Mathematics 203 Vector Calculus

Professor Peter M. Higgins
March 10, 2018

Vector Calculus is the foundation of mathematical physics. It follows on
from the calculus of several variables but importantly introduces what is some-
times referred to as ‘div, grad, curl, and all that’, which explore the relationships
between scalar (real-valued) fields, such as temperature of points in space, and
vector fields, which are mappings from R? to R3, such as wind speed and direc-
tion at points in the atmosphere.

The first problem set revises and enhances the ideas of scalar and cross
products of vectors. Set 2 is about the gradient operator, which associates a
vector field to a scalar field. The following sets introduce the divergence operator,
which associates a scalar field with a given vector field, and the curl, which is
another vector field associated with a vector field that represents its tendency to
cause rotation. These operators are related by a number of important identities,
which are set as exercises. All such identities rely on the smoothness of the vector
field - in particular they require that f,, = fy., which is to say that the order
in which partial differentiation is carried out does not affect the outcome. The
justificiation for these analytical assumptions will be dealt with in our module
on real analysis. In particular, results such as the one just mentioned rely for
their proof on the mean value theorem in various forms.

We next return to line intergrals, which were introduced in MA201 and in
particular we consider so called conservative vector fields, for which the value of
a line integral from one point to another is independent of path taken between
them.

The later problem sets introduce Green’s theorem, the Divergence theorem,
and Stokes’s theorem, each of which equate the value of an integral to a related
integral on a set of lower dimension. As such, each is a generalization of the
Fundamental theorem of calculus and for that reason the proof of each has an
argument that eventually falls back on to the Fundamental theorem.

The final set introduces the Frenet-Serret equations which govern the be-
haviour of smooth curves in 3-space.



Problem Set 1 Revision of dot and cross products

Verify the following properties of dot and cross products (also known as
scalar and vector products respectively); a, b, ¢ etc. denote arbitrary vectors in
the plane or in three dimensions as the case may be.

1. Show that

aeb = ||a]|||b]| cosb

where 6 is the angle between the vectors a and b in 3-space (R?).

2. Hence deduce the Cauchy-Schwarz Inequality
(@11 + w2y2) < (2F + 1) (@3 + 43)-
3. Use dot products to prove the Triangle Inequality
lla+bl| < [la]| + [[b]|.

4. Verify that a x b = —b x a.
5. Show that ae(a x b) = 0.

6. Verify that
[lax b||* = [[al]?||b||* — (asb)?.

7. Use Question 6 to show that
|la x bl| = [[a]| [|b]| sin @

where 0 is the angle between the two vectors and that a x b = 0 if and only if
a and b are parallel.

8. Show that

ax(b+c)=(axb)+ (axc).
9. Show that

ax(bxc)=(aec)b—(aeb)c

10. Deduce from Question 9 that the cross product is in general not asso-
ciative and find necessary and sufficient conditions on a, b, and ¢ under which
ax(bxc)=(axb)xc.



Problem Set 2 The Gradient vector field of a scalar field

1. If f: R® — R is a non-constant function (a scalar field) show that the

gradient vector Vf = (%, g—)yc, %) is orthogonal to the level surface f(x,y,z) =

¢ (¢ a constant).

2. For f as in Question 1, show that f(z,y, z) increases fastest in the direc-
tion of Vf(x,y,2) and decreases fastest in the opposite direction.

3. The temperature T'(x,y, z) of a certain object measured with the origin
at its centre of mass is given by

T(x,y,z) =e %+ e~ 4 e*2,
In which direction from the point (1,1, 1) will the solid be cooling the fastest?
4. Find the directional derivative of the scalar field
fz,y,2) = 2?yz + daz?

at the point (1,—2,—1) in the direction (2,—1, —2).

5. Find a unit normal n to the surface 2% + y* — z = 0 at the point (1,1,2).
Is the normal unique?

6. Find the angle between the surfaces 22 + 32 +22 =9 and z = 22 +y> — 3
at the common point (2, —1,2).

7. Find Vf(2,3) where f(z,y) =

T _
2 +y2 .

