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Solutions and Comments for the Problems

Problem Set 1

1. 3x ≡ 2 (mod 6) has no solution (be
ause the g
d(3,6) = 3 does not divide

2).
2.

5x ≡ 2 (mod 6) ⇒ 5x ≡ 20 (mod 6) ⇒ x ≡ 4 (mod 6)

Note that sin
e the g
d(5,6) = 1, there is a unique least residue solution.

3.

4x ≡ 2 (mod 6) ⇒ 4x ≡ 8 (mod 6) ⇒ x ≡ 2(mod 3)

and there are 2 least residue solutions, they being x = 2 and x = 2 + 3 = 5.
4. Sin
e 31 is prime, there is a unique least residue solution.

6x ≡ 14 (mod 31) ⇒ 3x ≡ 7 ⇒ 3x ≡ 69 (mod 31)

⇒ x ≡ 23 (mod 31).

5.

15x ≡ 12 (mod 57) ⇒ 5x ≡ 4 (mod 19) ⇒ 5x ≡ 80(mod 19)

⇒ x ≡ 16 (mod 19)

and so the full set of least residue solutions is {16, 16 + 19 = 35, 35 + 19 = 54}.
6. x ≡ 1 (mod 2) so put x = 1 + 2t1. Substitute in x ≡ 2 (mod 3) gives:

1 + 2t1 ≡ 2 (mod 3) ⇒ 2t1 ≡ 1 (mod 3) ⇒ 2t1 ≡ 4 (mod 3)

t1 ≡ 2 (mod 3) ⇒ t1 = 2 + 3t2.

Hen
e x = 1 + 2t1 = 1 + 2(2 + 3t2) = 5 + 6t2. Substituting in x ≡ 3(mod 5)
gives:

5 + 6t2 ≡ 3 (mod 5) ⇒ 6t2 ≡ −2 ≡ 3 (mod 5)

⇒ 2t2 ≡ 1 (mod 5)⇒2t2 ≡ 6 ⇒ t2 ≡ 3 (mod 5)

⇒ t2 = 3 + 5t.

Hen
e x = 5+6(3+ 5t) = 23+ 30t. In parti
ular, the smallest positive solution

is x = 23.
Comment In general the Chinese Remainder Theorem says that the system

of k 
ongruen
es x ≡ ai (mod mi)where ea
h pair of moduli is relatively prime

has a unique least residue solution modulo m1m2 · · ·mk. The substitution te
h-

nique above 
an be applied to �nd that solution.

7. We have n = 2t1 + 1 and

2t1 + 1 ≡ 0 (mod 3) ⇒ 2t1 ≡ 2 (mod 3) ⇒ t1 = 3t2 + 1
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⇒ n = 2(3t2 + 1) + 1 = 6t2 + 3.

6t2 + 3 + 2 ≡ 0 (mod 5) ⇒ t2 = 5t3 ⇒ n = 30t3 + 3.

30t3 + 3 + 4 ≡ 0 (mod 7) ⇒ t3 ≡ 7t4

⇒ n = 210t3 + 3.

We 
on
lude that the least n > 3 that satis�es all 
onstraints is n = 210 + 3 =
213.

8. We have that the equations imply that

x+ 2y ≡ 3 (mod 7)

⇒ 5x ≡ 1 (mod 7) ⇒ 5x ≡ 15 (mod 7)⇒x ≡ 3 (mod 7)

⇒ 2y ≡ 0 (mod 7)⇒y ≡ 0 (mod 7).

Hen
e the least residue solutions modulo 7 are x = 3, y = 0.
9. Consider ax ≡ b (mod 20) and let d = (a, 20) (the g
d of a and 20). If d

does not divide b (whi
h is possible for example if d = 2 and b = 3)), then there

are no solutions. Otherwise there are d solutions. The set of possible values

of d is the set of divisors of 20, whi
h is {1, 2, 4, 5, 10, 20}, and ea
h su
h d is

attainable by taking a = b = d in the equation. The set has 6 members so there

are 6 + 1 = 7 di�erent possibilities for the number of least residue solutions to

su
h a 
ongruen
e, these being 0, 1, 2, 4, 5, 10 and 20.
10. Five Thursdays in February o

urs exa
tly when we have a leap year

with February 29th being a Thursday, whi
h happened in 1968. Starting our


ount of the week from Thursday we may write this event as x = 0, where x
is the value of the weekday on February 29th. The next o

uren
e of February

29th is 4× 365 + 1 days later. Now

4× 365 + 1 ≡ 4× 1 + 1 = 5 (mod 7).

