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The purpose of modern abstra
t algebra is to study important aspe
ts of

algebra in their own right without binding it to parti
ular mathemati
al ideas

or appli
ations. This pursuit set mu
h of mathemati
s free as the underlying

stru
ture of the subje
t was revealed. To de
ide on whi
h aspe
ts are important,

standard examples are used as motivation and so in this module we will never

be far away from familiar obje
ts su
h as the integers or matri
es. However the

feel is de
idely pure mathemati
al with mu
h more emphasis on proof that on


al
ulations.

The �rst problem set re
ounts basi
 ideas of fun
tions and relations. Set

2 introdu
es algebras with a single operation, they being semigroups, monoids

and groups. The emphasis will be on group theory throughout. However Set

3 introdu
es algebras with two operations linked by distributivity, these being

rings and �elds. Set 4 introdu
es more fundamental ideas su
h as generating

sets and subalgebras as they apply to groups and rings.

In Set 5 we begin 
lassi
al group theory and here we meet Lagrange's theorem

based on 
ounting 
osets of subgroups. In Sets 5 and 6 we meet the idea of

normal subgroup and its relationship to homomorphisms and quotient groups.

In Set 7 we run through the three basi
 isomorphism theorems for groups and

the 1st isomorphism theorem as it applies to rings. Set 8 is about 
ommutativity

within groups and here we meet the Fundamental stru
ture theorems for abelian

groups and other asep
ts of group 
ommutativity in
luding 
entralizers, the


entre of a group, and the 
lass equation.

The �nal two problem sets investigate the Symmetri
 group and we work

through the proof of Cayley's theorem. Finally we meet the Alternating group

and the notion of even and odd permutations.
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Problem Set 1 Sets and Relations

A relation R between sets A and B is a subset R ⊆ A × B. If A = B then

R is a relation on A. The 
omposition R ◦ S of a relation R ⊆ A × B and a

relation S ⊆ B × C is the relation R ◦ S ⊆ A× C :

R ◦ S = {(a, c) : ∃b ∈ B, (a, b) ∈ R, (b, c) ∈ S}.
1. Let A = {1, 2, 3, 4},B = {a, b, c, d}, C = {v, w, x, y, z}

R = {(1, a), (1, b), (2, c), (3, d), (4, d)}, S = {(a, w), (a, x), (b, x), (d, y)}.

Cal
ulate R ◦ S.

A relation R on a set A is re�exive if (a, a) ∈ R ∀a ∈ A; R is symmetri


if (a, b) ∈ R → (b, a) ∈ R, and transitive if (a, b), (b, c) ∈ R → (a, c) ∈ R.
If R possesses all three properties then R is an equivalan
e relation and the

equivalan
e 
lasses of R partition A into disjoint blo
ks. We say R is anti-

symmetri
 if (a, b) ∈ R and (b, a) in R implies that a = b. We say R is a

partial order on A if R is re�exive, transitive and anti-symmetri
; we say R is

total if for all a, b ∈ A, (a, b) ∈ R or (b, a) ∈ R. De
ide whi
h of the pre
eding

properties are possessed by ea
h of the following relations.

2. Let A = Z and aRb means that ab > 0.
3. Let A = Z+

and aRb means that a|b (a is a fa
tor of b).
4. Let A = Z+

with a ≡ b (mod n).
5. Show that if R is a symmetri
 and transitive relation on a set A and if

for all a ∈ A, it is the 
ase that{(a, b) : a ∈ A} 6= ∅, then R is an equivalen
e

relation on A.
6. Show that a relation R on A is both symmetri
 and anti-symmetri
 if and

only if R ⊆ ι, where ι is the equality relalation.

7. Let A = {1, 2, · · · , 9} and de�ne a relation ∼ on A × A by (a, b) ∼ (c, d)
if a+ d = b+ c. Show that ∼ is an equivalen
e and �nd the equivalen
e 
lass

[(2, 5)] = {(a, b) : (2, 5) ∼ (a, b)}.
Although relations are generally 
omposed from left to right, however for

fun
tion (Questions 8-10) 
omposition g ◦ f will mean �rst f then g, in the

tradition of 
al
ulus.

8. Show that the 
omposition of two inje
tive (one-to-one) fun
tions is

inje
tive.

9. Repeat Question 8 for surje
tive (onto) fun
tions and dedu
e that the


omposition of two bije
tions is a bije
tion.

