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Ve
tor Cal
ulus is the foundation of mathemati
al physi
s. It follows on

from the 
al
ulus of several variables but importantly introdu
es what is some-

times referred to as `div, grad, 
url, and all that', whi
h explore the relationships

between s
alar (real-valued) �elds, su
h as temperature of points in spa
e, and

ve
tor �elds, whi
h are mappings from R
3
to R

3
, su
h as wind speed and dire
-

tion at points in the atmosphere.

The �rst problem set revises and enhan
es the ideas of s
alar and 
ross

produ
ts of ve
tors. Set 2 is about the gradient operator, whi
h asso
iates a

ve
tor �eld to a s
alar �eld. The following sets introdu
e the divergen
e operator,

whi
h asso
iates a s
alar �eld with a given ve
tor �eld, and the 
url, whi
h is

another ve
tor �eld asso
iated with a ve
tor �eld that represents its tenden
y to


ause rotation. These operators are related by a number of important identities,

whi
h are set as exer
ises. All su
h identities rely on the smoothness of the ve
tor

�eld - in parti
ular they require that fxy = fyx, whi
h is to say that the order

in whi
h partial di�erentiation is 
arried out does not a�e
t the out
ome. The

justi�
iation for these analyti
al assumptions will be dealt with in our module

on real analysis. In parti
ular, results su
h as the one just mentioned rely for

their proof on the mean value theorem in various forms.

We next return to line intergrals, whi
h were introdu
ed in MA201 and in

parti
ular we 
onsider so 
alled 
onservative ve
tor �elds, for whi
h the value of

a line integral from one point to another is independent of path taken between

them.

The later problem sets introdu
e Green's theorem, the Divergen
e theorem,

and Stokes's theorem, ea
h of whi
h equate the value of an integral to a related

integral on a set of lower dimension. As su
h, ea
h is a generalization of the

Fundamental theorem of 
al
ulus and for that reason the proof of ea
h has an

argument that eventually falls ba
k on to the Fundamental theorem.

The �nal set introdu
es the Frenet-Serret equations whi
h govern the be-

haviour of smooth 
urves in 3-spa
e.
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Problem Set 1 Revision of dot and 
ross produ
ts

Verify the following properties of dot and 
ross produ
ts (also known as

s
alar and ve
tor produ
ts respe
tively); a,b, c et
. denote arbitrary ve
tors in

the plane or in three dimensions as the 
ase may be.

1. Show that

a • b = ||a|| ||b|| cos θ
where θ is the angle between the ve
tors a and b in 3-spa
e (R

3).

2. Hen
e dedu
e the Cau
hy-S
hwarz Inequality

(x1y1 + x2y2)
2 ≤ (x2

1 + y21)(x
2
2 + y22).

3. Use dot produ
ts to prove the Triangle Inequality

||a+ b|| ≤ ||a||+ ||b||.

4. Verify that a× b = −b× a.

5. Show that a•(a× b) = 0.

6. Verify that

||a× b||2 = ||a||2||b||2 − (a•b)2.
7. Use Question 6 to show that

||a× b|| = ||a|| ||b|| sin θ

where θ is the angle between the two ve
tors and that a× b = 0 if and only if

a and b are parallel.

8. Show that

a× (b+ c) = (a × b) + (a × c).

9. Show that

a× (b× c) = (a • c)b− (a • b)c
10. Dedu
e from Question 9 that the 
ross produ
t is in general not asso-


iative and �nd ne
essary and su�
ient 
onditions on a,b, and c under whi
h

a× (b× c) = (a× b)× c.
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Problem Set 2 The Gradient ve
tor �eld of a s
alar �eld

1. If f : R3 → R is a non-
onstant fun
tion (a s
alar �eld) show that the

gradient ve
tor ∇f = (∂f
∂x

, ∂f
∂y

, ∂f
∂z

) is orthogonal to the level surfa
e f(x, y, z) =

c (c a 
onstant).

2. For f as in Question 1, show that f(x, y, z) in
reases fastest in the dire
-

tion of ∇f(x, y, z) and de
reases fastest in the opposite dire
tion.

3. The temperature T (x, y, z) of a 
ertain obje
t measured with the origin

at its 
entre of mass is given by

T (x, y, z) = e−x + e−2y + e4z.

In whi
h dire
tion from the point (1, 1, 1) will the solid be 
ooling the fastest?

4. Find the dire
tional derivative of the s
alar �eld

f(x, y, z) = x2yz + 4xz2

at the point (1,−2,−1) in the dire
tion (2,−1,−2).

