
Mathemati
s 204 Complex Variables

Professor Peter M. Higgins

Mar
h 10, 2018

This module builds on your existing knowledge of 
omplex numbers to begin

the study of fun
tions of a 
omplex variable, whi
h holds many surprises. The

�rst two problem sets 
ontinue the theme with the introdu
tion of stereographi


proje
tion and problems involving the standard tool of using the 
omplex expo-

nentiation fun
tion and moving to real and imaginary parts. A 
omplex variable


an be viewed as a single variable and so the de�nition of di�erentiability of a

real fun
tion extends to a 
omplex one. However, at the same time it partakes

of the nature of two variable fun
tions in that the limit must exist through all

dire
tions of approa
h and the result is that 
omplex di�eretiablity is very de-

manding in that the real and imaginary parts of the fun
tion must be linked

through the Cau
hy-Riemann equations, whi
h are the subje
t of Set 3.

Contour integration, whi
h the student will have seen in the 
ontext of ve
tor

fun
tions, is introdu
ed in Set 4 but the spe
ial nature of integration in the


omplex plane is explored through the Cau
hy integration formula of set 5.

Sin
e all di�erentiable fun
tions of a 
omplex variable are analyti
 and so


an be represented by series, the topi
 of series arise often in the problem sets,

in
luding Set 6, where the 
omplex logarithm fun
tion is also introdu
ed. In Set

7 we study fun
tions that are not analyti
 but 
an be represented by series that

allows for negative powers of the 
omplex variable z, the so-
alled Laurent series.

In Set 8 the emphasis is on the Cau
hy Residue theorem and its appli
ation in


al
ulating integrals, in
luding sometimes results for integrals along the real

line. In Set 9 there is a variety of further problems making use of the te
hniques

that have been introdu
ed while Set 10 introdu
es the 
elebrated Riemann zeta

fun
tion and some of its remarkable properties are to be found there.
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Problem Set 1 Geometry of the 
omplex numbers

1. Prove that

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2)

2. Show that the equation

az − āz̄ + b = 0

where a ∈ C \ {0} and b = ih, h ∈ R is the 
artesian equation of a straight line:

Ax+By + C = 0, A,B,C ∈ R.

3. Write the fun
tion

f(z) = 2x(1− y) + i(x2 − y2 + 2y)

as a fun
tion of z = x+ iy.
4. Determine the set of points for whi
h Re((1 + i)z) > 0.

Stereographi
 proje
tion Let the 
omplex plane be represented by xy-
ordinates
and let S be the sphere x2 + y2 + z2 = 1. Let the north pole be N = (0, 0, 1).
The stereographi
 proje
tion W of w = (x, y, 0) ∈ C is the point where the line

between N and w meets S. As |w| → ∞, W → N .

5. Show the line L through w and N is

L = {(1− t)x, (1 − t)y, t : −∞ < t < ∞}

where t = |w|2−1
|w|2+1 .

6. Find the 
oordinates of the point W where L meets S.
7. Given W = (x1, x2, x3), show that

w =
x1 + ix2

1− x3
.

8. Show that the square of the distan
e d2(W,W ′) between two points

W = (x1, x2, x3) and W ′ = (x′
1, x

′
2, x

′
3) is given by

2− 2(x1x
′
1 + x2x

′
2 + x3x

′
3).

9. Show that

d(W,W ′) =
2|w − w′|

[(1 + |w|2)(1 + |w′|)2] 12
.

10. And similarly show that for d(W,∞), by whi
h we mean d(W,N), we
have

d(W,∞) =
2

(1 + |w|2) 1
2

.
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Problem Set 2 Further problems with polar and 
artesian forms

1. Find the lowest value of n su
h that zn − 1 has a root at e
iπ

10
.

2. Solve the equation

cos z =
1√
2
.

3. Find the family of 
urves de�ned by the equation:

R(
1

z
) = c, c ∈ R.

4. Show that

cos
2π

n
+ cos

4π

n
+ · · ·+ cos

2(n− 1)π

n
= −1.

