Mathematics 204 Complex Variables

Professor Peter M. Higgins
March 10, 2018

This module builds on your existing knowledge of complex numbers to begin
the study of functions of a complex variable, which holds many surprises. The
first two problem sets continue the theme with the introduction of stereographic
projection and problems involving the standard tool of using the complex expo-
nentiation function and moving to real and imaginary parts. A complex variable
can be viewed as a single variable and so the definition of differentiability of a
real function extends to a complex one. However, at the same time it partakes
of the nature of two variable functions in that the limit must exist through all
directions of approach and the result is that complex differetiablity is very de-
manding in that the real and imaginary parts of the function must be linked
through the Cauchy-Riemann equations, which are the subject of Set 3.

Contour integration, which the student will have seen in the context of vector
functions, is introduced in Set 4 but the special nature of integration in the
complex plane is explored through the Cauchy integration formula of set 5.

Since all differentiable functions of a complex variable are analytic and so
can be represented by series, the topic of series arise often in the problem sets,
including Set 6, where the complex logarithm function is also introduced. In Set
7 we study functions that are not analytic but can be represented by series that
allows for negative powers of the complex variable z, the so-called Laurent series.
In Set 8 the emphasis is on the Cauchy Residue theorem and its application in
calculating integrals, including sometimes results for integrals along the real
line. In Set 9 there is a variety of further problems making use of the techniques
that have been introduced while Set 10 introduces the celebrated Riemann zeta
function and some of its remarkable properties are to be found there.



Problem Set 1 Geometry of the complex numbers

1. Prove that
|21 + zo|” + |21 — 22* = 2(J21 > + |22%)
2. Show that the equation
az—az+b=0

where a € C\ {0} and b = ih, h € R is the cartesian equation of a straight line:
Az +By+C =0,A,B,C eR.
3. Write the function

f(z) =221 —y) +i(z* —y* + 2y)

as a function of z = x + iy.
4. Determine the set of points for which Re((1 +14)z) > 0.

Stereographic projection Let the complex plane be represented by zy-cordinates
and let S be the sphere 22 + 3% + 22 = 1. Let the north pole be N = (0,0,1).
The stereographic projection W of w = (x,y,0) € C is the point where the line
between N and w meets S. As |w| — 0o, W — N.

5. Show the line L through w and N is
L={1-t)z,(1-t)y,t:—o0o<t< oo}
where t = mz;i
6. Find the coordinates of the point W where L meets S.
7. Given W = (21,29, x3), show that

xr1 + iZL'Q

w = .
1—$3

8. Show that the square of the distance d?(W,W’) between two points
W = (z1,22,23) and W' = (2}, x4, 25) is given by

2 — 2(z1 2} + wawhy + x31hy).

9. Show that ) .
d(W/,WI): |;'U_w| 21.
(14 Jw?) (1 + |w'])?]2
10. And similarly show that for d(W,c0), by which we mean d(W, N), we
have

2

AWo0) = ey



Problem Set 2 Further problems with polar and cartesian forms

1. Find the lowest value of n such that 2™ — 1 has a root at eTo.

2. Solve the equation
1

7

3. Find the family of curves defined by the equation:

COsz =

1
R(=)=¢, ceR.
z

4. Show that
27 ™ 2(n— 17
cos— +cos— + -+ +cos ———— = —1.
n n n
5. Show that
.2 4w . 2(n—1m
sin — +sin — + - -+ + sin =0.
n n n

6. Find all the roots of the equation z" = (1 4 2)", thereby showing that
they all line on a single line in the complex plane.

7. Show that for any z,w € C we have

2w + Zw

T < el

8. Deduce the triangle inequality from the result of Question 7.
9. For given complex numbers z1, z2 and z3, prove that the relation
|21 — 23] = |21 — 22|? + |22 — 23/
is equivalent to

z3 — 29 = if(22 — 21), for some S # 0.

10. Find the images in the (u,v)-plane of lines parallel to the real axis and
parallel to the imaginary axis under the mapping z + sin z.



Problem Set 3 Cauchy-Riemann equations

The Cauchy-Riemann equations for a pair of functions u(z,y), v(x,y) are
given by:
Oou Ov Ov v
or Oy O0xr Oy
The function of a complex variable z = x + iy given by f(z) = u(x,y) +
iv(zx,y) is differentiable (and then is smooth and has a power series) if and only
if u and v satisfy the Cauchy-Riemann equations in which case

_Ou . Ov  Ov Ou

/ - - = — — 1.
f(z)iaijZ@x oy Z@y
For Question 1-4, write the function f(z) in the form f = u + iv, show that

u and v satisfy the Cauchy-Riemann equations and find the derivative of f/(z)
in terms of z.