10. Let f : A → B be a fun
tion. Show that f ◦ f−1
is the identity fun
tion

on the range of f but that f−1 ◦ f is an equivalen
e relation that indu
es a

partition of A.
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Problem Set 2 Semigroups, Monoids, and Groups

A semigroup (S, ◦) is a set S with an asso
iative binary operation ◦ (often

not expli
itly written and often known as multipli
ation) ◦ : S × S → S so that

a ◦ (b ◦ c) = (a ◦ b) ◦ c. A semigroup S is a monoid if there exists an identity

element e ∈ S su
h that ex = xe = x for all x ∈ S. A homomorphism between

semigroups α : S → T is a fun
tion that satis�es α(ab) = α(a)α(b) (a, b ∈ S).
A monoid homomorphism must also map the identity of S to that of T .

1. Full transformation semigroup Let X be a set. Show that

TX = {α : X → X}

under the operation of fun
tion 
omposition is a monoid and give its identity

element.

2 (i) Show that the identity element of a monoid is unique.

(ii) Show that if f : S → T and g : T → V are homomorphisms then

g ◦ f : S → V is also a homomorphism.

3. Let S be any semigroup. Let S1
be the same as S if S is a monoid and

otherwise let 1 stand for a symbol not in S and extend the multipli
ation on S
to S1

by de�ning 1x = x1 = x. Show that S1
is a monoid.

4. Free monoid F 1
X = {x1x2 · · ·xn : n ≥ 0, xi ∈ X} under the operation of


on
atention meaning that

(x1x2 · · ·xn)(y1y2 · · · ym) = x1x2 · · ·xny1y2 · · · ym

(xi, yj ∈ X). Show that F 1
X is a monoid and give its identity element.

A group G is a monoid (with identity element e) in whi
h for every a ∈ G
there exist an element, denoted by a−1

(the inverse of a) su
h that aa−1 =
a−1a = e.

5. Symmetri
 group A subsemigroup U of a semigroup S is a subset of S
that is a semigroup when the binary operation is restri
ted to U × U . Show

that the subsemigroup of all permutations on X (that is bije
tions from X to

X) is a subsemigroup SX of TX . Show further that SX is a group.

6. Dire
t produ
t of two (or more) semigroups. Let S1, S2 be semigroups.

Then show that S1 × S2 is a semigroup if we de�ne the pointwise produ
t

(s1, s2)(t1, t2) = (s1s2, t1t2), s1, t1 ∈ S1, s2, t2 ∈ S2.

3



Show that if S1 and S2 are both monoids (resp. groups), then so is S1 × S2.

7. An abelian group is a group in whi
h the group operation is 
ommutative.

(i) Show that (Zn,+), the set of integers {0, 1, 2, · · · , n− 1} under addition

modulo n is an abelian group with identity element 0.
(ii) The order of an element a of a group G is the least power n (if it exists)

su
h that an = e, the identity of G. Show that if every non-identity element of

a group has order 2 then G is abelian.

8. Let S be the set of 2× 2 matri
es with real entries and T the subset of S
of all matri
es with non-zero determinant. Show that under multipli
ation S is

a monoid that is not a group and that T is a subsemigroup of S that is a group.

9. Show that a non-empty subset H ⊆ G of a group G is a subgroup of G if

and only if H satis�es the 
ondition that a, b ∈ H → ab−1 ∈ H.

10. Show that a semigroup S is a group if and only if the equations ax = b
and ya = b (a, b ∈ S) are always solvable in S. Show that in a group the

solutions to these equations are unique.
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Problem Set 3 Rings and Fields

A ring (R,+, ·) is a non-empty set R su
h that (R,+) is an abelian group

(with identity element denoted by 0), (R, ·) is a semigroup and these operations

are linked by the Distributive law of addition over multipli
ation: a · (b + c) =
a · b+ a · c and (b+ c) · a = b · a+ c · a (a, b, c ∈ R).

If a ring has amultipli
ative identity e then R is a unital ring. If the operation

(·) is also 
ommutative, then R is a 
ommutative ring. An integral domain

is a 
ommutative ring with no zero divisors, meaning that whenever ab = 0
(a, b ∈ R) then at least one of a, b is 0. A unital ring R is a divison ring if

(R \ {0}, ·) is a group; R is a �eld if (R \ {0}, ·) is an abelian group. The idea of

subring is de�ned as the obvious analogue to that of subgroup, subsemigroup,

subspa
e (for ve
tor spa
es) et
.

1. Show that the 
olle
tion R of all n × n matri
es with real entries is a

unital ring under matrix addition and multipli
ation but is not a 
ommutative

ring.

2. Show that the 
olle
tion S of all non-singular members of R (of Question

1) is not a subring of R.