5. Find a unit normal n to the surfa
e x2 + y2 − z = 0 at the point (1, 1, 2).
Is the normal unique?

6. Find the angle between the surfa
es x2 + y2 + z2 = 9 and z = x2 + y2 − 3
at the 
ommon point (2,−1, 2).

7. Find ∇f(2, 3) where f(x, y) = x
x2+y2 .

8. Find the equation of the tangent plane to the surfa
e z = x
x2+y2 at the

point 
orresponding to (2, 3).

9. For arbitary s
alars λ and µ, show that

∇(λf + µg) = λ∇f + µ∇g.

10. Prove the produ
t rule for the gradient operator:

∇(fg) = (∇f)g + f(∇g).
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Problem Set 3 Divergen
e and Curl of a ve
tor �eld

We write ∇ to denote the di�erential operator ∇=(

∂
∂x
,

∂
∂y
,

∂
∂z
). The diver-

gen
e divF of a ve
tor �eld F = (f1, f2, f3) is then the s
alar �eld ∇ • F. On

the other hand the 
url(F) is another ve
tor �eld 
url F= ∇×F. The Lapla
ian

of a s
alar �eld f(x, y, z) is ∇2f = ∇ • ∇f . We shall also sometimes use the

notation fx, fy et
. as an alternative to

∂f
∂x

, ∂f
∂y

et
.

1. Show that

div(F) = ∂f1
∂x

+ ∂f2
∂y

+ ∂f3
∂z

.

2. For F(x1, x2, x3) = (f1, f2, f3) write 
url(F) in both determinant form

and expli
itly as a ve
tor �eld in terms of its 
omponent fun
tions f1, f2 and

f3. Show that 
url(F ) = 0 if and only if

∂fi
∂xj

=
∂fj
∂xi

∀1 ≤ i, j ≤ 3.

3. Find the divergen
e of F(x, y, z) = (xyz, xz, z).

4. And now �nd the 
url of the ve
tor �eld of Question 3.

5. Find the divergen
e of

F(x, y, z) = lnxi+exyzj+ tan−1
( z

x

)

k.

6. And now �nd the 
url of the ve
tor �eld of Question 5.

7. Write the Lapla
ian of f(x, y, z) expli
itly as a s
alar �eld in terms of f
and its se
ond order partial derivatives.

8. Show that the fun
tion

φ(x, y, z) = sin kx sin lye
√
k2+l2z

is harmoni
, meaning that it satis�es Lapla
e's equation ∇2φ = 0.
9. Show that the 
url of the gradient of a s
alar �eld f(x, y, z) is 0, whi
h

is to say

∇×∇f = 0.

10. Show that the divergen
e of the 
url is 0, whi
h is to say that for a

ve
tor �eld F

∇ • (∇× F) = 0.
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Problem Set 4 Line Integrals, Conservative Fields

1. For ve
tor �elds f and g show that

∇ • (f × g) = g • (∇× f)− f • (∇×g).

2. Let f and g denote s
alar �elds. Use the identity of Question 1 to show

that ∇f ×∇g is solenoidal, whi
h is to say that

∇ • (∇f ×∇g) = 0.

3. The 
url of the 
url is another ve
tor �eld. Show that it is governed by

the identity:

∇× (∇× v) = ∇(∇ • v) −∇2v;

the �rst ∇ on the RHS indi
ates the taking of the gradient of the s
alar �eld

in the bra
ket. The Lapla
ian ∇2
is understood to operate 
omponentwise on

ea
h of the 
omponent fun
tions of the ve
tor �eld v. It is enough here to verify

equality of �rst 
omponents, as the others follow in the same way.

4. Find the work done by the ve
tor �eld F(x, y, z) = (y−x2)i+(9z− y)j+
(x− z2)k along the 
urve r(t) = ti+ t2j+ t3k, 0 ≤ t ≤ 1.

5. A ve
tor �eld F(x, y, z) has a potential fun
tion φ if F(x, y) = ∇φ for

some s
alar �eld φ. Express the ve
tor �eld

F(x, y) = (x2 + y2, 2xy + 1)

in the form ∇φ for a suitable potential φ.
6. Show that u(x, y, z) = (x+2y+4z, 2x−3y−z, 4x−y+2z) has a potential

fun
tion φ(x, y, z) by solving the de�ning equation.

7. Find the 
url of u(x, y, z) = (xyz, x, z) and dedu
e that u is not the

gradient of any potential fun
tion.