1. f(z) = 22 2. f(z) = e~ 3. f(z)=2z"1.

4. The principal value of the logarithm: Log(z) = In|z| + iArg(z). Show
differentiability for all z with positive real part.

5. Show that f(z) = Z and g(z) = |#| are not differentiable by showing that
the corresponding Cauchy-Riemann equations do not hold.

6. If f(z) = u+ v is differentiable, show that u is a harmonic function,
which is to say satisfies Laplace’s Equation

o, Fu_,
ox2 o2

Find a harmonic conjugate of the (harmonic) function for the functions in
Questions 7 and 8, which means the function v(z,y) such that u(z,y) +iv(x,y)
is differentiable.

7.

u(z,y) = 2z2(1 — y).

u(z,y) = 2y° — 622y + 4a® — Toy — 4y* + 3z + 4y — 4.

9. And again for u(z,y) = sinh z siny, expressing f(z) = u+iv as a function
of z alone.

10. For z = re'? show that
ou 10v Ov 10u

o o8 or 1B



Problem Set 4 Contour Integration

For the unit circle C defined by |z| = 1 find

1.
/|z|dz
c
2.
/Re(z)dz
c
3.

/C Zde.
/C(z — z)"dz

anti-clockwise around the circle |z — zg| = 7.

4. For n # —1 find

5. Repeat Question 4 with n = —1.

/ |z] d=
C

where C' is the quarter of the unit circle in the first quadrant traced anti-
clockwise.

6. Find

7. Repeat Question 6 with C' now the connected line segments, the first of
which goes from (1,0) to the origin while the second goes from (0,0) to (0, 1).

/zsinzdz
.

where v = {z € C: z = Z¢', Im(2) > 0}(—7 < t < ).

8.

9. Show that

3 5
/ s dz = 6mi.
|

z|=2 22 + z
10. Find N
/ zsinh(2?) dz.



Problem Set 5 Cauchy’s Integral Formula

Cauchy’s Integral formula If f(2) is analytic inside a simply connected region
D containing the simple closed path C' and with zg € D then, traversing C' anti-
clockwise,
1 f(z)dz
f(z0) = 5— )

C2mi Jo 2 — 2

Taking C' to be a contour in D that encloses zp, the value of the nth derivative
is given by
n! z)dz
f(")(zo) - _55 f(i)
27t Jo (2 — zo) !
1. Use the formula to find fc €222 dz where (' is the unit circle.
2. Prove the derivative formula by induction on n from the Cauchy integral
formula, assuming we may differentiate with respect to zg inside the integral.
3. Integrate in the anti-clockwise sense around the circle |z + i = 1:
22
2241

4. Repeat Question 3 for the circle |z — i = 1.

For Question 5 - 7 integrate around the unit circle in the positive sense.

5. iy 6. <23 . 7. <5

8. By substituting w = z + 1, show that

4— 6z 5 — 3w

223241 (w—3)(w-—2)

flz) =

9. Use partial fractions on the previous expression to derive the Taylor series
for f(z) in Question 8.

10.

o
SV
e —1 nl "’
n=0

where B, is called the nth Bernoulli number. Express z as a power series,
written explicitly up to the term in 2°, in terms of Bernoulli numbers. Hence
find the Bernoulli numbers up to and including By .



Problem Set 6 Series problems and the logarithm function

1. Show by the Ratio test that the series
i (1 +z‘)n
2

n=0

is convergent,.
Find the centre and radius of convergence of the following power series.
2.

n=0

S n+1(5)"

4. Is this series convergent?
i (=1)™n!
— en(1+1i)n

For z € C* = C\ {0} we define log z = In |z| + i argz and the principal value
of the logarithm is Log(z) = In|z| + iArg(2).

5. Show that ¢108(2) — ;.

6. Find the values of Log at each of i, —i,1 + i and 4i.

7. Show that Log is not continuous on the negative real axis as follows. Take
o > 0 and consider the sequences {a, = ae’(™ )} and {b, = aei™*%)}. Show
that both sequences approach « but that Log(a,) and Log(b,) do not approach
the same value.