Hen
e the value of x is in
remented by 5 ea
h leap year 
y
le. Let us �nd

the least number t of 
y
les before x = 0 again, whi
h is to say that 5t ≡ 0
(mod 7) whi
h implies t = 7, so day-of-the-week 
oin
iden
es happen on
e every

7× 4 = 28 years. Now 2100− 1968 = 132 and

132
28 = 4 20

28 . Hen
e the 
y
le will

be 
ompleted on only four subsequent o

asions between 1968 and 2100, those

being

1968 + 28 = 1996, 1996 + 28 = 2024, 2024 + 28 = 2052, 2052 + 28 = 2080.

Problem Set 2

1. Working modulo 2 we get that y = 2t say, so we have

2x+ 2t = 2 ⇒ x = 1− t;
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hen
e the solutions set is

{(x, y) : x = 1− t, y = 2t, t ∈ Z}.

2. Working mod 15 we get y ≡ 2 (mod 15) so we put y = 15t + 2 and we

obtain

15x+ 16(15t+ 2) = 17 ⇒ 15x = −16(15t)− 15

⇒ x = −16t− 1,

hen
e, by repla
ing t by −t, whi
h is legal as t 
an be any integer, the solution

set is

{(x, y) : x = 16t− 1, y = 2− 15t, t ∈ Z}.
3. Again working mod 15 we get 3y ≡ 2 (mod 15) and sin
e d = (3, 15) = 3

is not a fa
tor of 2, there are no solutions.

4. Working modulo 7 we have y ≡ 2 (mod 7) so we put y = 2 + 7t. Substi-
tuting a

ordingly we obtain

7x+ 15(2 + 7t) = 51 ⇒ 7x = 7(−15t) + 21

⇒ x = 3− 15t.

We also require

2 + 7t ≥ 1 ⇒ t ≥ −1

7
⇒ t ≥ 0;

3− 15t ≥ 1 ⇒ t ≤ 2

15
⇒ t ≤ 0.

Hen
e the solution set is unique: x = 3,y = 2.
5. We have

6x− 15y = 51 ⇔ 2x− 5y = 17.

Working modulo 2 gives −y ≡ 1 (mod 2) whi
h implies y = 1+2t. Substituting
a

ordingly gives

2x− 5(1 + 2t) = 17 ⇒ 2x = 10t+ 22 ⇒ x = 5t+ 11.

However we also require

y = 1 + 2t ≤ −1 ⇒ 2t ≤ −2 ⇒ t ≤ −1;

x = 5t+ 11 ≤ −1 ⇒ 5t ≤ −12 ⇒ t ≤ −12

5
⇒ t ≤ −3.

Hen
e the solution set is

{(x, y) : x = 5t+ 11, y = 1 + 2t, t ≤ −3}.

However,

t ≤ −3 ⇔ −t ≥ 3 ⇔ −t− 3 ≥ 0,
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so putting s = −t− 3 so that t = −s− 3 we get the formulation: x = 5t+11 =
5(−3− s) + 11 = −4− 5s and y = 1 + 2t = 1+ 2(−3− s) = −5− 2s, giving as

solution set

{(x, y) : x = −4− 5s, y = −5− 2s, s ≥ 0}.
6. Subtra
ting the �rst equation from the se
ond eliminates x and gives

y + 2z = 10 so that y = 2t is even. Then 2z = 10 − 2t ⇒ z = 5 − t. We then

have

x+ y + z = x+ 2t+ (5− t) = x+ t+ 5 = 31 ⇒ x = 26− t.

Hen
e we require

26− t ≥ 1 ⇒ t ≤ 25, 2t > 0 ⇒ t ≥ 1 5− t ≥ 1 ⇒ t ≤ 4;

⇒ 1 ≤ t ≤ 4.

This gives four solutions triples for (x, y, z)

{(25, 2, 4), (24, 4, 3), (23, 6, 2), (22, 8, 1)}.

7. With a natural use of symbols we have the simultaneous equations:

c+ s+ w = 35, 100c+ 8s = 296.

Multiplying the �rst by 8 and subtra
ting from the se
ond we get

92c− 8w = 16 ⇒ 23s− 2w = 4.