8. Suppose that f(x, y, z) = ∇φ. Show by using the Chain rule and the

de�nition of line integral that

ˆ

C

f ds = φ(b)− φ(a)

for any parametrizable 
urve C from points with position ve
tors a and b.
Con
lude that if C is a simple 
losed 
urve then

˛

C

f ds = 0,

where

¸

C
denotes the integral around the 
losed 
urve. A ve
tor �eld that has

line integrals independent of path in this fashion in known as a 
onservative

�eld.

9. Use the 
al
ulation of Question 5 and the result of Question 8 to �nd

´

C
(x2+

y2, 2xy+ 1) ds where C is any smooth 
urve from the origin to the point (1, 2).
10. Cal
ulate the line integral of Question 9 dire
tly for the 
ase where C is

the straight line segment L from the origin to (1, 2).
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Problem Set 5 Cir
ulation and Green's theorem

1. Evaluate the integral

ˆ

C

(x2 + y2, 2xy + e−y) • dr

where C is a smooth 
urve from (1,−1) to (0, 8) by �rst �nding a potential φ
for the ve
tor �eld F to be integrated.

2. Find the potential fun
tion φ(x, y, z) for the ve
tor �eld

F(x, y, z) = (z cosx+ ln z, y2, sinx+
x

z
),

whi
h satis�es the initial 
ondition that φ(π2 , 1, 1) = 0.

3. By using a suitable parametrization, 
al
ulate

˛

C

(2y dx − 3x dy)

traversed anti-
lo
kwise around the 
ir
le C with equation x2 + y2 = 1.

4. For a spa
e 
urve

r(t) = x(t)i + y(t)j+ z(t)k,

if v =ω×r, prove that ω = 1
2
urlv, where ω =(ω1, ω2, ω3) is a 
onstant ve
tor

(
alled the angular velo
ity).

5. By 
onsidering the line integral of F(x, y, z) = (y, x2 − x, 0) around the

unit square in the plane 
onne
ting the points (0, 0),(1, 0),(1,1) and (0, 1) in

that order, show that F is not a 
onservative �eld.

6. Let F(x, y, z) = −∇φ be a 
onservative for
e �eld. Suppose a parti
le of

mass m moves in this �eld. If A and B are any two points in spa
e, we have

ˆ

C

F • dr = φ(A) − φ(B)

where C is any path from A to B. (Note the 
hange in sign as we have written

the potential in the form −∇φ, a 
onvention in me
hani
s.) By use of Newton's

Law, F = ma re-write this integral to 
on
lude the Law of Conservation of

energy in the form:

φ(A) +
1

2
mv2A = φ(B) +

1

2
mv2B
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where vA and vB are the respe
tive velo
ities of the mass at points A and B.

7. An alternative type of line integral that results in a ve
tor solution is

ˆ

C

F× dr =

ˆ b

t=a

F(r(t)) × r′(t) dt.

Cal
ulate this integral where C is the 
urve r(t) = (t2, 2t, t3) and F(x, y, z) =
(xy,−z, x2) for 0 ≤ t ≤ 1.

Green's Theorem Let F = P (x, y)i + Q(x, y)j be a ve
tor �eld. Then for a


losed 
urve C en
losing a region R, with C traversed with the R on the left,

˛

C

F•dr =

ˆ ˆ

R

(∂Q

∂x
− ∂P

∂y

)

dxdy.

8. Use Green's Theorem to evaluate the integral of Question 3 (taking the

formula for the area of a 
ir
le for granted.)

9. Evaluate

˛

C

F•dr=
˛

C

y3dx− x2dy

where C is a positively oriented 
ir
le of radius 2 
entred at the origin.

10. Find a simple 
losed 
urve that maximizes the value of

ˆ

C

y3

3
dx+ (x− x3

3
) dy

and �nd that maximum value.

Comment The 
rux of the proof of Green's theorem is to show that

ˆ

C

P (x, y) dx = −
ˆ ˆ

R

∂P

∂y
dxdy,

ˆ

C

Q(x, y) dx =

ˆ ˆ

R

∂Q

∂x
dxdy.