8. Find the equation of the tangent plane to the surface z = IZITyz at the
point corresponding to (2, 3).

9. For arbitary scalars A and p, show that
V(Af 4+ ng) = AV f +uVyg.
10. Prove the product rule for the gradient operator:

V(fg) = (Vg + f(Vg).



Problem Set 3 Divergence and Curl of a vector field

We write V to denote the differential operator V:(%,a%,%). The diver-
gence divF of a vector field F = (f1, fo, f3) is then the scalar field V ¢ F. On
the other hand the curl(F) is another vector field curl F= VxF. The Laplacian
of a scalar field f(z,y,z) is V2f = V e Vf. We shall also sometimes use the

notation f,, f, etc. as an alternative to %, g—i etc.

1. Show that

2. For F(x1,29,23) = (f1, f2, f3) write curl(F) in both determinant form
and explicitly as a vector field in terms of its component functions f1, fo and
f3. Show that curl(F') = 0 if and only if

ofi _ 0f;
G:I:j 8:1:1-

v1<i,57<3.
3. Find the divergence of F(z,y, 2) = (zyz,zz, 2).
4. And now find the curl of the vector field of Question 3.

5. Find the divergence of
F(z,y,2) = Inzi+e™j 4 tan~! (E)k
x
6. And now find the curl of the vector field of Question 5.

7. Write the Laplacian of f(x,y, z) explicitly as a scalar field in terms of f
and its second order partial derivatives.

8. Show that the function

d(x,y,z) = sin kz sin lye“ k2122
is harmonic, meaning that it satisfies Laplace’s equation V2¢ = 0.
9. Show that the curl of the gradient of a scalar field f(z,y, z) is 0, which
is to say
VxVf=0.

10. Show that the divergence of the curl is 0, which is to say that for a
vector field F
Ve (VxF)=0.



Problem Set 4 Line Integrals, Conservative Fields

1. For vector fields f and g show that
Ve(fxg)=ge(Vxf)—fe(Vxg).

2. Let f and g denote scalar fields. Use the identity of Question 1 to show
that Vf x Vg is solenoidal, which is to say that

Ve (VfxVg)=0.

3. The curl of the curl is another vector field. Show that it is governed by

the identity:
V x (Vxv)=V(Vev) - Vv

the first V on the RHS indicates the taking of the gradient of the scalar field
in the bracket. The Laplacian V? is understood to operate componentwise on
each of the component functions of the vector field v. It is enough here to verify
equality of first components, as the others follow in the same way.

4. Find the work done by the vector field F(z,y,2) = (y — 22)i+ (92 —y)j +
(z — 2?)k along the curve r(t) = ti +t%j + t°k, 0 < ¢t < 1.

5. A vector field F(z,y, z) has a potential function ¢ if F(x,y) = V¢ for
some scalar field ¢. Express the vector field

F(z,y) = (° +y°,2zy + 1)

in the form V¢ for a suitable potential ¢.

6. Show that u(z,y, z) = (x+2y+4z,2x— 3y — 2z, 4 —y+2z) has a potential
function ¢(z,y, z) by solving the defining equation.

7. Find the curl of u(z,y,z) = (2yz,z,2) and deduce that u is not the
gradient, of any potential function.

8. Suppose that f(x,y,z) = V¢. Show by using the Chain rule and the
definition of line integral that

[ fds = o)~ o1a)
C

for any parametrizable curve C from points with position vectors a and b.
Conclude that if C is a simple closed curve then

ygfds:o,
c

where 950 denotes the integral around the closed curve. A vector field that has
line integrals independent of path in this fashion in known as a conservative
field.
9. Use the calculation of Question 5 and the result of Question 8 to ﬁndfC (x%+
y?,2zy + 1) ds where C' is any smooth curve from the origin to the point (1,2).
10. Calculate the line integral of Question 9 directly for the case where C' is
the straight line segment L from the origin to (1,2).



Problem Set 5 Circulation and Green’s theorem

1. Evaluate the integral
/ (22 +y?, 22y + e Y) o dr
C

where C' is a smooth curve from (1,—1) to (0,8) by first finding a potential ¢
for the vector field F to be integrated.