5. Show that

sin
2π

n
+ sin

4π

n
+ · · ·+ sin

2(n− 1)π

n
= 0.

6. Find all the roots of the equation zn = (1 + z)n, thereby showing that

they all line on a single line in the 
omplex plane.

7. Show that for any z, w ∈ C we have

zw + zw

2
≤ |z||w|.

8. Dedu
e the triangle inequality from the result of Question 7.

9. For given 
omplex numbers z1, z2 and z3, prove that the relation

|z1 − z3|2 = |z1 − z2|2 + |z2 − z3|2

is equivalent to

z3 − z2 = iβ(z2 − z1), for some β 6= 0.

10. Find the images in the (u, v)-plane of lines parallel to the real axis and

parallel to the imaginary axis under the mapping z 7→ sin z.
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Problem Set 3 Cau
hy-Riemann equations

The Cau
hy-Riemann equations for a pair of fun
tions u(x, y), v(x, y) are
given by:

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂v

∂y
.

The fun
tion of a 
omplex variable z = x + iy given by f(z) = u(x, y) +
iv(x, y) is di�erentiable (and then is smooth and has a power series) if and only

if u and v satisfy the Cau
hy-Riemann equations in whi
h 
ase

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=

∂v

∂y
− i

∂u

∂y
.

For Question 1-4, write the fun
tion f(z) in the form f = u+ iv, show that

u and v satisfy the Cau
hy-Riemann equations and �nd the derivative of f ′(z)
in terms of z.

1. f(z) = z2. 2. f(z) = ez. 3. f(z) = z−1
.

4. The prin
ipal value of the logarithm: Log(z) = ln |z| + iArg(z). Show
di�erentiability for all z with positive real part.

5. Show that f(z) = z and g(z) = |z| are not di�erentiable by showing that

the 
orresponding Cau
hy-Riemann equations do not hold.

6. If f(z) = u + iv is di�erentiable, show that u is a harmoni
 fun
tion,

whi
h is to say satis�es Lapla
e's Equation

∂2u

∂x2
+

∂2u

∂v2
= 0.

Find a harmoni
 
onjugate of the (harmoni
) fun
tion for the fun
tions in

Questions 7 and 8, whi
h means the fun
tion v(x, y) su
h that u(x, y)+ iv(x, y)
is di�erentiable.

7.

u(x, y) = 2x(1− y).

8.

u(x, y) = 2y3 − 6x2y + 4x2 − 7xy − 4y2 + 3x+ 4y − 4.

9. And again for u(x, y) = sinhx sin y, expressing f(z) = u+iv as a fun
tion
of z alone.

10. For z = reiθ show that

∂u

∂r
=

1

r

∂v

∂θ
,
∂v

∂r
= −1

r

∂u

∂θ
.
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Problem Set 4 Contour Integration

For the unit 
ir
le C de�ned by |z| = 1 �nd

1.

ˆ

C

|z| dz.

2.

ˆ

C

Re(z) dz

3.

ˆ

C

z dz.

4. For n 6= −1 �nd

ˆ

C

(z − z0)
n dz

anti-
lo
kwise around the 
ir
le |z − z0| = r.

5. Repeat Question 4 with n = −1.

6. Find

ˆ

C

|z| dz

where C is the quarter of the unit 
ir
le in the �rst quadrant tra
ed anti-


lo
kwise.

7. Repeat Question 6 with C now the 
onne
ted line segments, the �rst of

whi
h goes from (1, 0) to the origin while the se
ond goes from (0, 0) to (0, 1).

8.

ˆ

γ

z sin z dz

where γ = {z ∈ C : z = π
2 e

it, Im(z) > 0}(−π < t < π).

9. Show that

ˆ

|z|=2

3z + 5

z2 + z
dz = 6πi.

10. Find

ˆ 3i

i

z sinh(z2) dz.
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Problem Set 5 Cau
hy's Integral Formula

Cau
hy's Integral formula If f(z) is analyti
 inside a simply 
onne
ted region

D 
ontaining the simple 
losed path C and with z0 ∈ D then, traversing C anti-


lo
kwise,

f(z0) =
1

2πi

˛

C

f(z) dz

z − z0
.