3. Show that (Z,+, ·) is an integral domain that is not a �eld.

4. Show that in any ring R and r, s ∈ R we have:

(i) r0 = 0r = 0;
(ii) (−r)s = r(−s) = −(rs);
(iii) (−r)(−s) = rs

5. Prove that a 
ommutative unital ring R is an integral domain if and only

if R is 
an
ellative meaning that if ab = ac and a 6= 0 then b = c.

6. Constru
t a �nite �eld with four elements.

7. Let R[x] be the 
olle
tion of all polynomials with 
oe�
ients from the

�eld R. Show that R[x] together with the operations of polynomial addition and

multipli
ation is an integral domain but is not a �eld.

8. Clearly (Zn,+, ·) is a 
ommutative unital ring but for what values of n is

it an integral domain?

9. Show that every �eld is an integral domain and that every �nite integral

domain is a �eld.

10. Show that R = {a+ b
√
2 : a, b ∈ Z} is an integral domain.
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Problem Set 4 Further ideas for semigroups, groups, and rings

Throughout let S denote a semigroup, G denote a group, and R a ring.

1. A semigroup S is left 
an
ellative (right 
an
ellative) if whenever ab = ac
(resp. ca = ba) then b = c. Show that any group G is 
an
ellative (both left and

right 
an
ellative). Find a semigroup that is niether left nor right 
an
ellative

and a semigroup that 
an
els on one side but not the other.

2. Show that a �nite semigroup S is a group if and only if S is 
an
ellative.

Dedu
e that a �nite subsemigroup of a group is a group.

3. The 
olle
tion of quaternion units Q = {±1,±i,±j,±k} forms a non-

abelian group (theQuaternion group), under multipli
ation. Given that (−1)x =
x(−1) and so 
an be written as −x for all x ∈ Q, display the multipli
ation table
for Q given that i2 = j2 = k2 = ijk = −1.

4. Let A be a non-empty subset of S. Let 〈A〉 be the interse
tion of all

subsemigroups of S that 
ontain A. Show that 〈A〉 is a subsemigroup of S,
that it is the smallest in the sense it is 
ontained in all subsemigroups of S that


ontain A and that

〈A〉 = {a1a2 · · ·an, ai ∈ A, n ≥ 1}.

5. Repeat Question 4 for a group G and any subset A ⊆ G and show that

〈A〉 = {b1b2 · · · bn, bi ∈ A ∪ A−1, n ≥ 0},

where the empty produ
t (n = 0 
ase) is taken to mean the identity element e
and A−1 = {a−1 : a ∈ A}.

6. A group is 
alled G is 
alled 
y
li
 if G = 〈a〉 for some a ∈ G and a is


alled a generator of G. The order of a set (resp. a generator a) is the 
ardinal
of that set (resp. of 〈a〉). Des
ribe the set of generators of the 
y
li
 group

(Zn,+). What is the order of this set?

A subring I of a ring R is 
alled an ideal if it satis�es the 
ondition that

aI ⊆ I and Ia ⊆ I for all a ∈ R and we write I ⊳R to denote this.

7. Show that the only ideals of a �eld F are the improper ideals of {0} and

F itself.

8. In the 
ase of R an integral domain, we 
all an ideal I = aR the prin
ipal

ideal generated by a. Show that aR is indeed an ideal in this 
ase.

9. Show that every ideal of (Z,+, ·) is prin
ipal. (We 
all su
h an integral

domain a prin
ipal ideal domain).

10. An ideal I of a ring R is 
alled maximal if the only ideal of R that

properly 
ontains I is R itself. Find all the maximal ideals of the ring of integers.
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Problem Set 5 Cosets and Lagrange's theorem

Let H ≤ G ( meaning H is a subgroup of G) and let a ∈ G. Then aH is a

left 
oset of H in G.

1. Show that the mapping h 7→ ah is a bije
tion from H onto aH , so that

all 
osets are equi
ardinal with H .

2. Show that either aH = bH or these two 
osets are disjoint.

3. Show that the (left) 
osets of H partition G into subsets of equal 
ardi-

nality.

4. Prove that aH = bH if and only if a−1b ∈ H .

5. The dihedral group D4 is the group of symmetries of a square S = ABCD.

Let Rk (k ∈ {0, 1, 2, 3}) represent a rotation of S about its 
entre O through

k right angles anti
lo
kwise and let Sk represent the re�e
tion of S in the line

through O making an angle of

πk
4 with the horizontal line through O. Draw up

the group table of D4 and �nd the left and right 
osets of H = 〈S0〉 in D4.

6. Lagrange's theorem Let H ≤ G, where G is a �nite group. De�ne the

index of H in G, denoted by [G : H ] be the number of (left) 
osets of H in G.
Show that

|G| = [G : H ]|H |;
in parti
ular show that the order (i.e. the 
ardinal) of the subgroup H is a

divisor of the order of the 
ontaining group G.