2. Find the potential function ¢(z,y, z) for the vector field
F(x,y,2) = (zcosz + In z,y?, sinx + E),
z
which satisfies the initial condition that ¢(5,1,1) = 0.

3. By using a suitable parametrization, calculate

55 (2y dx — 3z dy)
c
traversed anti-clockwise around the circle C' with equation 22 + y? = 1.

4. For a space curve

r(t) = z(t)i+ y(t)j + z(t)k,

1

scurlv, where w =(w1,w2,ws) is a constant vector

if v =wxr, prove that w =
(called the angular velocity).

5. By considering the line integral of F(z,y, z) = (y,2% — x,0) around the
unit square in the plane connecting the points (0,0),(1,0),(1,1) and (0,1) in
that order, show that F is not a conservative field.

6. Let F(x,y,2) = —V¢ be a conservative force field. Suppose a particle of
mass m moves in this field. If A and B are any two points in space, we have

[ Fedr=ol) - o(n)
C

where C is any path from A to B. (Note the change in sign as we have written
the potential in the form —V ¢, a convention in mechanics.) By use of Newton’s
Law, F = ma re-write this integral to conclude the Law of Conservation of

energy in the form:

H(A) + 5y = 6(B) + 5oy



where v4 and vp are the respective velocities of the mass at points A and B.

7. An alternative type of line integral that results in a vector solution is

/CF X dr = /tiaF(r(t)) x 1/ (t) dt.

Calculate this integral where C is the curve r(t) = (2,2t,t3) and F(z,y,2) =
(vy, —z,2%) for 0 <t < 1.

Green’s Theorem Let F = P(x,y)i+ Q(x,y)j be a vector field. Then for a
closed curve C enclosing a region R, with C traversed with the R on the left,

yiFodr://R(g—g - g—’;) dady.

8. Use Green’s Theorem to evaluate the integral of Question 3 (taking the
formula for the area of a circle for granted.)

55 Fedr= 55 y3dx — 22dy
C C

where C' is a positively oriented circle of radius 2 centred at the origin.

9. Evaluate

10. Find a simple closed curve that maximizes the value of

3 3
y T
=—d — —)d
/C 3 x+ (x 3 ) dy
and find that maximum value.

Comment The crux of the proof of Green’s theorem is to show that

/CP(:E,y)d:c//R(z—l?jdzdy, /CQ(:c,y)dz//Rg—de:cdy.

In order to do this, the boundary curve C is expressed as the graph of two
functions, which allows x = t to be used in the parametrization. The difference
that arises in the integral is then written, by the Fundamental theorem of cal-
culus, as the evaluation of the integral of the stated partial derivatives. In this
way Green’s theorem and others such as the Divergence theorem and Stokes
theorem, are all generalizations of the Fundamental theorem to the calculus of
several variables.



Problem Set 6 Green’s theorem examples

1. Use Green’s theorem to find the value of gﬁc Fedr where
F(z,y) = (z%y,22y) and where C is the closed curve that bounds the region

R={(a,y):0<w<1,2? <y<a).

2. Evaluate the integral of Question 1 directly.
3. Use Greens’ theorem to evaluate

/:ch de — y?z dy
where C' is the circle 2% + y? = 4.

4. Evaluate the integral of Question 3 directly.

5. Use Green’s theorem to show that the area A of a region R in the plane
bounded by a closed curve C' is given by

1
A:—ygscdyfydz.
2 Jc

6. Use the formula of Question 5 to find the area of an ellipse with major
axis of length 2a and minor axis of length 2b.
7. Let C be a line segment from (a,b) to (a,c). Show that

/ xdy — ydxr = ad — be.
c

8. Use Question 7 and Green’s theorem to find the area of a polygon with
successive vertices (1,y1), (Z2,¥2), -, (Zn,Yn). Use this result to find the area
of the quadrilateral with vertices (0, 0), (3,4), (—2,2), (—1,0).

For Green’s theorem to hold, the vector field being integrated needs to be
differentiable throughout the region R, as is demonstrated in the following ex-
ample.