Taking C to be a 
ontour in D that en
loses z0, the value of the nth derivative

is given by

f (n)(z0) =
n!

2πi

˛

C

f(z) dz

(z − z0)n+1
.

1. Use the formula to �nd

´

C
cos z
z dz where C is the unit 
ir
le.

2. Prove the derivative formula by indu
tion on n from the Cau
hy integral

formula, assuming we may di�erentiate with respe
t to z0 inside the integral.

3. Integrate in the anti-
lo
kwise sense around the 
ir
le |z + i| = 1:

z2

z2 + 1
.

4. Repeat Question 3 for the 
ir
le |z − i| = 1
2 .

For Question 5 - 7 integrate around the unit 
ir
le in the positive sense.

5.

z2

(2z−1)2 6.

cos z
z2 . 7.

ez
3

z3 .

8. By substituting w = z + 1, show that

f(z) =
4− 6z

2z2 − 3z + 1
=

5− 3w

(w − 3
2 )(w − 2)

.

9. Use partial fra
tions on the previous expression to derive the Taylor series

for f(z) in Question 8.

10.

z

ez − 1
=

∞
∑

n=0

Bn

n!
zn,

where Bn is 
alled the nth Bernoulli number. Express z as a power series,

written expli
itly up to the term in z5, in terms of Bernoulli numbers. Hen
e

�nd the Bernoulli numbers up to and in
luding B4 .
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Problem Set 6 Series problems and the logarithm fun
tion

1. Show by the Ratio test that the series

∞
∑

n=0

(1 + i

2

)n

is 
onvergent.

Find the 
entre and radius of 
onvergen
e of the following power series.

2. ∞
∑

n=0

32n(1 + z)3n.

3. ∞
∑

n=0

(n+ 1)
(z

5

)n+1
.

4. Is this series 
onvergent?

∞
∑

n=1

(−1)nn!

en(1 + i)n
.

For z ∈ C∗ = C \ {0} we de�ne log z = ln |z|+ i arg z and the prin
ipal value

of the logarithm is Log(z) = ln |z|+ iArg(z).

5. Show that eLog(z) = z.

6. Find the values of Log at ea
h of i,−i, 1 + i and 4i.

7. Show that Log is not 
ontinuous on the negative real axis as follows. Take

α > 0 and 
onsider the sequen
es {an = αei(π−
1
n
)} and {bn = αei(π+

1
n
)}. Show

that both sequen
es approa
h α but that Log(an) and Log(bn) do not approa
h
the same value.

8. Show that Log is analyti
 on C∗ \ R−
by writing z = reiθ and work in

polar form with Log(z) = u(r, θ) + iv(r, θ).
9. The usual identity Log(z1z2) = Log(z1) + Log(z2) does not generally

hold (as a di�eren
e of 2π 
an arise between the two sides). However, show that

for the multi-valued fun
tion log z we do have:

log(z1z2) = log z1 + log z2, log
(z1
z2

)

= log z1 − log z2.

10. Verify the �rst formula in detail when z1 = −2i and z2 = −i but show
the formula fails if we repla
e log by Log in this 
ase.
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Problem Set 7 Laurent series

Laurent series If f(z) is analyti
 on two 
on
entri
 
ir
les C1 and C2 and

on the annulus between them then f(z) =
∑∞

n=−∞ an(z − z0)
n
where

an =
1

2πi

˛

C

f(w) dw

(w − z0)n+1
(n ≥ 0), an =

1

2πi

˛

C

(w − z0)
n−1f(w) dw (n ≤ −1)

where C is any simple 
losed 
urve that lies in the annulus and en
loses z0. (For
n ≤ −1 we shall write bn in pla
e of an for 
onvenien
e.) The 
oe�
ient b1 is

the residue of f(z) at z0. If z0 is a pole of order n (meaning that n is the largest

subs
ript k su
h that bk 6= 0) then

b1 =
1

(n− 1)!

dn−1

dzn
(

(z − z0)
nf(z))|z=z0 .