8. Show that Log is analytic on C* \ R~ by writing z = re’® and work in
polar form with Log(z) = u(r, 6) + iv(r, §).

9. The usual identity Log(z12z2) = Log(z1) + Log(z2) does not generally
hold (as a difference of 27 can arise between the two sides). However, show that
for the multi-valued function log z we do have:

log(z122) = log z1 + log 22, log (?) = log 21 — log 25.
2

10. Verify the first formula in detail when z; = —2i and 2o = —i but show
the formula fails if we replace log by Log in this case.



Problem Set 7 Laurent series

Laurent series If f(z) is analytic on two concentric circles C; and Cy and
on the annulus between them then f(z) =Y 7" __ an(z — 20)" where

1 f(w) dw " “ 1 w— 2L Fw) dw (n < —
a 5507( (n>0), an (w — 20)" ! f(w) dw (n < —1)

" 2mi w— zo)"H T 27 Jo

where C' is any simple closed curve that lies in the annulus and encloses zy. (For
n < —1 we shall write b,, in place of a,, for convenience.) The coefficient b; is
the residue of f(z) at zg. If zq is a pole of order n (meaning that n is the largest
subscript k such that by # 0) then

1 dn—l

eEEyi e (GRERIONEEE

by =

Alternatively, if f(z) = ggzg where () has a simple zero at zp (so that (z—z9) f(2)

is analytic) then by = Plzo)  1f f(2) has a zero of order n at zy then 1/f(z
Q' (z0)
has a pole of order n at zg.

Find the Laurent series of the following functions.
L f(2)=25,20=0.
2. f(z) = 2%, 20 = 0.
3. f(z) = 22, 20 = 1.
4. Express

22—2+3
5(z+1)(22+4)

in partial fractions, and find where f(z) is not defined.

5. Hence find a Taylor series for the function f(z) of Question 4 that is valid
for |z] < 1.

6. For 1 < |z| < 2 find a Laurent series for ﬁ

7. Hence find a Laurent series for f(z) in the region 1 < |z| < 2.

flz) =

Find the residues at the singular points of each of the following.
8.

cos2z
4
9.
224+ 11z+1
(z+1)%(z —2)
10. sec z.



Problem Set 8 Cauchy’s Residue Theorem

Cauchy’s residue theorem: if f(z) is analytic inside the simple closed curve
C except for finitely many poles z1, 22, - -, z,, inside C' then:

/Cf(z) dz = QWi;Res(z _ Zj)f(z)

Identify the zeros 2 of the following functions and the order of each such z
(the least n for which £(™)(z) # 0).

1. f(2) =23 —2i22 — 2.
2. f(z) =tanz.

With C' the unit circle (traversed anti-clockwise) find:

3. fC ﬁ dz 4. fC C(e):Z dz.

Let I'r be the closed curve consisting of the circle centred at the origin of
radius R, where R > 1, traversed anti-clockwise. Find

22 . _
5' fFR Sin(ZQ) dZ, 6 fFR leT dZ 7 fFR Slzgz_ll) dZ

z

8 If|F(z)| < % for z = Re', where k > 1 and M are constants, show that

lim [ F(z)dz=0,

R—oo Jp

where I' is the upper semicircle centred at the origin of radius R, traversed
anti-clockwise.

9. Show that for z = Re”, |f(z)| < %, for some Mand k > 1 and for all
sufficiently large R, if f(z) = =i

10. Evaluate




Problem Set 9 Further problems

The Wirtinger operators are defined as

o 1,0 9., 9

( =5
—=—(=—-i=), === .
0z 2°0x 9y’ 9z 20z Oy
1. Show that for a differentiable function f(z), 2 =
2. Show that 2 (z) =1 and £(2) = 1.
Consider the integral:

/ dz

z=1 (2 —a)"(z = b)"
3. Evaluate the integral if |a| < |b] < 1;
4. Again but with |a| <1 < [b],
5. 1< |a| < |b].
6. Evaluate .
/ sin zdz
let1l=2 (2 4+2)

7. Find the Taylor series expansion around the origin of the function

f(2) = cos/z.

eﬂ'Z
—d
[y(22+1)2 z

where ~ is the curve with equation 422 + 2 — 2y = 0.

8. Find

Fundamental theorem of algebra Show that each non-constant polynomial
p(z) =ap+ a1+ -+ apz™ (n > 1) has a complex root as follows. Suppose to
the contrary that p(z) # 0 for all z € C. Hence f(z) = 1/p(z) is differentiable
over all of C.