9. Calculate ¢, F o dr where

—y .+ T
1
1.2+y2 $2+y

F(z,y) = 5

and C'is the unit circle centred at the origin.
10. For the field F =P(z,y)i + Q(z,y)j and the closed curve C' of Question

9, calculate
oQ 0P

Note that the answers to Questions 9 and 10 do not agree so Green’s theorem
does not hold here, and that F has a singularity at the origin.



Problem Set 7 Surface integrals

The integral of a scalar field f(x,y,z) over a surface S parametrized by
r(u,v) as u and v range over some region R of the wv-plane is given by:

//f:z:y, da—//f (w0, y (s v), 2(u, v)) ||@x—||dudv (1)

The integral of a vector field F(x,y, z) in the direction n normal to a surface S
represents the total fluz of F through S and is calculated through parameterizing

the surface:
or Or
//Fondo—// (u,v) o—x—dudv (2)
ov

where W is the region in the uv-plane that gives the new limits. (The symbol ¥
is often used instead of S so it is natural to write do for the increment of surface
area - since ds is the symbol for increment of arc length, their is a reluctance
to use this symbol as then ds has two different meanings, although in context
there is no ambiguity.)

The vectors % and % are tangent vectors to the surface at the point cor-
responding to (u,v) and so their vector product is normal to that surface at
that point. The increment of surface area is a parallelogram with these vectors
as sides, the area of which is the length of their cross-product so that the term
||% X %H is the multiplier introduced into the integrand when we parametrize
with the variables u and v. Applying this observation to the integral on the left
in (2), we see that the term F e n takes the form

or or Or
Foll o 2098 &)

and so the length term in the denominator is cancelled by the same term in
do = ||% X %H dudv, the increment of surface area.

Formula (1) can also be recovered from (2): if we take F to be the vector
field F = f(x,y,2)n, then the LHS of (2) becomes the RHS of (1), so that
(1) can be thought of as the special case of integration of a vector field that is
always acting orthogonally to the tangent plane of the surface of integration.

2

1. Calculate the surface integral of f(z,y,z) = a* over the surface of the

cone z = /r2 +y2for 0 <z < 1.

2. Suppose that a surface S is given by the equation z = g(x,y). Show that
(1) can now be re-written in the form

//fxy, da—//fxygxy))\/l—i-(gi) +(g—z)2d$dy. (3)




3. Show that the formula in Question 2 can also be written as

[ [revaio= [ [ swyowuiond (@

where h(z,y,2) = z — g(z,y).
4. Answer Question 1 again this time using (3) instead of (1).

5. Explicitly introduce h(z,y, z) and use the formula (4) to evaluate the
surface integral for the scalar field

f(z,y,2) =2 +2y+32
over S, which is the upper surface of the part of the plane x + y = 1 that lies

in the positive octant between z = 0 and z = 1 (the positive octant means the
volume of 3-d space where z,y,z > 0).

6. Use a surface integral to show that the area of a right circular cone of
radius R and height h is TR\V/h2 + R2.

7. For the function g(u,v) = (ucosv,usinv,v) (0 < u < 1,0 < v < 3m),

show that 9 9
199 « 2| = /1 + 2.
Ju Ov

By expressing it as an appropriate surface integral, find the area of the spiral
ramp represented by the surface g(u,v). You may use the fact that

1 1
/\/1+x2dx:§x 1+$2+§1n(:1:+ 1+ 22).

8. Calculate the surface integral of the vector field F(z,y,2) = (z,z, —y)
over the surface of the cylinder S = {(z,y,2) : 22 +9y?=1,0< 2 < 1}.

9. Show that if S is defined by z = g(x,y) then

// (x,y,2 ondo—//FOVhd:Edy

where h(z,y,2) = z — g(z,y).

10. Evaluate the surface integral of the vector field
F(:L', Y, Z) - (1827 7127 3y)

where S is the upper surface of the plane with equation 2x 4+ 3y + 6z = 12,
which is located in the positive octant.

10



Problem Set 8 Divergence theorem

Divergence theorem The integral of a vector field normal to a closed surface
can be expressed in terms of a triple integral of the divergence over the volume
V contained in S. In symbols:

#éFonda///VVoFdzdydz (5)

with the unit normal points outwards from the closed surface.
For Questions 1-3 use the Divergence theorem to evaluate gfﬁs Fendo.