Alternatively, if f(z) = P (z)
Q(z) where Q has a simple zero at z0 (so that (z−z0)f(z)

is analyti
) then b1 = P (z0)
Q′(z0)

. If f(z) has a zero of order n at z0 then 1/f(z)

has a pole of order n at z0.

Find the Laurent series of the following fun
tions.

1. f(z) = 1
z−z2 , z0 = 0.

2. f(z) = 3−z
z2−z4 , z0 = 0.

3. f(z) = 1
1−z2 , z0 = 1.

4. Express

f(z) =
z2 − z + 3

5(z + 1)(z2 + 4)

in partial fra
tions, and �nd where f(z) is not de�ned.
5. Hen
e �nd a Taylor series for the fun
tion f(z) of Question 4 that is valid

for |z| < 1.
6. For 1 < |z| < 2 �nd a Laurent series for

1
z+1 .

7. Hen
e �nd a Laurent series for f(z) in the region 1 < |z| < 2.

Find the residues at the singular points of ea
h of the following.

8.

cos 2z

z4

9.

z2 + 11z + 1

(z + 1)2(z − 2)

10. sec z.
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Problem Set 8 Cau
hy's Residue Theorem

Cau
hy's residue theorem: if f(z) is analyti
 inside the simple 
losed 
urve

C ex
ept for �nitely many poles z1, z2, · · · , zn inside C then:

ˆ

C

f(z) dz = 2πi

n
∑

j=1

Res

(z = zj)
f(z)

Identify the zeros z0 of the following fun
tions and the order of ea
h su
h z0
(the least n for whi
h f (n)(z0) 6= 0).

1. f(z) = z3 − 2iz2 − z.

2. f(z) = tan z.

With C the unit 
ir
le (traversed anti-
lo
kwise) �nd:

3.

´

C
z

4z2−1 dz 4.

´

C
ez

cos z dz.

Let ΓR be the 
losed 
urve 
onsisting of the 
ir
le 
entred at the origin of

radius R, where R > 1, traversed anti-
lo
kwise. Find

5.

´

ΓR

sin(z2) dz; 6.

´

ΓR

ez
2

1−z dz 7.

´

ΓR

sin(z−1)
z2−1 dz.

8. If |F (z)| ≤ M
Rk for z = Reiθ, where k > 1 and M are 
onstants, show that

lim
R→∞

ˆ

Γ

F (z) dz = 0,

where Γ is the upper semi
ir
le 
entred at the origin of radius R, traversed
anti-
lo
kwise.

9. Show that for z = Reiθ, |f(z)| ≤ M
Rk , for some Mand k > 1 and for all

su�
iently large R, if f(z) = 1
z6+1 .

10. Evaluate

ˆ ∞

0

dx

1 + x6
.
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Problem Set 9 Further problems

The Wirtinger operators are de�ned as

∂

∂z
=

1

2
(
∂

∂x
− i

∂

∂y
),

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
).

1. Show that for a di�erentiable fun
tion f(z), ∂f
∂z = 0.

2. Show that

∂
∂z (z) = 1 and

∂
∂z (z) = 1.

Consider the integral:

ˆ

|z|=1

dz

(z − a)n(z − b)n
.

3. Evaluate the integral if |a| < |b| < 1;

4. Again but with |a| < 1 < |b|,

5. 1 < |a| < |b|.

6. Evaluate

ˆ

|z+1|=2

sin z dz

(z + 2)4
.

7. Find the Taylor series expansion around the origin of the fun
tion

f(z) = cos
√
z.

8. Find

ˆ

γ

eπz

(z2 + 1)2
dz

where γ is the 
urve with equation 4x2 + y2 − 2y = 0.

Fundamental theorem of algebra Show that ea
h non-
onstant polynomial

p(z) = a0 + a1 + · · ·+ anz
n (n ≥ 1) has a 
omplex root as follows. Suppose to

the 
ontrary that p(z) 6= 0 for all z ∈ C. Hen
e f(z) = 1/p(z) is di�erentiable
over all of C.