9. Prove that |f(z)| is bounded.
10. Show that if any bounded function f(z) that is differentiable on all of C
is constant by using the Cauchy integral formula to show that its derivative is

0. The contradiction represented by Questions 8 & 9 then shows that p(z) has
a root.

10



Problem Set 10 Riemann zeta function

The Riemann zeta function is defined as ((s) = > -
x> 1.

n=1 ns?

1. Show that

Show Euler’ formula

where the product is taken over all primes as follows.

2. Write each term in the product as an infinite geometric series.

where s = x + 1y,

3. Multiply that series out and use the Fundamental theorem of arithmetic

(uniqueness of prime factorization) to conclude the result.

4. Show that for R(s) > 0,s # 1, we may extend ¢ to the right half plane
(except s = 1) by the following alternative formula, which agrees with the

original definition for R(s) > 1.
1 1
_ n+1
() = T 2" =
Assume another identity of Euler that holds for |z| < 7

2

zeotz =1—-25"27° z

n=1 nZn?_3%
5. Show that (1) may be re-written as

Z2k

zeotz = 123007 (300, or ) Sor
6. Alternatively, show that
zC0tz = iz + R
7. Use Question 10 of Set 5 to show from (3) that

zeotz =145 7, Bk@;—f)k

8. Deduce that
(27T)2k

2(2k)!

¢(2k) = (=1 2%-

11



9. Use the relation for Bernoulli numbers:

k
k+1
Z( j )Bjo,BO1

Jj=0

to find ¢(2), and ¢(4).
10. Given the functional equation:
C(s) = 2(2m)"! sm(%m —8)C(1—s),R(s) < 1

show that for positive integer k, ((—2k) = 0 and give an expression for (—2k+1)
in terms of the now known value of ((2k).

12



Hints for Problems

Problem Set 1

1. & 2. Use |2?%| = 27 and properties of the modulus operator.
2. Substitute z = z + iy and see where it leads.

3. If all else fails use x = Z;Z and y = Zz_f and simplify.

Problem Set 2

27

4. & 5. First find the sum 22:3 e » and then take the real and imaginary
parts respectively. v _

6. Solve for z and then use that e= — e~ = 2isinkr to simplify the
result.

7. Use that z+7Z = 2R(z) and R(z)? < |z|; substitute in the equality to gain
the required result.

8. Begin from (z + w)? = (2 + w)(z + w).

9. Put p = 2=2 and show that z3 — 21 = (1 + p)(22 — 21). Substituting in
the given equality now leads to the conclusion that u is purely imaginary.

10. In each case represent sinz in the form u + ‘v and find the equation
relating v and v.

Problem Set 3

9. Express cosh z in the form u + iv.

10. Intergrate g—; wrt y and equate to g—g; remember to include a function
¢(x) as a result of the integration. Then determine ¢(z) using the second CR

equation.

Problem Set 4

1 - 3. Using the standard parametrization z = e (0 < ¢ < 27). Simplify |z]
on C.

2. Re(z) = cost = 2 (et — e~ ™).

1
2

13



4. Use z = zg + pe® (0 <t < 27).

8. Find an anti-derivative and evaluate via the endpoints of the contour.

9. Use partial fractions and the Principle of Deformation, which says that
if one contour is contained inside another and the function to be integrated
is analytic between the contours then the integral of the function is the same
around both contours.

10. Find an anti-derivative of the integrand and evaluate directly.

Problem Set 5

3. & 4. Factorize the denominator and work with the root inside the contour
of integration when applying the Cauchy formula.

5. & 6. This time you will need the derivative formula with n = 1.

7. Again but with n = 2.

10. Cross-multiply and use the known exponential series to find the Bernoulli
numbers by equating coefficients.

Problem Set 6

1-4 Remember the ratio test: the radius of convergence R satisfies R™! =
limy,—, |22 (if this limit exists).

8. Use the results of Question 10 on Set 3.

Problem Set 7

1. & 2. Factorize as a simple rational function and a geometric series to find
the Laurent series.

3. First substitute w = z — zgso that the series is centred at w = 0. Write
- a8 m and expand as a geometric series.

4 - 7. After finding the points where f(z) is not defined, you will find there
are three cases to consider: (i) |z| <1 (ii) 1 < |z] < 2 (iii) |z| > 2. For (ii) use
that =7 = -y = 2(1- 2+ 25 — 55 + ), provided |7 <1 |2] > 1.

8. Here we have a pole of order 4.

9. Here we have a pole of order 2 and a simple pole (pole of order 1) so in
the latter case the @/P formula may be applied.