1.
F(z,y,z) = (zsiny, cos 2z, y* — zsiny)

over the surface of the sphere S with equation 2% + y? + (z — 2)? = 1.
2. Find ¢f; F e ndo where
F(z,y,2) = 2zi + y%j + 2°k
and S is the surface of the unit sphere centred at the origin.
3. Using the Divergence Theorem, find the flux of the vector field

F(z,y,2) = (zy,yz,v2)

outward through the surface of the cube cut from the first octant by the planes
r=1y=12=1.

4. Find gﬁﬁs F e nds through use of the Divergence theorem for the vector
field
F(:L', Y, Z) - (41" 72y25 22)

and the surface of the cylinder S = {2% +y? = 4,0 < 2z < 3}.

5. Calculate the integral of Question 4 directly.

6. Prove that for any closed surface S and vector field F

#VXFdO’:O.
S

11



7. Find the relationship between the volume contained in the closed surface

S and the integral
# rendo
s

8. Suppose two scalar fields are related by V2f = ¢g. Show that
/// gdxdydz = #(Vf) e ndo.
1% s

Planar version of the Divergence theorem: let F = P(x,y)i+ Q(z,y)j, then
for a closed curve C and for the region R contained by C":

%Fonds://VOFdxdy
C R

where n is the outward pointing unit normal n = (— 42 4,

where r(z,y, z) = (z,y, 2).

9. Verify that this plane version of the theorem works for the case where
F(z,y) = 2yi + 5zj

and C is the circle 22 +y? = 1.

10. Prove the theorem by showing that the equality follows from Green’s
theorem.

12



Problem Set 9 Stokes’s theorem

For a smooth vector field F in three dimensions and an orientable surface*
S with boundary curve C

//VxFondJ:ygFodr
S C

where C' is a closed curve parametrized by r(t) say and where n is the unit

normal to the surface such that T = %, n, and T X n form a right handed
system.

* Comment The Mobius strip, which is a (long thin) rectangle with the ends
glued together with a half twist is the basic example of a non-orientable surface.
The strip has only one side and one edge and in consequence a continuous vector
field cannot be applied to it.

1. Use Stokes’s theorem to evaluate

55 Fedr
C

where C' is the triangle with vertices (1,0,0), (0,1,0), (0,0, 1) traversed in that
order and F(xz,y,2) = (22,92, 7).

2. Let C be the curve which begins at (0,0, 0), passes as a straight line to
(0,0,1), passes as a quarter circle in the yz-plane to (0,1,0) and then as a line
segment back to the origin.

Calculate directly the integral gﬁc Fedr where F(z,y,2) = (y, z, x).

3. Re-work Question 2 via the Stokes theorem.

4. Let C be the circle where the cone z? + y? = 1 meets the plane z = 1,
oriented in the anti-clockwise direction when viewed from the z-axis looking
toward the origin. Let

' Y 23
F(x,y,2) = (sinz — 3 cosy + g,zyz)

Use Stokes’s theorem to evaluate ¢, F(z,y,z) o dr.

5. Use Stokes’s theorem to prove that any irrotational vector field (one with
zero curl) has the property that fﬁc Fedr = 0 for any simple closed curve C.

6. Suppose that S is a flat surface lying in the xy-plane, so that z =
0 and n = (0,0,1) . Suppose we have a vector field given by u(z,y) =
(P(z,y),Q(x,y),0). Show that Stokes’s theorem in this case reduces to Green’s
Theorem in the plane. (And so Stokes’s theorem generalises that of Green.)

13



Mazxwell’s equations describe the relationship between the electric field strength
E and the magnetic field strength B:

VeB=0, VeE="
€0

OE 0B

V x B = ppJ 0=, VXE=——

Ko + Ho€o ot ) ot )
where €9 and g are positive constants, p denotes electric charge density, ¢
denotes times and J is another associated vector field known as the total current

density.

7. Use the Divergence theorem to deduce Gauss’s law of electric fields, which

says that
# Eendo = Q
s €o

where @ is the total charge enclosed by S.