9. Prove that |f(z)| is bounded.

10. Show that if any bounded fun
tion f(z) that is di�erentiable on all of C

is 
onstant by using the Cau
hy integral formula to show that its derivative is

0. The 
ontradi
tion represented by Questions 8 & 9 then shows that p(z) has
a root.
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Problem Set 10 Riemann zeta fun
tion

The Riemann zeta fun
tion is de�ned as ζ(s) =
∑∞

n=1
1
ns , where s = x+ iy,

x > 1.

1. Show that

ζ(s) =

∞
∑

n=1

(

∞
∑

k=0

(ln(n)s)k

k!

)−1
.

Show Euler' formula

ζ(s) = Πp(1−
1

ps
)−1

where the produ
t is taken over all primes as follows.

2. Write ea
h term in the produ
t as an in�nite geometri
 series.

3. Multiply that series out and use the Fundamental theorem of arithmeti


(uniqueness of prime fa
torization) to 
on
lude the result.

4. Show that for R(s) > 0, s 6= 1, we may extend ζ to the right half plane

(ex
ept s = 1) by the following alternative formula, whi
h agrees with the

original de�nition for R(s) > 1.

ζ(s) =
1

1− 21−s

∑

(−1)n+1 1

ns
.

Assume another identity of Euler that holds for |z| < π:

z
otz = 1− 2
∑∞

n=1
z2

n2π2−z2 (1)

5. Show that (1) may be re-written as

z
otz = 1− 2
∑∞

k=1

(
∑∞

n=1
1

n2k

)

z2k

π2k (2)

6. Alternatively, show that

z
otz = iz + 2iz
e2iz−1 (3)

7. Use Question 10 of Set 5 to show from (3) that

z
otz = 1 +
∑∞

k=2 Bk
(2iz)k

k! (4)

8. Dedu
e that

ζ(2k) = (−1)k+1 (2π)
2k

2(2k)!
B2k.
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9. Use the relation for Bernoulli numbers:

k
∑

j=0

(

k + 1

j

)

Bj = 0, B0 = 1

to �nd ζ(2), and ζ(4).

10. Given the fun
tional equation:

ζ(s) = 2(2π)s−1 sin(
πs

2
)Γ(1− s)ζ(1 − s), R(s) < 1

show that for positive integer k, ζ(−2k) = 0 and give an expression for ζ(−2k+1)
in terms of the now known value of ζ(2k).
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Hints for Problems

Problem Set 1

1. & 2. Use |z2| = zz and properties of the modulus operator.

2. Substitute z = x+ iy and see where it leads.

3. If all else fails use x = z+z
2 and y = z−z

2i and simplify.

Problem Set 2

4. & 5. First �nd the sum

∑n−1
k−0 e

2πi

n
and then take the real and imaginary

parts respe
tively.

6. Solve for z and then use that e
ikπ

n − e−
ikπ

n = 2i sinkπ to simplify the

result.

7. Use that z+ z = 2R(z) and R(z)2 ≤ |z|; substitute in the equality to gain

the required result.

8. Begin from (z + w)2 = (z + w)(z + w).
9. Put µ = z3−z2

z2−z1
and show that z3 − z1 = (1 + µ)(z2 − z1). Substituting in

the given equality now leads to the 
on
lusion that µ is purely imaginary.

10. In ea
h 
ase represent sin z in the form u + iv and �nd the equation

relating u and v.

Problem Set 3

9. Express cosh z in the form u+ iv.
10. Intergrate

∂v
∂y wrt y and equate to

∂u
∂x ; remember to in
lude a fun
tion

φ(x) as a result of the integration. Then determine φ(x) using the se
ond CR

equation.

Problem Set 4

1 - 3. Using the standard parametrization z = eit (0 ≤ t ≤ 2π). Simplify |z|
on C.