In order to do this, the boundary 
urve C is expressed as the graph of two

fun
tions, whi
h allows x = t to be used in the parametrization. The di�eren
e

that arises in the integral is then written, by the Fundamental theorem of 
al-


ulus, as the evaluation of the integral of the stated partial derivatives. In this

way Green's theorem and others su
h as the Divergen
e theorem and Stokes

theorem, are all generalizations of the Fundamental theorem to the 
al
ulus of

several variables.
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Problem Set 6 Green's theorem examples

1. Use Green's theorem to �nd the value of

¸

C
F•dr where

F(x, y) = (x2y, 2xy) and where C is the 
losed 
urve that bounds the region

R = {(x, y) : 0 ≤ x ≤ 1, x2 ≤ y ≤ x}.

2. Evaluate the integral of Question 1 dire
tly.

3. Use Greens' theorem to evaluate

ˆ

c

x2y dx− y2x dy

where C is the 
ir
le x2 + y2 = 4.
4. Evaluate the integral of Question 3 dire
tly.

5. Use Green's theorem to show that the area A of a region R in the plane

bounded by a 
losed 
urve C is given by

A =
1

2

˛

C

xdy − ydx.

6. Use the formula of Question 5 to �nd the area of an ellipse with major

axis of length 2a and minor axis of length 2b.
7. Let C be a line segment from (a, b) to (a, c). Show that

ˆ

C

xdy − ydx = ad− bc.

8. Use Question 7 and Green's theorem to �nd the area of a polygon with

su

essive verti
es (x1, y1), (x2, y2), · · · , (xn, yn). Use this result to �nd the area

of the quadrilateral with verti
es (0, 0), (3, 4), (−2, 2), (−1, 0).

For Green's theorem to hold, the ve
tor �eld being integrated needs to be

di�erentiable throughout the region R, as is demonstrated in the following ex-

ample.

9. Cal
ulate

¸

C
F • dr where

F(x, y) =
−y

x2 + y2
i+

x

x2 + y2
j

and C is the unit 
ir
le 
entred at the origin.

10. For the �eld F =P (x, y)i+Q(x, y)j and the 
losed 
urve C of Question

9, 
al
ulate

ˆ ˆ

R

(∂Q

∂x
− ∂P

∂y

)

dxdy.

Note that the answers to Questions 9 and 10 do not agree so Green's theorem

does not hold here, and that F has a singularity at the origin.
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Problem Set 7 Surfa
e integrals

The integral of a s
alar �eld f(x, y, z) over a surfa
e S parametrized by

r(u, v) as u and v range over some region R of the uv-plane is given by:

ˆ ˆ

S

f(x, y, z) dσ =

ˆ ˆ

R

f(x(u, v), y(u, v), z(u, v)) || ∂r
∂u

× ∂r

∂v
|| dudv. (1)

The integral of a ve
tor �eld F(x, y, z) in the dire
tion n normal to a surfa
e S
represents the total �ux ofF through S and is 
al
ulated through parameterizing

the surfa
e:

ˆ ˆ

S

F • n dσ =

ˆ ˆ

W

F(u, v) • ∂r

∂u
× ∂r

∂v
dudv (2)

where W is the region in the uv-plane that gives the new limits. (The symbol Σ
is often used instead of S so it is natural to write dσ for the in
rement of surfa
e

area - sin
e ds is the symbol for in
rement of ar
 length, their is a relu
tan
e

to use this symbol as then ds has two di�erent meanings, although in 
ontext

there is no ambiguity.)

The ve
tors

∂r
∂u

and

∂r
∂v

are tangent ve
tors to the surfa
e at the point 
or-

responding to (u, v) and so their ve
tor produ
t is normal to that surfa
e at

that point. The in
rement of surfa
e area is a parallelogram with these ve
tors

as sides, the area of whi
h is the length of their 
ross-produ
t so that the term

|| ∂r
∂u

× ∂r
∂v

|| is the multiplier introdu
ed into the integrand when we parametrize

with the variables u and v. Applying this observation to the integral on the left

in (2), we see that the term F • n takes the form

F• ∂r
∂u

× ∂r

∂v
/||∂r

∂u
× ∂r

∂v
||

and so the length term in the denominator is 
an
elled by the same term in

dσ = || ∂r
∂u

× ∂r
∂v

|| dudv, the in
rement of surfa
e area.

Formula (1) 
an also be re
overed from (2): if we take F to be the ve
tor

�eld F = f(x, y, z)n, then the LHS of (2) be
omes the RHS of (1), so that

(1) 
an be thought of as the spe
ial 
ase of integration of a ve
tor �eld that is

always a
ting orthogonally to the tangent plane of the surfa
e of integration.

1. Cal
ulate the surfa
e integral of f(x, y, z) = x2
over the surfa
e of the


one z =
√

x2 + y2 for 0 ≤ z ≤ 1.