Modulo 2 we have s is even: s = 2t. Hen
e 46t− 2w = 4 so that w = 23t− 2.
Finally

c = 35− s− w = 35− 2t− 23t+ 2 = 37− 25t.

Assuming there is at least one of ea
h type of 
reature we have

s ≥ 1 ⇔ 2t ≥ 1 ⇔ t ≥ 1

2
⇔ t ≥ 1;

w ≥ 1 ⇔ 23t− 2 ≥ 1 ⇔ t ≥ 3

23
⇔ t ≥ 1;

c ≥ 1 ⇔ 37− 25t ≥ 1 ⇔ t ≤ 36

25
⇔ t ≤ 1.

Hen
e t = 1 and we get (c, s, w) = (12, 2, 21). In parti
ular there are 21 worms.

8. A farmer sold her sheep for ¿180 ea
h and her 
ows for ¿290 a pie
e,

re
eiving ¿2890. How many 
ows did she sell?

As a diophantine equation we have, upon dividing by 10,

18s+ 29c = 289;

modulo 18 we have 11c ≡ 1 (mod 18) ⇒ 11c ≡ 55 (mod 18) so that c ≡ 5 (mod

18). Putting c = 5 we get

s =
289− (29)5

18
=

144

18
= 8,
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and (c, s) = (5, 8) is a feasible solution pair. Testing c = 5 + 18 = 23 or any

greater value will give a negative value for s, so this is the only solution, and so

the farmer sold 5 
ows.

9. Let a and m be the 
urrent ages of Anne and Mary respe
tively. Let t be
the time in the future when the 
omparison in the �rst senten
e is made. Then

we have

a+ t =
1

2
(3m) ⇒ t =

3

2
m− a.

And the se
ond part of the senten
e translates as

m+ t = 5a ⇒ m+ (
3

2
m− a) = 5a ⇒ 5

2
m = 6a

∴ m =
12a

5
.

Hen
e a is a multiple of 5. Putting a = 5 gives m = 12. Putting a = 10 gives

m = 24 and then Mary 
ould vote. Hen
e Anne is 5. (Unless both Anne and

Mary are 0.)
10. Let a and b be numbers of re
ords that Andy and and Bob sold at the full

pri
e of ¿5. Letting p stand for the unknown lower pri
e we have the equation

5a+ (30− a)p = 5b+ (40− b)p (1)

⇒ (30− a− 40 + b)p = 5(b− a) ⇒ (b− a− 10)p = 5(b− a)

(10 + c)p− 5c = 0, where c = a− b

c(p− 5) = −10p ⇒ c =
10p

5− p
.

The only integer values of p with 1 ≤ p ≤ 4 that give integer values for c are

p = 3 (c = 15) and p = 4 (c = 40). For p = 4 however we have a − b = 40 so

that a = 40 + b, whi
h is not possible as Andy only had 30 re
ords to sell. For

p = 3 we have a = 15 + b. The 
ommon sum re
eived is 2a + 90 = 2b + 120.
Sin
e b ≥ 0 the least they 
ould have got is ¿120.

Problem Set 3

1. The positive integers k ≤ pm that are not relatively prime to pm are

p, 2p, 3p, · · ·pm−1p and so φ(pm) = pm − pm−1 = pm−1(p− 1).
2. Let the prime de
omposition of k be k = pt1 · · · ptrr . Then by Question 1

we have

φ(k) = φ(pt11 ) · · ·φ(ptrr ) = Πr
i=1p

ti−1(pi − 1)

= Πr
i=1p

ti
i (1−

1

pi
) = kΠr

i=1(1−
1

pi
).
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Comment This formula shows that φ(n) 
an be 
al
ulated just from knowledge

of the set of prime divisors of k. The full prime de
omposition is not required.

3. n = pq = 3× 11 = 33. φ(n) = (p− 1)(q − 1) = 2× 10 = 20. Sin
e e = 7
is not a fa
tor of 20, e satis�es the given 
riterion.

4. We need to solve 7d ≡ 1 (mod 20) so that 7d ≡ 21 (mod 20) when
e
d ≡ 3 (mod 20) so d = 3 is the required least residue solution.

5. 62 = 36 ≡ 3 (mod 33); 64 ≡ 32 ≡ 9 (mod 33) so that

M e = 67 = 64 × 62 × 6 ≡ 3× 9× 6 ≡ 27× 6 ≡ (−6)× 6

≡ −36 ≡ −3 ≡ 30 (mod 33).