8. Use Stokes’s theorem to deduce the Mazwell-Faraday equation in the form

%Eodr:fg//Bondo,
c o) Js

where C' is a curve corresponding to the boundary of the surface S.

9. Use the general form of Maxwell’s equations to show that the charge
density p and the electric current density J obey the conservation law

dp
E‘FV.J—O.

10. Suppose the energy of an electromagnetic wave in a vacuum is given by

1 1
=-BeB+-_—EeE
W= gPe Bt
2= #0—160 Using Maxwell’s equations in a vacuum (i.e. where p = 0 and
J=0), show that the rate of change of the energy obeys the conservation law

where ¢

ow
g P-
atJrVo 0,

where P = E x B is known as the Poynting vector.

14



Problem Set 10 Frenet-Serret equations for curves in 3D space

Let C be a smooth curve in 3-space parametrized by arc length [(s) with
B'(s) # 0 for all s. Then T'(s) = B'(s), is a unit tangent vector to the curve.
Let rq(t), r2(t) be two smooth vector functions of time t¢.

1. Show that
(r1 ery) =rjery +r; erh.

2. Similarly verify that
(rixre) =r1) X9+ 1] XT).

3. Show that if r(t) e r(t) = ¢, a constant, then r’(¢) L r(¢). Hence deduce
that 8”(s) L T'(s).

Define the curvature k(s) = ||8”(s)||. Write N(s) = Bk//((:) = 1,:((55)), thereby

defining the unit normal vector at §(s); put B =T x N, the (unit) binormal
vector at (s). The trio (T, N, B) form the Frenet frame for 8 at s, which is an
orthogonal trio of unit vectors at S3(s).

4. Deduce the First Frenet Equation,
T'(s) = k(s)N(s).

5. Show the Third Frenet Equation, which is that B’(s) has the form
B'(s) = —7(s)N(s)

for some function 7(s) that we shall call the torsion of 8 at s. [Hint: show
B'(s) L B(s),T(s).]
6. By writing N = B x T deduce the Second Frenet Equation,

N'(s) = —k(s)T(s) + 7(s)B(s).

7. Show that the three Frenet equations can be written as a single matrix

equation
(T'",N',B"Y = M(T,N, B),
where M is a suitable 3 x 3 matrix.

8. Consider the unit speed heliz, $(s) = (acos®?, asin“2, %s) (s > 0).
Calculate T'(s), and deduce that, for the helix to be traversed at unit speed,
= a’w? + v*.

9. Find T"(s), showing that the curvature k(s) is constant, and thus calculate
N(s).

10. Find the binormal vector B(s), its derivative B’(s) and thus find the
torsion, 7(s) again showing it to be constant.

15



Hints for Problems

Problem Set 1

1. Consider the triangle defined by the vectors a and b with common tail
so that the third side corresponds to a — b.

4 & 5. Use the determinant form and one of the properties of determinants.

9. It is sufficient to establish equality in the first component as the second
and third components are formed in the corresponding way.

Problem Set 2

1. We may assume that the directional derivative in the direction of any
tangent vector to a level surface is 0.

2. Find the direction that maximizes the value of the directional derivative
at a given point P.

6. The angle between the surfaces at a common contact point equals the
angle between their normals.

8. The equation of the tangent plane takes the form f,(zo,yo)(x — o) +
fy(zo,y0)(y — yo) = 2z — 2 or in vector notation (V flx,) ® (x —xg) = z — 2o.

9. Follow your nose: this follows at once from the linearity of differentiation.

10. And this one follows from the product rule.

Problem Set 3

7. The proof of this and similar identities assumes equality of mixed partial
af* _ af?
Oxdy ~ Oydz”

derivatives:

Problem Set 4

2. Make use also of the identity of Question 9 of Set 3.

4. 1. [Fedr= fol Fedrdt.

5. Write F = (¢, ¢,) and integrate ¢, with respect to z but remember this
introduces an arbitary function f(y); differentiate with respect to y and equate

16



with ¢, to find f(y) and hence the potential ¢(x,y).