7. Show that any group of prime order is 
y
li
.

8. Find all groups of order less than 6 and �nd a group of order 6 that is

not abelian.

9. A subgroup H ≤ G is 
alled normal if aH = Ha for all a ∈ G. In

parti
ular all subgroups of an abelian group are normal.

(i) Show that H is normal in G if and only if aHa−1 ⊆ H for all a ∈ G.
(ii) Show that if for all a ∈ G there exists b ∈ G su
h that aH = Hb, then

H is normal in G.
(iii) Find an example of a group G with an abelian subgroup H su
h that

H is not normal in G.
(iv) Let H be a subgroup of G of index 2. Prove that H is normal in G.

10. In Set 3 we used the fa
t that any interse
tion of subgroups of a group

is a subgroup. In 
ontrast:

(i) Show that the union of two subgroups H ∪ K of a group G is not a

subgroup of G unless one of H,K is 
ontained in the other.

(ii) Find an example of a group G that is a union of three of its subgroups,

with none of the three 
ontained in any of the others.
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Problem Set 6 Homomorphisms of semigroups and of groups

A fun
tion f : S → T between two semigroups is a homomorphism if

f(ab) = f(a)f(b).

If f is also one-to-one then f is a monomorphism, if f is surje
tive then f is an

epimorphism, and if f is a bije
tion then f is an isomorphism; an automorphism

if S = T . In the 
ase of isomorphism we write S ≈ T . An endomorphism is any

homomorphism from a semigroup to itself.

2. (i) Show that for any group homomorphism φ : G → H , φ(eG) = eH .
(ii) Show that the 
omposition of any two semigroup homomorphism is itself

a homomorphism.

2 (i) Let G = 〈i〉, the subsemigroup of the 
omplex numbers under multipli-


ation. Show that G ≈ (Z4,+).

(ii) Show that Z4 and Z2 × Z2 are not isomorphi
 to ea
h other.

3. Show that the image f(S) of a semigroup S under a homomorphism

f : S → T is a subsemigroup of T . Show that if S (but not ne
essarily T ) is a
group, then so is f(S).

4. Continuing with Question 3, show that, if not empty, the inverse image

U = f−1(V ) of a subsemigroup V of T is a subsemigroup of S.

5. Show that if f : G → T is a homomophism from a group into a group, then

f(a−1) = (f(a))−1
. Show also that if V is a subgroup of T , then U = f−1(V )

is a subgroup of G.

6. Suppose that T is a homomorphi
 image of a group G, meaning that

there exists an epimorphism φ : G → T .
(i) Show that if G is �nite, or is abelian, the same is true of T ;

(ii) Show that if A is a generating set for G then φ(A) generates T ;

(iii) Show that if V ⊳ T then U = φ−1(V )⊳G.

7. Let S = C\{0}with the operation (◦) de�ned by a◦b = |a|b (a, b ∈ C\{0}).
(i) Show that S is a left 
an
ellative semigroup satisfying aS = S for all

a ∈ S.

(ii) Express the semigroup S as a dire
t produ
t G× E where G is a group

and E is a right zero semigroup (meaning that ef = f for all e, f ∈ E).
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8. De�ne the kernel of a group homomorphism φ : G → H as

kerφ = {g ∈ G : φ(g) = eH}.

(i) Show that the kernel of a homomorphism is a normal subgroup of G.

(ii) Show that a homomorphism is one-to-one if and only if the kernel of φ
is trivial, meaning that ker(φ) = {eG}.

9 (i) For any g ∈ G show that the mapping φg : G → G, where φg(a) = gag−1

(g ∈ G) is an automorphism of G, known as an inner automorphism of G.

(ii) Show that Inn(G), the set of all inner automorphisms of G is a group

under fun
tion 
omposition. Indeed Inn(G) ⊳ Aut(G), the group of all auto-

morphisms of G.

A 
ommutator in a group G is de�ned to be an element [a, b] of the form

a−1b−1ab (a, b ∈ G) and the 
ommutator subgroup G1 of G is that generated by

the 
ommutators.

(iii) Prove that for any homomorphism φ : G → G we have

φ([a, b]) = [φ(a), φ(b)].

10. We say that g is 
onjugate to h (g, h ∈ G) if g = xhx−1
for some x ∈ G,

in whi
h 
ase we write g ∼ h. Show that 
onjuga
y de�nes an equivalen
e

relation on G. (The ∼-
lasses are known as the 
onjuga
y 
lasses of G.)
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Problem Set 7 Homomorphi
 images for groups and for rings

A subgroupN of a groupG (we writeN ≤ G) is 
alled normal if aNa−1 = N
for all a ∈ G (we write N ⊳G). Equivalently aN = Na for all a ∈ G. (Re
all
Questions 9 and 10 of Set 5.) Throughout this problem set N will denote a

normal subgroup.