Hen
e Bob's transmission is 30.
6. Sin
e ed ≡ 1 (mod φ(n)) we may write ed = 1 + kφ(n) for some integer

k. Then

M ed ≡ M1+kφ(n) ≡ M · (Mφ(n))k ≡ M · 1k ≡ M (mod n).

7. In this 
ase M e ≡ 30 (mod 33) so that

M = M ed = 303 ≡ (−3)3 = −27 ≡ 6 (mod 33).

Hen
e Ali
es re
overs Bob's plaintext message M = 6.
8. We have n = pq = 23 × 47 = 1081 and e = 15 is given. Bob transmits

7715 (mod 1081). Now 772 = 5929 = 5 × 108a + 524 ≡ 524 (mod 1081);
774 ≡ 5242 = 274, 576 = 254 × 1081 + 2 ≡ 2 (mod 1081); 778 ≡ 22 = 4 (mod

1081). Hen
e

7715 = 778 × 774 × 772 × 77 ≡ 4× 2× 524× 77 = 616× 524 = 308× 1048

≡ 308× (−33) = 924× (−11) = (−157)× (−11) = 1727 ≡ 646 (mod 1081).

Hen
e Bob's transmission is 646.
9. First, φ(n) = (p−1)(q−1) = 22×46 = 1012. We solve ed ≡ 1 (mod φ(n)),

whi
h is 15d ≡ 1 (mod 1012). We note for the information in our 
al
ulation

that 1012 = 4× 11× 23.

15d ≡ 2025 (mod 1012) ⇒ 3d ≡ 405 (mod 1012) ⇒ d ≡ 135 (mod 1012).

And so the �nal ingredient in Ali
e's private key is d = 135.
10. Ali
e needs to 
al
ulateM ed

(mod n), whi
h is to say 646135 (mod 1081).
Working modulo 1081 throughout we get 6462 = 417316 = 386×1081+50≡ 50;

6464 ≡ 502 = 2500 = 2× 1081 + 338 ≡ 338;

6468 = (6464)2 ≡ 3382 = 114244 = 105× 1081 + 739 ≡ 739;

64616 = (6468)2 ≡ 7392 = 546121 = 505× 1081 + 216 ≡ 216;

646128 = (64616)8 ≡ 2168 = 624 = (64)6 = 12966 ≡ 2156 = (46225)3
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≡ (42× 1081 + 823)3 ≡ (−253)3 = −17173512

= 15886× 1081− 746 ≡ 335.

Hen
e 646135 = 646128 × 6464 × 6462 × 646 ≡ 335× 338× 50× 646

≡ 113230× 32300 ≡ (104× 1081 + 806)(29× 1081 + 951)

≡ 806× 951 ≡ (−275)(−130) = 35750 = 33× 1081 + 77 ≡ 77;

therefore Ali
e re
overs Bob's plaintext message as M = 77.

Problem Set 4

1. Sin
e A 6= 0 (mod p) we 
an multiply through by A′
where AA′ ≡ 1 (mod

p) to get an equivalent equation x2 +A′Bx+C ≡ 0 (mod p). If A′B is even we

may now 
omplete the square:

(

x+
A′B

2

)2 ≡
(A′B

2

)2 − C (mod p)

to get an equation of the form y2 ≡ a (mod p). On the other hand, if A′B is odd,

then A′B ≡ A′B+p (mod p) and the latter is even and we 
an pro
eed in the same way to get:

(

x+
A′B + p

2

)2 ≡
(A′B + p

2

)2 − C (mod p).

2. First we solve 2a ≡ 1 (mod 7), whi
h gives a ≡ 4 (mod 7). Hen
e,

multiplying through by 4 and working modulo 7 we have

2x2 + 3x+ 1 ≡ x2 + 5x+ 4 ≡ x2 − 2x+ 4 ≡ 0 (mod 7)

⇒ (x− 1)2 ≡ −4 + 1 ≡ 4 (mod 7).

⇒ x− 1 ≡ ±2 ⇒ x ≡ 3 or−1.