2. Suppose that a surfa
e S is given by the equation z = g(x, y). Show that

(1) 
an now be re-written in the form

ˆ ˆ

S

f(x, y, z) dσ =

ˆ ˆ

R

f(x, y, g(x, y))

√

1 +
(∂g

∂x

)2
+
(∂g

∂y

)2
dxdy. (3)
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3. Show that the formula in Question 2 
an also be written as

ˆ ˆ

S

f(x, y, z) dσ =

ˆ ˆ

R

f(x, y, g(x, y))||∇h|| dxdy (4)

where h(x, y, z) = z − g(x, y).

4. Answer Question 1 again this time using (3) instead of (1).

5. Expli
itly introdu
e h(x, y, z) and use the formula (4) to evaluate the

surfa
e integral for the s
alar �eld

f(x, y, z) = x+ 2y + 3z

over S, whi
h is the upper surfa
e of the part of the plane x + y = 1 that lies

in the positive o
tant between z = 0 and z = 1 (the positive o
tant means the

volume of 3-d spa
e where x, y, z ≥ 0).

6. Use a surfa
e integral to show that the area of a right 
ir
ular 
one of

radius R and height h is πR
√
h2 +R2

.

7. For the fun
tion g(u, v) = (u cos v, u sin v, v) (0 ≤ u ≤ 1, 0 ≤ v ≤ 3π),
show that

||∂g
∂u

× ∂g

∂v
|| =

√

1 + u2.

By expressing it as an appropriate surfa
e integral, �nd the area of the spiral

ramp represented by the surfa
e g(u, v). You may use the fa
t that

ˆ

√

1 + x2 dx =
1

2
x
√

1 + x2 +
1

2
ln(x +

√

1 + x2).

8. Cal
ulate the surfa
e integral of the ve
tor �eld F(x, y, z) = (x, z,−y)
over the surfa
e of the 
ylinder S = {(x, y, z) : x2 + y2 = 1, 0 ≤ z ≤ 1}.

9. Show that if S is de�ned by z = g(x, y) then

ˆ ˆ

S

F(x, y, z) • n dσ =

ˆ ˆ

R

F • ∇h dxdy

where h(x, y, z) = z − g(x, y).

10. Evaluate the surfa
e integral of the ve
tor �eld

F(x, y, z) = (18z,−12, 3y)

where S is the upper surfa
e of the plane with equation 2x + 3y + 6z = 12,
whi
h is lo
ated in the positive o
tant.
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Problem Set 8 Divergen
e theorem

Divergen
e theorem The integral of a ve
tor �eld normal to a 
losed surfa
e


an be expressed in terms of a triple integral of the divergen
e over the volume

V 
ontained in S. In symbols:

‹

S

F • n dσ =

ˆ ˆ ˆ

V

∇ • F dxdydz (5)

with the unit normal points outwards from the 
losed surfa
e.

For Questions 1-3 use the Divergen
e theorem to evaluate

‚

S
F • n dσ.

1.

F(x, y, z) = (x sin y, cos 2x, y2 − z sin y)

over the surfa
e of the sphere S with equation x2 + y2 + (z − 2)2 = 1.

2. Find

‚

S
F • n dσ where

F(x, y, z) = 2xi+ y2j+ z2k

and S is the surfa
e of the unit sphere 
entred at the origin.

3. Using the Divergen
e Theorem, �nd the �ux of the ve
tor �eld

F(x, y, z) = (xy, yz, xz)

outward through the surfa
e of the 
ube 
ut from the �rst o
tant by the planes

x = 1, y = 1, z = 1.

4. Find

‚

S
F • n ds through use of the Divergen
e theorem for the ve
tor

�eld

F(x, y, z) = (4x,−2y2, z2)

and the surfa
e of the 
ylinder S = {x2 + y2 = 4, 0 ≤ z ≤ 3}.

5. Cal
ulate the integral of Question 4 dire
tly.

6. Prove that for any 
losed surfa
e S and ve
tor �eld F

‹

S

∇× F dσ = 0.
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7. Find the relationship between the volume 
ontained in the 
losed surfa
e

S and the integral

‹

S

r • n dσ

where r(x, y, z) = (x, y, z).

8. Suppose two s
alar �elds are related by ∇2f = g. Show that

ˆ ˆ ˆ

V

g dxdydz =

‹

S

(∇f) • n dσ.