1. Show that if N ⊳G then (aN)(bN) = abN for all a, b ∈ N .

2. Let G/N denote the 
olle
tion of 
osets of a normal subgroup. Show

that G/N is itself a group, (with identity element N), under multipli
ation as

de�ned in Question 1.

3. First isomorphism theorem Let φ : G → T be a group homomorphism.

Put N = ker(φ) and U = φ(G). Show that the mapping Φ : G/N → U whereby

aN 7→ φ(a) is an isomorphism. Conversely for any normal subgroup of G, the
group G/N is itself a homomorphi
 image of G under the natural mapping

η : G → G/N whereby η(a) = aN and ker(η) = N .

4. Let H ≤ G (meaning that H is a subgroup of G) and N ⊳ G. Then

HN = NH and HN ≤ G. Also N ⊳HN .

5. Prove that H ∩N ⊳H .

6. Se
ond isomorphism theorem For H ≤ G and N ⊳G

(HN)/N ≈ H/H ∩N.

7. Third isomorphism theorem Let N ≤ M with N,M ⊳ G. Show that

N ⊳M and that

(G/N)/(M/N) ≈ G/M.

De�ne a ring homomorphism f : R → S to be a mapping between rings R
and S su
h that f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b) for all a, b ∈ R.
The kernel of f is then ker(f) = {a ∈ R : f(a) = 0}.

8. Show that the kernel of a ring homomorphism is an ideal of R and that

f is one-to-one if and only if ker(f) = {0}.

9. Given an ideal I of a ring R show that the set of 
osets R/I form a ring

under the operations (I + a) + (I + b) = I + (a+ b) and (I + a)(I + b) = I + ab
(a, b ∈ R).

10. Prove the First isomorphism theorem for rings: for an epimorphism

of rings f : R → S show that R/kerf ≈ S under the homomorphism φ :
R/ker(f) → S whereby I + a 7→ f(a), where I stands for the ideal ker(f) and

onversely, for I ⊳R the natural homomorphism η : R → R/I where aη = aI is

an epimorphism with ker(η) = I.

10



Problem Set 8 Commutativity and Abelian groups

Any �nitely generated abelian group G (so that G = 〈A〉 for some �nite

subset A of G) is isomorphi
 to a dire
t produ
t of a number of 
y
li
 groups

(Zn,+) and in�nite 
y
li
 groups, (Z,+), ea
h of whi
h is isomorphi
 to the

integers under addition. The group G 
an be displayed uniquely in two di�erent

ways: the invariant fa
tor de
omposition:

G ≈ (Zn1 × Zn2 × · · · × Znk
)× (Z× · · · × Z)

where n1|n2| · · · |nk, or alternatively the prime power fa
tor de
omposition:

G ≈ (Z
p
k1
1

× Z
p
k2
2

× · · · × Z
p
km
m

)× (Z× · · · × Z)

where p1 ≤ p2 ≤ · · · ≤ pk are primes and ki ≥ 1.

1. Use the Chinese Remainder Theorem (see Comment to solution of Ques-

tion 6, Set 1 of MA202) to show that Zm × Zn ≈ Zmn if and only if m and n
have no 
ommon fa
tor other than 1.

2. Find (up to isomorphism) all abelian groups G of the following orders,

writing ea
h in both forms provided by the theorem above:

(i) 12; (ii) 72; (iii) 1176.

(iv) Group the following abelian groups by isomorphism:

Z24, Z3×Z4×Z2, Z8×Z3, Z6×Z4, Z2×Z12, Z3×Z2×Z2×Z2, Z4×Z3×Z2.

3. Converse of Lagrange's theorem for abelian groups Show that if G is a

�nite abelian and n is a fa
tor of |G| then there exists a subgroup H of G of

order n.

4. The 
entre of a group G is de�ned as

Z(G) = {a ∈ G : ax = xa ∀x ∈ G}.

Show that Z(G) is a normal abelian subgroup of G and that G/Z(G) ≈
Inn(G), the group of all inner automorphisms of G.

5. Show that for the quaternion group Q and the dihedral group D that

Z(Q) ≈ Z(D) and that Q/Z(Q) ≈ D/Z(D), yet Q and D are not isomorphi
.

6. Re
all the 
ommutator group G1 ≤ G (Question 9 Set 6). Prove that

G1 ⊳G and that G/G1 is abelian.