2. Re(z) = cos t = 1
2 (e

it − e−it).
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4. Use z = z0 + ρeit (0 ≤ t ≤ 2π).
8. Find an anti-derivative and evaluate via the endpoints of the 
ontour.

9. Use partial fra
tions and the Prin
iple of Deformation, whi
h says that

if one 
ontour is 
ontained inside another and the fun
tion to be integrated

is analyti
 between the 
ontours then the integral of the fun
tion is the same

around both 
ontours.

10. Find an anti-derivative of the integrand and evaluate dire
tly.

Problem Set 5

3. & 4. Fa
torize the denominator and work with the root inside the 
ontour

of integration when applying the Cau
hy formula.

5. & 6. This time you will need the derivative formula with n = 1.
7. Again but with n = 2.
10. Cross-multiply and use the known exponential series to �nd the Bernoulli

numbers by equating 
oe�
ients.

Problem Set 6

1-4 Remember the ratio test : the radius of 
onvergen
e R satis�es R−1 =
limn→

∣

∣

zn+1

zn

∣

∣

(if this limit exists).

8. Use the results of Question 10 on Set 3.

Problem Set 7

1. & 2. Fa
torize as a simple rational fun
tion and a geometri
 series to �nd

the Laurent series.

3. First substitute w = z − z0so that the series is 
entred at w = 0. Write

1
w+2 as

1
2(1−(−w/2)) and expand as a geometri
 series.

4 - 7. After �nding the points where f(z) is not de�ned, you will �nd there

are three 
ases to 
onsider: (i) |z| < 1 (ii) 1 < |z| < 2 (iii) |z| > 2. For (ii) use
that

1
z+1 = 1

z(1+ 1
z
)
= 1

z

(

1− 1
z + 1

z2 − 1
z3 + · · ·), provided | 1z | < 1 ⇔ |z| :> 1.

8. Here we have a pole of order 4.
9. Here we have a pole of order 2 and a simple pole (pole of order 1) so in

the latter 
ase the Q/P formula may be applied.

10. In�nitely many poles but they are all simple.
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Problem Set 8

3. With simple poles, the Q/P formula works well.

7. One of the two singularities is a removable singularity, meaning that the

limit of the fun
tion as the singular point is approa
hed does exist and so, by

de�ning the fun
tion so as to be 
ontinuous there, it 
an be disregarded in the


al
ulation.

10. Use as 
ontour the semi
ir
le in the upper half plane with diameter

[−R,R]. Apply the Residue Theorem and Question 9.

Problem Set 9

3. Both singular points are within the 
ontour: repla
e the 
ontour by two

small 
ontours around ea
h, apply the CIF to ea
h one and add to get the

answer.

4. Now only one singular point lies within γ.
6. Another appli
ation of the CIF.

7. This question is a bit of a 
heat as in general

√
z is double-valued and

there is no `positive' root. However, in this 
ase substitute dire
tly into the

series for 
osine and there is no ambiguity be
ause powers involved are even.

8. You will need to �nd the exa
t nature of γ �rst in order to identify whi
h

singularities lie inside the 
ontour.

10. Show that |f ′(z0)| is arbitrary small by applying the CIF for the �rst

derivative for the 
ontour 
ir
le |z − z0| = r and then letting r → ∞.

Problem Set 10

1. Use the exponential series.

4. Multiply out (1− 21−s)ζ(s) = (1− 2 · 1
2s )(1 +

1
2s + 1

3s + · · ·).
5. Expand

z2

n2π2−z2 = z2

n2π2 · 1

1− z2

n2π2

.

6. cos z = cosh(iz) and sin z = 1
i sinh(iz).

7. Use Question 9 of Set 5.
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Answers to the Problems

Problem Set 1

2. A = 2Im(a), B = 2Re(a) and C = h. 3. iz2 + 2z . 4. y < x. 5. 6.

(

2x
|w|2+1 ,

2y
|w|2+1 ,

|w|2−1
|w|2+1

)

. 7. x1

1−x3
+ ix2

1−x3
= x1+ix2

1−x3
.

