theorem.

7. Show that the mapping from G/N to G/M where aN +— aM is an
epimorphism and again apply the 1st isomorphism theorem.

Problem Set 8

1. Consider the kernel of the map from Z,, = Z,, X Z,, where a¢ = (a, a).

2. Write each group in invariant factor form and compare to identify iso-
morphism classes.

3. Solve the problem for the cyclic group Z,x for prime power p* and then
use the prime power decomposition form to get the general result.

4. What is the kernel of the homomorphism where g — ¢,7 Then apply the
1st isomorphism theorem.

9. Use Lagrange’s theorem to show all the terms in the sum are p powers;
noting that |Z(G)| is one of these terms!

10. Factoring out the centre in these circmustances gives a quotient group
which is cyclic.

Problem Set 9

1. You need to check that p,, = prp,. For injectivity you will need the
presence of the identity 1.

2. This time you need to check that p, is a permutation, and not just a
function.

4. Remember to work with the cycles from left to right.

5. To get the inverse of a cycle, just reverse it.

9. Equate the given expression for each cycle, 0~ 'Co with a cycle of the
same length in the intended product.

10 (i) Again, make use of the conjugation rule for cycles.

10 (ii) Show that any transposition can now be written as a product of the
two given cycles.

Problem Set 10

6. Write down sgn(o7) and then multiply top and bottom by P(2r(1y," -+, Zr(n))-

17



10. Use the fact that that any putative subgroup H of order 6 is normal in
Ay4(why?) to show that H contains all eight 3-cycles of Ay.
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Answers to the Problems

Problem Set 1

1. {(1,w), (1,2),(3,y), (4,y)}. 2. Symmetric, transitive. 3.partial but not a
total order. 4. equivalence relation. 7. {(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)}.

Problem Set 2

See solutions

Problem Set 3

See solutions

Problem Set 4

6. {a € Z, : ged(a,n) = 1}, the order of this set is ¢(n), where ¢ is the
Euler function.
10. I is maximal if and only if I = pZ for some prime p.

Problem Set 5

5. The left cosets are:H = {Ro,So}, RiH = {R1,51}, RoH = {R2, 52},
R3H = {Rs,S3}, while the right cosets are: H = {Ry, S0}, HR1 = {R1, S5},
HRy = {Ry,S>}, HRs = {R3,5,}.

8. 7y, Lo, L3, Ly, Lo X Lo, Zs, Zg; S3 is a non-abelian group of order 6.

9 (iii) Look to the dihedral group.

10. Za X Zs is the union of the three subgroups {(0, 0), (0,1)}uU{(0,0), (1,0)}U
{(0,0), (1, 1)}.
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Problem Set 6

See solutions

Problem Set 7

See solutions

Problem Set 8

2 (i)
ZQ X ZQ X Zg, and Z4 X Zg;

in invariant factor form these two groups have respective representations:
Z2 X Z6, and Zlg.
(i
ZQXZQXZQXZgXZg%ZQXZGXZG, 2|6|6
ZQ X Z4 X Zg X Zg ~ Z6 X Zlg, 6|12,
Zg X Zg X Zg ~ Zg X 224, 3|24,
ZQ X ZQ X ZQ X Zg =~ ZQ X ZQ X Zlg, 2|2|18,
Z2 X Z4 X Zg ~ ZQ X Z36, 2|36,
Zg X Zg ~ Z72.
(iif)
Z2 X Z2 X Z2 X Z3 X Z7 X Z7 ~ Z2 X Z14 X Z42, 2|14|42,

Lo X Ly X Ly X Ly X Ly = Lo X Log X Lsa, 2|28|84;

Zg X Lz X Ly X Ly == Ly X Zygs; 7|168;
Zo X Lo X Lo X Ly X Lag = Ly X Lo X Lags, 2|2|294;
Lo X Ly X T3 X Lag = Lo X Lsss, 2|588;
Zg % ZLaar = Larze-

(IV) {Z24,Z8 XZ3}, {ZgXZ4XZQ,Z2 XZlg,Z4 XZg XZQ}, {Z3 XZQXZQ XZQ}.
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5. Z(Q) = {*1) (ZD) = {Ro, Re} Z(Q) ~ Zy = Z(D) Q/Z(Q) = Zy x
Zs = D/(ZD). @ = D, but the set of self-inverse elements of D numbers six:
{Ry, R2, Sy, S1, S2, S5} while there for @, the self-inverse elements are just +1;
Q ﬁ#ﬁ D. 10 (11) Zg X Z3 and Zg.

Problem Set 9

4. (14635)(28). 5. (1234). 6. (12)(13)---(1n). 7 & 8. (23486).

8. (142).

4. (14635)(28).5. (1234).6. (12---n) = (12)(13)---(1n). 7. (23486).
9. 0 =(142).

Problem Set 10

3. P(z1,x2,x3,24) = (21 — x2)(x1 —x3) (22 — x4)(x2 — x3) (w2 — 24) (T3 — 24).
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