7. De�ne the 
entralizer C(a) of a ∈ G as C(a) = {g ∈ G : ag = ga}. Show
that C(a) ≤ G.
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8 (i) Show that the index [G : C(a)] is equal to the number of elements in

the 
onjuga
y 
lass Cl(a) of a.

(ii) Hen
e dedu
e the Class equation:

∑

a

[G : C(a)] = |G|

where the sum is taken over representatives a for the set of all 
onjuga
y 
lasses

of G.

9. Use the 
lass equation to show that a group of prime power order pn

(n ≥ 1) has a non-trivial 
entre.

10 (i) Use Question 9 to show that every group of order p2, where p is a

prime, is abelian.

(ii) Hen
e �nd all groups of order 9.
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Problem Set 9 Cayley theorems and the symmetri
 group

In this set mappings are 
omposed from left to right. Let S be a semigroup

and 
onsider T = TS1
, the full transformation semigroup on S1

. Let ρx ∈ T
be the right translation mapping whereby a 7→ ax (a ∈ S, x ∈ S1). De�ne the

mapping Φ : S1 → TS1
by xΦ = ρx.

1. Show that Φ is a monomorphism and dedu
e Cayley's theorem for semi-

groups, any semigroup S is embeddable in a full transformation semigroup.

(Meaning is isomorphi
 to some subsemigroup of ... )

Cayley's theorem for groups

2. Let Φ : G → SG be the mapping by whi
h xΦ = ρx. Show that Φ embeds

the group G into the group of permutations SG.

3. What is the order of TX and of SX when |X | = n ≥ 1?

Any permutation on Xn = {1, 2, · · · , n} 
an be written as a disjoint produ
t

of 
y
les (i1 i2 · · · ik) where i1 7→ i2 7→ · · · 7→ ik 7→ i1. Produ
ts of 
y
les are


omposed from left to right so, for example (1 2)(2 3) = (1 3 2). The inverse of

a permutation α is the permutation α−1
su
h that αα−1 = α−1α = e, where

e is the identity permutation that �xes ea
h base point. The 
olle
tion of all

permutations on Xn under fun
tion 
omposition forms the symmetri
 group Sn.

4. Express as a produ
t of disjoint 
y
les in S8 the produ
t of the 
y
les

(1 4 2)(2 1 8)(7 8)(6 3 5 1).
5. Repeat Question 4 for the produ
t (1 2 3)(4 1 2)−1(2 1).
6. Write (1 2 · · · n) as a produ
t of transpositions (2-
y
les). Dedu
e that

the symmetri
 group is generated by its set of transpositions.

7. For α = (3 2 4)(1 6 4) and σ = (4 6 8 1)(2 3) on X8 
al
ulate the 
onjugate

σ−1ασ.
8. Verify that the 
onjugate of Question 7 is equal to

((σ(3)σ(2)σ(4))(σ(1)σ(6)σ(4)).

9. Use the general fa
t that

σ−1(i1 i2 · · · ik)σ = (σ(i1)σ(i2) · · · σ(ik)),

to solve σ−1(1 3 4)(2 5)σ = (4 3 2)(1 5) for σ ∈ S5.

10 (i) Show that

(1 2 · · · n)−k(1 2)(1 2 · · · n)k = (k + 1 k + 2)

(addition modulo n).
(ii) Dedu
e from Question 6 and (i) that any permutation on Xn 
an be

generated as a produ
t of the two 
y
les (1 2 · · · n) and (1 2).

13



Problem Set 10 Even and odd permutations; the Alternating group

1. Let An be the subset of Sn of all permutations that may be written as a

produ
t of an even number of transpositions. Show that An ⊳ Sn.

2. Show that any 
y
le π ∈ Sn of odd length is a member of An.

We know that any member of Sn 
an be written as a produ
t of transpo-

sitions. The following exer
ises show that although a parti
ular member of Sn

may be fa
torized as a produ
t of transpositons in many ways, the number of

transpositions used is either always even or always odd. Consider the polynomial

P = P (x1, x2, · · · , xn) = Πi<j(xi − xj).

3. Write out P expli
itly for the 
ase of n = 4.

For σ ∈ Sn de�ne the signature of σ to be

sgn(σ) =
P (xσ(1),xσ(2),···,xσ(n))

P (x1,x2,···,xn)
.

4. Work out sgn (σ)for

σ = (1 2 4)(4 5) ∈ S5.

.

5. Explain why in general it is always the 
ase that sgn(σ) = ±1.

6. Show that sgn is a homomorphism of Sn onto the two-element group

{±1} under multipli
ation.