Hen
e the least residue solutions are 3 and 6.
3. First we solve 3a ≡ 1 (mod 7), whi
h is 3a ≡ 15 (mod 7) so that a ≡ 5

(mod 7). Hen
e, multiplying 3x2 + x+ 4 by 5 we have modulo 7:

x2 − 2x− 1 ≡ 0 ⇒ (x− 1)2 ≡ 1 + 1 ≡ 2 (mod 7)

⇒ x− 1 ≡ 3 or 4 (mod 7) ⇒ x ≡ 4 or 5 (mod 7).

Hen
e the solutions are 4 and 5.
4. Given that r2 ≡ a (mod p) it follows that p − r is also a solution as

(p− r)2 = p2 − 2pr+ r2 ≡ r2 ≡ a (mod p). Moreover p− r is a new solution for

if r ≡ p − r (mod p) then 2r ≡ p ≡ 0 (mod p) and so r ≡ 0 (mod p), whi
h is

not the 
ase as a 6≡ 0 (mod p).
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Next suppose that s2 ≡ 0 (mod p) for some least residue s. Then r2 − s2 =
(r − s)(r + s) ≡ 0 (mod p) so that p is a fa
tor of r − s or r + s. Sin
e r − s
are least residues it follows that either r − s = 0 so that s = r or r + s = p so

that s = p− r. Hen
e there are either no solutions or exa
tly two least residue

solutions to x2 ≡ a (mod p).
5. For a prime p we have φ(p) = p− 1 so that if p is not a fa
tor of a then

aφ(p) ≡ 1 (mod p) be
omes ap−1 ≡ 1 (mod p) so that ap ≡ a (mod p). On the

other hand, if a ≡ 0 (mod p) then aP ≡ 0 (mod p) also so that, in any event,

ap ≡ a (mod p).

6. Sin
e p is odd,

p−1
2 is integral. Let a

p−1

2 = r. Then by Question 5

r2 =
(

a
p−1

2

)2
= ap−1 ≡ 1 (mod p)

so r = ±1 (mod p).
7. Here

p−1
2 = 31−1

2 = 15 and a = 7. Now working mod 31 we have

72 = 49 ≡ 18, 74 ≡ 182 ≡ 324 ≡ 14, 78 ≡ 142 = 196 ≡ 10 (mod 31)

⇒ 716 ≡ 102 ≡ 100 ≡ 7 (mod 31)

⇒ 715 ≡ 1 (mod 31)

and so, by the Euler 
riterion, 7 is a quadrati
 residue mod 31.

8.

x2 ≡ 7 ≡ 38 ≡ 69 ≡ 100 = 102 (mod 31)

⇒ x ≡ ±10 (mod 31),

so x = 10 or x = 21.
9.

x2 ≡ 41 ≡ 102 ≡ 163 ≡ 224 = 42 × 14 (mod 61)

⇒
(x

4

)2 ≡ 14 ≡ 75 = 52 × 3 (mod 61)

⇒
( x

4× 5

)2 ≡ 3 ≡ 64 = 82 (mod 61)

⇒ x2 ≡ 42 × 52 × 82 (mod 61)

⇒ x ≡ ±4× 5× 8 = ±160 = ±38 (mod 61),

so that x = 38 or x = 61− 38 = 23.
10. The equation ab ≡ r (mod p) implies that

(ab)
p−1

2 = a
p−1

2 b
p−1

2 ≡ r
p−1

2
(mod p) (2)

and sin
e a is a quadrati
 residue this is equivalent to

b
p−1

2 ≡ r
p−1

2
(mod p),

and so for b to be a quadrati
 residue, r must be a quadrati
 residue. Conversely,

if r is a quadrati
 residue then so is ab and then, sin
e a
p−1

2 ≡ 1 (mod p), the
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same must be true of b. Therefore b will be a quadrati
 residue if and only if r
is a quadrati
 residue.

Problem Set 5

1. If one of the equations x2 ≡ a (mod p), x2 ≡ b (mod p) has a solution

then so does the other (the same solution) as a ≡ b (mod p).
2. Let r be the least residue of a (mod p). Then x2 ≡ r2 (mod p) has the

two solutions x = ±r and sin
e a2 ≡ r2 these are also solutions to x2 ≡ a2 (mod

p). Therefore (a2/p) = 1.

3. Sin
e (a/p) = 1 if and only if a
p−1

2 ≡ 1 (mod p) it follows that (a/p) ≡
a

p−1

2
(mod p). Hen
e

(ab/p) = (ab)
p−1

2 = a
p−1

2 b
p−1

2 ≡ (a/p)(b/p) (mod p).