Problem Set 2

1 20. 2. {z = x + iy ∈ C : x = 2nπ ± π
4 , y = 0, n ∈ Z}. 3. A 
ir
le


entred at ( 1
2c , 0) of radius

1
2c . 6. z = − 1

2

(

1 + i cot kπ
n

)

10.

u2

cosh2 c
+ v2

sinh2 c
= 1;

u2

sin2 c − v2

cos2 c = 1.

Problem Set 3

1. u(x, y) = x2−y2, v(x, y) = 2xy. f ′(z) = 2z. 2.u(x, y) = ex cos y, v(x, y) =
ex sin y. f ′(z) = ez. 3. ,f ′(z) = − 1

z2 .4. u(x, y) = 1
2 ln(x

2 + y2), v(x, y) =
arctan

(

y
x

)

f ′(z) = z−1
. 7.v(x, y) = x2−y2+2y+c. 8.−6xy2+8xy+ 7

2y
2+3y+

2x3+ 7
2x

2+4x+c (c ∈ R). 9. sinhx sin y−i coshx cos y+ic, (c ∈ R) = − cosh z.

Problem Set 4

1. 0. 2. πi. 3. 2πi. 4. 0. 5. 2πi. 6. i − 1. 7.

i−1
2 . 8. 2. 9. 6πi. 10.

cosh 9−cosh 1
2 .

Problem Set 5

1. 2πi. 2. π. 3. −π. 4. πi
2 . 5. 0 . 6. 0. 7.

2
3

1− 2
3
w
+ 1

1−w

2

. 8.
∑∞

n=0((
2
3 )

n+1 +

(12 )
n)(z + 1)n; |z + 1| < 3

2 . 9. & 10. B1 = − 1
2 , B2 = 1

6 ; B3 = 0; B4 = − 1
30 .

16



Problem Set 6

2. Centre at z = −1, radius of 
onvergen
e 1
3
√
3
. 3. Centre at 0, radius of


onvergen
e is 5. 4. No. 6. iπ
2 ,

−iπ
2 ,

1
2 ln 2 + iπ4 , 2 ln 2 + iπ2 .

Problem Set 7

1.

∑∞
n=−1 z

n, |z| < 1. 2. = 3
z2 − 1

z + 3 − z + 3z2 − z3 + 3z4 − z5 + 3x6 −
z7+ · · · , so 
entre is 0, radius of 
onvergen
e 1.3. − 1

2(z−1) +
1
4 − z−1

8 + (z−12

16 −
· · ·+ (−1)n (z−1)n

2n+2 + · · · , |z − 1| < 2. 4. 1
5

(

1
z+1 − 1

z2+4

)

and f(z) is not de�ned

at z = −1 and z = ±2i. 5.
∑∞

n=0(−1)nzn, when |z| < 1. 6. 1
z+1 = 1

z(1+ 1
z
)
=

1
z

(

1− 1
z +

1
z2 − 1

z3 + · · ·). 7. 1
5z − 2

5z2 +
1

5z3 + 3
5z4 + 1

5z5 − 17
5z6 + · · · . 8. 0. 9. −2.

10. ±1 a

ording as z = 2nπ + π
2 or z = (2n+ 1)π + π

2 .

Problem Set 8

1. simple pole at 0, pole of order 2 and i. 2. simple poles at nπ (n ∈ Z). 3.
πi
2 . 4. 0. 5. 0. 6. −e . 7. 1

2 sin 2. 10.
2π
3 .

Problem Set 9

3. 0. 4.

2πi
(n−1)!(−1)n−1 (2n−2)!

(n−1)! · 1
(a−b)2n−1 . 5. 0. 6. −πi

3 cos 2. 7. =
∑∞

n=0(−1)n zn

(2n)! . 8.
π
2 e

πi(1 − πi).

Problem Set 10

9. ζ(2) = π2

6 , ζ(4) =
π4

90 . 10 ζ(−2k) = 0, ζ(1 − 2k) = (−1)k+1Γ(2k)B2k

4π2 .
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