10. Infinitely many poles but they are all simple.

14



Problem Set 8

3. With simple poles, the Q/P formula works well.

7. One of the two singularities is a removable singularity, meaning that the
limit of the function as the singular point is approached does exist and so, by
defining the function so as to be continuous there, it can be disregarded in the
calculation.

10. Use as contour the semicircle in the upper half plane with diameter
[—R, R]. Apply the Residue Theorem and Question 9.

Problem Set 9

3. Both singular points are within the contour: replace the contour by two
small contours around each, apply the CIF to each one and add to get the
answer.

4. Now only one singular point lies within .

6. Another application of the CIF.

7. This question is a bit of a cheat as in general 1/z is double-valued and
there is no ‘positive’ root. However, in this case substitute directly into the
series for cosine and there is no ambiguity because powers involved are even.

8. You will need to find the exact nature of « first in order to identify which
singularities lie inside the contour.

10. Show that |f’(z9)| is arbitrary small by applying the CIF for the first
derivative for the contour circle |z — 29| = r and then letting r — co.

Problem Set 10

cos z = cosh(iz) and sin z = 1 sinh(iz).
Use Question 9 of Set 5.

1. Use the exponential series.

4. Multiply out (1 —2'7%)¢(s) = (1 =2+ £)(1+ 25 + 2= +--).
5. Expand sri— = 75 -

6.

7.

15



Answers to the Problems

Problem Set 1

2. A = 2Im(a), B = 2Re(a) and C = h. 3. iz? +2z . 4. y < z. 5. 6.

( 2 2y \w\2—1) 7. @4 w2 _ @iz
[w[24+17 |w|?+17 Jw|?4+1/" "7 1—z3

1713 1713 .

Problem Set 2

120. 2. {z=ao+iyecC:2=2nr+%,y=0nc¢cZ} 3. A circle

1 . 1 _ 1 . kr u? v q.
centred at (45,0) of radius 5-. 6. 2 = —4(1 4 icot 55) 10. o + U =1,
'U.2 712
L — — = 1.
sSin“ c COSs“ ¢

Problem Set 3

1. u(z,y) = 2292, v(x,y) = 2zy. f'(2) = 22. 2.u(x,y) = e®cosy, v(z,y) =
z ili S'(2) = —F4 u(z,y) = $In(2? +y?), v(z,y) =

e’siny. f'(z) = e
arctan(%) f'(z) =271 Tw(x,y) =22 —y? + 2y +ec. 8.—6zy2+8xy+%y2+3y+

20+ 122 +4z+c (c € R). 9. sinhasiny —icosha cosy+ic, (c € R) = —cosh 2.

Problem Set 4

1. 0. 2. mi. 3. 2me. 4. 0. 5. 2me. 6. ¢ —1. 7. % 8. 2. 9. 6mi. 10.

cosh9—cosh 1
-5 -

Problem Set 5

1 2mi 2.7 3. —m 4 T 5.0 6. 0. 7. —h— + iz 8. 32 ((2)n 4
3 2
()" (z+1)" |z2+1<2.9. & 10. By = —3, By =§; B3 =0; By = — 5.

16



Problem Set 6

2. Centre at z = —1, radius of convergence —==. 3. Centre at 0, radius of

convergence is 5. 4. No. 6. 2, =I% 1In2+4% 2In2+4%.

Problem Set 7

LY 2"zl <2, =3 -1 4324322 - 23 4324 — 25 4+ 320 -

22 z
274 .-+, so centre is 0, radius of convergence 1.3. 72(Z—1_1) + i - zgl + (foslz —
()P - < 2. 4 $ (g — 72) and f(2) is not defined
at z = —1and z = £2i. 5. > o7 (=1)"z", when |z| < 1. 6. - =

1 _
241 T 2(1+L) T
I-L+5 -5+ )7 £ -+ t+dstss—s5+---.8.0.9. -2

10. £1 according as z = 2nm + 5 or z = (2n + 1)m + 7.

Problem Set 8

~ 1. simple pole at 0, pole of order 2 and :. 2. simple poles at nm (neZ). 3.
ZL.4.0.5.0.6. —e. 7. 3sin2. 10. 3.

Problem Set 9

3. 0. 4 Em (-1 R e 50 0. 6. —ZFlcos2. 7. =
S o (— 1) 8. Temi(1 — mi).
2n)

Problem Set 10

9. ((2) = %, ((4) = &5 10 (~2k) = 0, (1 — 2k) = ZLT20Ba

472
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