7. Dedu
e from this that σ 
annot equal to produ
ts of transpositions of

di�erent parities, whi
h is to say one produ
t of even length and the other of

odd length.

8. What is the kernel of the homomorphism σ?

9. Show that An is generated by the set of 3-
y
les of Sn.

10. Prove that the 
onverse of Lagrange's theorem fails for the group A4.

14



Hints for Problems

Problem Set 1

Work dire
tly with the de�nitions throughout.

7. Don't lose sight of the fa
t that the relation is between pairs of integers,

and not between the integers themselves.

Problem Set 2

10. For any a there exists x su
h that ax = a. Work to show that x is a

right identity element. Then show there is a left identity element and that it

must equal x, and 
ontinue from there.

Problem Set 3

1. Asso
iativity of matrix multipli
ation 
an be taken as granted, (although

it is worth going through the veri�
ation of that at least on
e) as 
an the left

and right distributive laws.

3. Again take all the ordinary laws of algebra as they apply to the integers

for granted.

6. It 
an be shown that any �eld with 2n members has 
hara
tersti
 2,

meaning that a+ a = 0 is always true. You must have elements 0, 1 and a say.

Also 1 + a 
annot equal any of the other three members.

9. To show we have a �eld take any a ∈ R \ {0} and study the mapping on

R \ {0} where x 7→ ax.

Problem Set 4

2. Apply the argument of Question 9 Set 3 to allow the 
on
lusion from

Question 10 of Set 2.

6. Express the property of being a generator in terms of existen
e of solutions

of linear 
ongruen
es modulo n.
9. Any ideal I 
onsists of all multiples of its least positive member, n; to get

15



a 
ontradi
tion to I not 
ontained in nZ use the Eu
lidean algorithm in reverse

(Bezout Lemma) to �nd a smaller positive member of I.
10. Show that the prin
ipal ideals generated by primes are maximal, again

getting a 
ontradi
tion to that 
laim by using the Eu
lidean algorithm in reverse.

Problem Set 5

2. Prove that if aH ∩ bH 6= ∅ then aH ⊆ bH .

6, 7, 8. Apply Lagrange's theorem

8. Apply the result of Question 7.

9 (iii) Use Question 6.

10 (i) Look at the produ
t of members that are in one subgroup and not the

other. Where 
an it lie?

(ii) There is a 
ounterexample of order 4.

Problem Set 6

1(i) First show that the identity of a group is the group's one and only

idempotent.

2 (i) Write down a spe
i�
 isomorphism between the two groups and 
he
k

that it is a fun
tion, that it is one-to-one and onto, and that it is a homomor-

phism.

(ii) What feature does Z4 have that Z2 × Z2 does not?

3. Any isomorphism must preserve the order of ea
h member.

5. To show that f(a−1) = (f(a))−1
you just need to show that f(a−1)f(a) =

f(a)f(a−1) = eT .
7 (i) First we need to 
he
k that C\{0} is 
losed under this binary operation,

and that operation is asso
iative. Then 
he
k that S is left 
an
ellative and that

the equation a ◦ x = b 
an be solved in S.
(ii) Show that S ≈ G×E where G = R+

under multipli
ation and E is the

set of 
omplex numbers of modulus 1.
9 (ii) To show 
losure under 
onjuga
y just 
he
k that for any automorphism

α we get αφgα
−1 = φα(g).

Problem Set 7

3. You need �rst to 
he
k that the mapping is well-de�ned: if aN = bN is

16



it true that φ(a) = φ(b)?
6. Show that the mapping from H to HN/N where h 7→ hN is an epimor-

phism with kernel H ∩N and the apply the 1st Isomorphism theorem.

7. Show that the mapping from G/N to G/M where aN 7→ aM is an

epimorphism and again apply the 1st isomorphism theorem.

Problem Set 8

1. Consider the kernel of the map from Zmn → Zm ×Zn where aφ = (a, a).
2. Write ea
h group in invariant fa
tor form and 
ompare to identify iso-

morphism 
lasses.

3. Solve the problem for the 
y
li
 group Zpk for prime power pk and then

use the prime power de
omposition form to get the general result.

4. What is the kernel of the homomorphism where g 7→ φg? Then apply the

1st isomorphism theorem.

9. Use Lagrange's theorem to show all the terms in the sum are p powers;

noting that |Z(G)| is one of these terms!

10. Fa
toring out the 
entre in these 
ir
mustan
es gives a quotient group

whi
h is 
y
li
.

Problem Set 9

1. You need to 
he
k that ρxy = ρxρy. For inje
tivity you will need the

presen
e of the identity 1.
2. This time you need to 
he
k that ρx is a permutation, and not just a

fun
tion.