6. Similar to Question 5 but the initial integration determines ¢ only up
an arbitary function f(y,z). Differentiate ¢ with respect to y, compare to
the second component function of F, and integrate to determine ¢ up to an
arbitrary function g(z) say; repeat the procedure using the final variable z in
order to determine the potential up to an integration constant.

7. Again use Question 9 of Set 3.

8. Writing down the integral you discover that it is the integral of ¢/(¢); the
result then follows from the Fundamental theorem of calculus.

Problem Set 5

6. For the alternative formulation, write r”(¢) ex’(¢) as the derivative of half
the square of the length of the velocity vector.

10. Make C as large as possible while ensuring that the Green’s integrand
is positive in the enclosing region.

Problem Set 6

1. Draw the region of integration before setting up your double integral,
perhaps fixing x and integrating first with respect to y.

5. Apply Green’s theorem to the given integral and see what you get.

6. Use the parametrization r(t) = (acost,bsint) (0 <t < 2m).

Problem Set 7

1. Parametrize the conical surface by cylindrical coordinates: r(t,z) =
(zcost,zsint, z) 0 <t <2m, 0< z< 1.

5. Write y = g(x,z) on the surface (in this case, g(z,z) = g(z) only) and
then take h(x,y,z) =y — g(z, z); remember to write the integrand f(z,y, z) in
the form f(x,g(z,z), z) and integrate on the projection of the surface onto the
xz-plane.

6. Parametrize the surface using x = rcost,y = rsint and z = %r. for
0<t<2rand 0<r <R.
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Problem Set 8

5. This integral is over the entire surface of the cylinder, including the end
discs (so the Divergence theorem applies). This makes the calculation relatively
long.

9. n = (cost,sint), substitute accordingly.

10. We may write nds = (dy, —dz) and substitution leads to the result via
Green’s theorem.

Problem Set 9

6. Take = and y as the parameters, remembering that z = 0 and interpret
the Stokes theorem in this context.
10. Apply the identity Ve (f xg) =ge (V xf) —fe(Vxg)to VeP.

Problem Set 10

5. B(s) e B(s) =1.
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Answers to the Problems
Problem Set 1
10. (aeb)c = (bec)a.

|
Problem Set 2

(2,2,—1) 6. 0-95 radians 7. (125, —195)- 8

Problem Set 3

31+yz 4. —zi+axyj+ 2(1 — 2)k. 5. % + =iz t@ee™E 6. —aye™Fi+

2 2 5
et yzevik 7. 3L+ 5L 4 OF

Problem Set 4

4. 3%. 5. ¢(xz,y) = %xs—l—ny—i—y—i—c. 6. %x2+2$y+4xz—%y2—zy+z2+c.
7. curl(u) = (0, —zy, 1 — x2) # Oand hence u is not conservative. 9 & 10. 63.

Problem Set 5

1. e— eis — %. 2. zsinz+xlnz+ % — %. 3. =bm. 5. —1. 7. (— 2 —%, %)
8. —5m. 9. —24m . 10. The unit circle centred at the origin, 5.
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Problem Set 6

1& 2. % 3& 4. —8m. 6 wab. 7. A= %[($1y2 — x2y1) + (z2ys — x3y2) +
4+ (Tp-1Yn — Tnyn—1)].8. 8. 9. 27. 10. 0.

Problem Set 7

1& 4. 27, 5.3v2 7. 25 (vV2 +In(1 +v?2)). 8 7. 10. 24.

Problem Set 8

1.0.2.0.3. 3. 4&5. 84r. 7. 3V. 9. 0.

Problem Set 9

—_
\
=

[\
ge
w
13
B
0ly

Problem Set 10

T 0 k O T
7| N |=( -k 0 7 N | 8. T(s) = B'(s) = (— %2 sin L 9% cog L8 L
B 0 -7 0 B

9. T'(s) = (—agf cos “*, —a;'; sin “2,0); hence ||T"(s)|| = acﬂz’z = k(s); N(s) =
’

T]ES) = —(cos™ sin %2 0). 10. B(s) = (% cos®s MW sin2s 0); B'(s) =

r(s)N(s); 7= B = e
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