Planar version of the Divergen
e theorem: let F = P (x, y)i+Q(x, y)j, then
for a 
losed 
urve C and for the region R 
ontained by C:

˛

C

F • nds =
ˆ ˆ

R

∇ • F dxdy

where n is the outward pointing unit normal n =
(

− dx
ds
, dy
ds

)

.

9. Verify that this plane version of the theorem works for the 
ase where

F(x, y) = 2yi+ 5xj

and C is the 
ir
le x2 + y2 = 1.

10. Prove the theorem by showing that the equality follows from Green's

theorem.
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Problem Set 9 Stokes's theorem

For a smooth ve
tor �eld F in three dimensions and an orientable surfa
e*

S with boundary 
urve C

ˆ ˆ

S

∇× F • n dσ =

˛

C

F • dr

where C is a 
losed 
urve parametrized by r(t) say and where n is the unit

normal to the surfa
e su
h that T = r
′(t)

||r′(t)|| ,n, and T× n form a right handed

system.

* Comment The Mobius strip, whi
h is a (long thin) re
tangle with the ends

glued together with a half twist is the basi
 example of a non-orientable surfa
e.

The strip has only one side and one edge and in 
onsequen
e a 
ontinuous ve
tor

�eld 
annot be applied to it.

1. Use Stokes's theorem to evaluate

˛

C

F•dr

where C is the triangle with verti
es (1, 0, 0), (0, 1, 0), (0, 0, 1) traversed in that

order and F(x, y, z) = (z2, y2, x).

2. Let C be the 
urve whi
h begins at (0, 0, 0), passes as a straight line to

(0, 0, 1), passes as a quarter 
ir
le in the yz-plane to (0, 1, 0) and then as a line

segment ba
k to the origin.

Cal
ulate dire
tly the integral

¸

C
F•dr where F(x, y, z) = (y, z, x).

3. Re-work Question 2 via the Stokes theorem.

4. Let C be the 
ir
le where the 
one x2 + y2 = 1 meets the plane z = 1,
oriented in the anti-
lo
kwise dire
tion when viewed from the z-axis looking

toward the origin. Let

F(x, y, z) = (sinx− y3

3
, cos y +

x3

3
, xyz).

Use Stokes's theorem to evaluate

¸

C
F(x, y, z) • dr.

5. Use Stokes's theorem to prove that any irrotational ve
tor �eld (one with

zero 
url) has the property that

¸

C
F•dr = 0 for any simple 
losed 
urve C.

6. Suppose that S is a �at surfa
e lying in the xy-plane, so that z =
0 and n = (0, 0, 1) . Suppose we have a ve
tor �eld given by u(x, y) =
(P (x, y), Q(x, y), 0). Show that Stokes's theorem in this 
ase redu
es to Green's

Theorem in the plane. (And so Stokes's theorem generalises that of Green.)

13



Maxwell's equations des
ribe the relationship between the ele
tri
 �eld strength

E and the magneti
 �eld strength B:

∇ •B = 0, ∇ •E =
ρ

ε0
;

∇×B = µ0J+ µ0ε0
∂E

∂t
, ∇×E = −∂B

∂t
,

where ε0 and µ0 are positive 
onstants, ρ denotes ele
tri
 
harge density, t
denotes times and J is another asso
iated ve
tor �eld known as the total 
urrent

density.

7. Use the Divergen
e theorem to dedu
e Gauss's law of ele
tri
 �elds, whi
h

says that

‹

S

E • n dσ =
Q

ε0

where Q is the total 
harge en
losed by S.

8. Use Stokes's theorem to dedu
e the Maxwell-Faraday equation in the form

˛

C

E•dr = − ∂

∂t

ˆ ˆ

S

B • n dσ,

where C is a 
urve 
orresponding to the boundary of the surfa
e S.

9. Use the general form of Maxwell's equations to show that the 
harge

density ρ and the ele
tri
 
urrent density J obey the 
onservation law

∂ρ

∂t
+∇ • J =0.

10. Suppose the energy of an ele
tromagneti
 wave in a va
uum is given by

w =
1

2
B •B+

1

2c2
E •E

where c2 = 1
µ0ε0

. Using Maxwell's equations in a va
uum (i.e. where ρ = 0 and

J=0), show that the rate of 
hange of the energy obeys the 
onservation law

∂w

∂t
+∇ •P = 0,

where P = E×B is known as the Poynting ve
tor.

14



Problem Set 10 Frenet-Serret equations for 
urves in 3D spa
e

Let C be a smooth 
urve in 3-spa
e parametrized by ar
 length β(s) with
β′(s) 6= 0 for all s. Then T (s) = β′(s), is a unit tangent ve
tor to the 
urve.