4. Remember to work with the 
y
les from left to right.

5. To get the inverse of a 
y
le, just reverse it.

9. Equate the given expression for ea
h 
y
le, σ−1Cσ with a 
y
le of the

same length in the intended produ
t.

10 (i) Again, make use of the 
onjugation rule for 
y
les.

10 (ii) Show that any transposition 
an now be written as a produ
t of the

two given 
y
les.

Problem Set 10

6. Write down sgn(στ) and then multiply top and bottom by P (xτ(1), · · · , xτ(n)).

17



10. Use the fa
t that that any putative subgroup H of order 6 is normal in

A4(why?) to show that H 
ontains all eight 3-
y
les of A4.

18



Answers to the Problems

Problem Set 1

1. {(1, w), (1, x), (3, y), (4, y)}. 2. Symmetri
, transitive. 3.partial but not a

total order. 4. equivalen
e relation. 7. {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)}.

Problem Set 2

See solutions

Problem Set 3

See solutions

Problem Set 4

6. {a ∈ Zn : g
d(a, n) = 1}, the order of this set is φ(n), where φ is the

Euler fun
tion.

10. I is maximal if and only if I = pZ for some prime p.

Problem Set 5

5. The left 
osets are:H = {R0, S0}, R1H = {R1, S1}, R2H = {R2, S2},
R3H = {R3, S3}, while the right 
osets are: H = {R0, S0}, HR1 = {R1, S3},
HR2 = {R2, S2}, HR3 = {R3, S1}.

8. Z1, Z2, Z3, Z4, Z2 × Z2, Z5, Z6; S3 is a non-abelian group of order 6.
9 (iii) Look to the dihedral group.

10. Z2×Z2 is the union of the three subgroups {(0, 0), (0, 1)}∪{(0, 0), (1, 0)}∪
{(0, 0), (1, 1)}.
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Problem Set 6

See solutions

Problem Set 7

See solutions

Problem Set 8

2 (i)

Z2 × Z2 × Z3, and Z4 × Z3;

in invariant fa
tor form these two groups have respe
tive representations:

Z2 × Z6, and Z12.

(ii)

Z2 × Z2 × Z2 × Z3 × Z3 ≈ Z2 × Z6 × Z6, 2|6|6
Z2 × Z4 × Z3 × Z3 ≈ Z6 × Z12, 6|12;

Z8 × Z3 × Z3 ≈ Z3 × Z24, 3|24;
Z2 × Z2 × Z2 × Z9 ≈ Z2 × Z2 × Z18, 2|2|18;

Z2 × Z4 × Z9 ≈ Z2 × Z36, 2|36;
Z8 × Z9 ≈ Z72.

(iii)

Z2 × Z2 × Z2 × Z3 × Z7 × Z7 ≈ Z2 × Z14 × Z42, 2|14|42;

Z2 × Z4 × Z3 × Z7 × Z7 ≈ Z2 × Z28 × Z84, 2|28|84;

Z8 × Z3 × Z7 × Z7 ≈ Z7 × Z168; 7|168;

Z2 × Z2 × Z2 × Z3 × Z49 ≈ Z2 × Z2 × Z294, 2|2|294;
Z2 × Z4 × Z3 × Z49 ≈ Z2 × Z588, 2|588;

Z8 × Z147 ≈ Z1176.

(iv) {Z24,Z8×Z3}, {Z3×Z4×Z2,Z2×Z12,Z4×Z3×Z2}, {Z3×Z2×Z2×Z2}.
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5. Z(Q) = {±1) (ZD) = {R0, R2} Z(Q) ≈ Z2 ≈ Z(D) Q/Z(Q) ≈ Z2 ×
Z2 ≈ D/(ZD). Q ≈ D, but the set of self-inverse elements of D numbers six:

{R0, R2, S0, S1, S2, S3} while there for Q, the self-inverse elements are just ±1;
∴ Q 6≈ D. 10 (ii) Z3 × Z3 and Z9.

Problem Set 9

4. (1 4 6 3 5)(2 8). 5. (1 2 3 4). 6. (1 2)(1 3) · · · (1n). 7 & 8. (2 3 4 8 6).
8. (1 4 2).
4. (1 4 6 3 5)(2 8). 5. (1 2 3 4). 6. (1 2 · · ·n) = (1 2)(1 3) · · · (1n). 7. (2 3 4 8 6).

9. σ = (1 4 2).

Problem Set 10

3. P (x1, x2, x3, x4) = (x1−x2)(x1−x3)(x2−x4)(x2−x3)(x2−x4)(x3−x4).
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