Let r1(t), r2(t) be two smooth ve
tor fun
tions of time t.

1. Show that

(r1 • r2)′ = r′1•r2 + r1 • r′2.
.

2. Similarly verify that

(r1×r2)
′ = r′1 × r2 + r1 × r′2.

3. Show that if r(t) • r(t) = c, a 
onstant, then r′(t) ⊥ r(t). Hen
e dedu
e
that β′′(s) ⊥ T (s).

De�ne the 
urvature k(s) = ||β′′(s)||. Write N(s) = β′′(s)
k(s) = T ′(s)

k(s) , thereby

de�ning the unit normal ve
tor at β(s); put B = T × N , the (unit) binormal

ve
tor at β(s). The trio (T,N,B) form the Frenet frame for β at s, whi
h is an

orthogonal trio of unit ve
tors at β(s).

4. Dedu
e the First Frenet Equation,

T ′(s) = k(s)N(s).

5. Show the Third Frenet Equation, whi
h is that B′(s) has the form

B′(s) = −τ(s)N(s)

for some fun
tion τ(s) that we shall 
all the torsion of β at s. [Hint: show

B′(s) ⊥ B(s), T (s).℄
6. By writing N = B × T dedu
e the Se
ond Frenet Equation,

N ′(s) = −k(s)T (s) + τ(s)B(s).

7. Show that the three Frenet equations 
an be written as a single matrix

equation

(T ′, N ′, B′) = M(T,N,B)T ,

where M is a suitable 3× 3 matrix.

8. Consider the unit speed helix, β(s) = (a cos ws
c
, a sin ws

c
, b
c
s) (s ≥ 0).

Cal
ulate T (s), and dedu
e that, for the helix to be traversed at unit speed,

c2 = a2w2 + b2.
9. Find T ′(s), showing that the 
urvature k(s) is 
onstant, and thus 
al
ulate

N(s).
10. Find the binormal ve
tor B(s), its derivative B′(s) and thus �nd the

torsion, τ(s) again showing it to be 
onstant.
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Hints for Problems

Problem Set 1

1. Consider the triangle de�ned by the ve
tors a and b with 
ommon tail

so that the third side 
orresponds to a− b.

4 & 5. Use the determinant form and one of the properties of determinants.

9. It is su�
ient to establish equality in the �rst 
omponent as the se
ond

and third 
omponents are formed in the 
orresponding way.

Problem Set 2

1. We may assume that the dire
tional derivative in the dire
tion of any

tangent ve
tor to a level surfa
e is 0.
2. Find the dire
tion that maximizes the value of the dire
tional derivative

at a given point P .
6. The angle between the surfa
es at a 
ommon 
onta
t point equals the

angle between their normals.

8. The equation of the tangent plane takes the form fx(x0, y0)(x − x0) +
fy(x0, y0)(y − y0) = z − z0 or in ve
tor notation (∇f |x0

) • (x− x0) = z − z0.
9. Follow your nose: this follows at on
e from the linearity of di�erentiation.

10. And this one follows from the produ
t rule.

Problem Set 3

7. The proof of this and similar identities assumes equality of mixed partial

derivatives:

∂f2

∂x∂y
= ∂f2

∂y∂x
.

Problem Set 4

2. Make use also of the identity of Question 9 of Set 3.

4. 1.

´

C
F • dr =

´ 1

0 F•dr

dt
dt.

5. Write F = (φx, φy) and integrate φx with respe
t to x but remember this

introdu
es an arbitary fun
tion f(y); di�erentiate with respe
t to y and equate
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with φy to �nd f(y) and hen
e the potential φ(x, y).
6. Similar to Question 5 but the initial integration determines φ only up

an arbitary fun
tion f(y, z). Di�erentiate φ with respe
t to y, 
ompare to

the se
ond 
omponent fun
tion of F, and integrate to determine φ up to an

arbitrary fun
tion g(z) say; repeat the pro
edure using the �nal variable z in

order to determine the potential up to an integration 
onstant.

7. Again use Question 9 of Set 3.

8. Writing down the integral you dis
over that it is the integral of φ′(t); the
result then follows from the Fundamental theorem of 
al
ulus.

Problem Set 5

6. For the alternative formulation, write r′′(t)• r′(t) as the derivative of half
the square of the length of the velo
ity ve
tor.

10. Make C as large as possible while ensuring that the Green's integrand

is positive in the en
losing region.

Problem Set 6

1. Draw the region of integration before setting up your double integral,

perhaps �xing x and integrating �rst with respe
t to y.
5. Apply Green's theorem to the given integral and see what you get.

6. Use the parametrization r(t) = (a cos t, b sin t) (0 ≤ t ≤ 2π).

Problem Set 7

1. Parametrize the 
oni
al surfa
e by 
ylindri
al 
oordinates: r(t, z) =
(z cos t, z sin t, z) 0 ≤ t ≤ 2π, 0 ≤ z ≤ 1.

5. Write y = g(x, z) on the surfa
e (in this 
ase, g(x, z) = g(x) only) and
then take h(x, y, z) = y − g(x, z); remember to write the integrand f(x, y, z) in
the form f(x, g(x, z), z) and integrate on the proje
tion of the surfa
e onto the

xz-plane.
6. Parametrize the surfa
e using x = r cos t,y = r sin t and z = h

R
r. for

0 ≤ t ≤ 2π and 0 ≤ r ≤ R.
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Problem Set 8

5. This integral is over the entire surfa
e of the 
ylinder, in
luding the end

dis
s (so the Divergen
e theorem applies). This makes the 
al
ulation relatively

long.

9. n = (cos t, sin t), substitute a

ordingly.
10. We may write n ds = (dy,−dx) and substitution leads to the result via

Green's theorem.

Problem Set 9

6. Take x and y as the parameters, remembering that z = 0 and interpret

the Stokes theorem in this 
ontext.

10. Apply the identity ∇ • (f × g) = g • (∇× f)− f • (∇×g) to ∇ •P.

Problem Set 10

5. B(s) •B(s) = 1.
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Answers to the Problems

Problem Set 1

10. (a • b)c = (b • c)a.

|

Problem Set 2

3. (1, 2,−4e2). 4.

37
3 . 5. ± 1

3 (2, 2,−1) 6. 0 · 95 radians 7. ( 5
169 , − 8

169

)

. 8.

5
169 (x− 2)− 8

169 (y − 3) = z − 2
9 .

Problem Set 3

3.1 + yz. 4. −xi+ xyj+ z(1− x)k. 5. 1
x
+ x

x2+z2 + xzexyz. 6. −xyexyzi +
z

x2+z2 j+ yzexyzk. 7. ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2 .

Problem Set 4

4. 3 31
60 . 5. φ(x, y) =

1
3x

3+xy2+y+c. 6. 1
2x

2+2xy+4xz− 3
2y

2−zy+z2+c.
7. 
url(u) = (0,−xy, 1− xz) 6= 0and hen
e u is not 
onservative. 9 & 10. 6 1

3 .

Problem Set 5

1. e− 1
e8

− 4
3 . 2. z sinx+ x ln z + y3

3 − 4
3 . 3. −5π. 5. −1. 7.

(

− 9
10 ,− 2

3 ,
7
5

)

.
8. −5π. 9. −24π . 10. The unit 
ir
le 
entred at the origin,

π
2 .
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Problem Set 6

1 & 2.

1
12 . 3 & 4. −8π. 6 πab. 7. A = 1

2 [(x1y2 − x2y1) + (x2y3 − x3y2) +
· · ·+ (xn−1yn − xnyn−1)].8. 8. 9. 2π. 10. 0.

Problem Set 7

1 & 4.

√
2π
4 . 5. 3

√
2 7.

3π
2

(√
2 + ln(1 +

√
2)
)

. 8. π. 10. 24.

Problem Set 8

1. 0. 2. 0. 3. 3
2 . 4 & 5. 84π. 7. 3V . 9. 0.

Problem Set 9

1. − 1
6 2&3

π
4 . 4.

π
2 .

Problem Set 10

7.





T ′

N ′

B′



 =





0 k 0
−k 0 τ
0 −τ 0









T
N
B



 .8. T (s) = β′(s) = (−aw
c
sin ws

c
, aw

c
cos ws

c
, b
c
).

9. T ′(s) = (−aw2

c2
cos ws

c
,−aw2

c2
sin ws

c
, 0); hen
e ||T ′(s)|| = aw2

c2
= k(s); N(s) =

T ′(s)
k

= −(cos ws
c
, sin ws

c
, 0). 10. B(s) = ( bw

c2
cos ws

c
, bw
c2

sin ws
c
, 0); B′(s) =

−τ(s)N(s); τ = bw
c2

= bw
a2w2+b2
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