Now we need only note that both sides of this 
ongruen
e are equal to ±1 and

sin
e p is an odd prime, 1 ≡ −1 (mod p) is impossible. Therefore we 
on
lude

that (ab/p) = (a/p)(b/p).
4. By Question 1 and then 2 we have (19/5) = (4/5) = 1; (−9/13) =

(4/13) = (22/13) = 1.
5. We want (85/97) = (5× 17/97) = (5/97)(17/97). Now, sin
e 5 ≡ 1 (mod

4) by the QRT

(5/97) = (97/5) = (2/5) = −1

the last equality be found by inspe
ting 
ases or using the given rule for (2/p).
On the other hand, again by the QRT

(17/97) = (97/17) = (12/17) = (3/17)(4/17) = (17/3)× 1

= (2/3) = −1;

hen
e (85/97) = (−1)(−1) and so the 
ongruen
e has solutions.

Comment Another 
al
ulation route uses the result of Question 6:

(85/97) = (−12/97) = (−1/97)(3/97)(4/97) = (−1/97)(97/3)× 1

= (−1/97)(1/3) = (−1/97)× 1 = 1

sin
e 97 ≡ 1 (mod 4).

6. By Euler's 
riterion (−1/p) ≡ (−1)
p−1

2
(mod 4). Hen
e (−1/p) = 1 if and

only if

p−1
2 = 2k say, when
e p = 4k + 1, whi
h is to say if and only if p ≡ 1

(mod 4).
7.

(3201/8191) = (3/8191)(11/8191)(97/8191);
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but sin
e 8191 ≡ 3 (mod 4) we have by the QRT:

(3/8191) = −(8191/3) = −(1/3) = −1;

(11/8191) = −(8191/11) = −(7/11) = −(−(11/7)) = (4/7) = 1;

(97/8191) = (8191/97) = (43/97) = (97/43) = (11/43)

= −(43/11) = −(−1/11) = −(−1) = 1.

∴ (3201/8191) = (−1)(1)(1) = −1.

Hen
e there is no solution to the quadrati
 
ongruen
e x2 ≡ 3210 (mod 8191).
8.

(14/31) = (2/31)(7/31) = (−1)(−(31/7) = (4/7) = 1.

x2 ≡ 14 ≡ 45 = 32 × 5 (mod 31)

⇒
(x

3

)2 ≡ 5 ≡ 36 = 62 (mod 31)

⇒ x

3
= ±6 (mod 31)⇒x ≡ ±18 (mod 31)

so that the solutions are 13 and 18.
9.

(p/q) = (q + 4a/q) = (4a/q) = (4/q)(a/q) = (a/q)

(q/p) = (p− 4a/p) = (−4a/p) = (4/p)(−1/p)(a/p) = (−1/p)(a/p).

Now if p ≡ q ≡ 3 (mod 4) then (−1/p) = −1 and by the CRT

(a/q) = (p/q) = −(q/p) = −(−1)(a/p)

so that (a/p) = (a/q) in this 
ase. Sin
e p ≡ q (mod 4) the only other 
ase is

when p ≡ q ≡ 1 (mod 4) then

(a/q) = (p/q) = (q/p) = (1)(a/p)

and so again (a/p) = (a/q). In both 
ases then (a/p) = (q/p).
10. Here 159 = 3 × 53. We wish to solve x2 ≡ 211 ≡ 52 (mod 159). Sin
e

159 = 3× 53, we have x2 ≡ 52 (mod 3) and x2 ≡ 52 (mod 53). Taking the �rst

of these 
ongruen
es:

x2 ≡ 1 (mod 3)⇒x ≡ 1, 2 (mod 3).

Putting x = 3t+1 and substitute into x2 ≡ −1 (mod 53) so that modulo 53 we

have

(1 + 3t)2 ≡ −1 ⇒ 9t2 + 6t+ 2 ≡ 0;

9a ≡ 1 (mod 53) implies the multiplier a = 6 so

t2 + 36t+ 12 = (t+ 18)2 ≡ −12 + 324 = 312 ≡ −6 (mod 53)

⇒ (t+ 18)2 ≡ 100 (mod 53)
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⇒ t+ 18 = 10 or 43 ⇒ t = 25 or 45

⇒ x = 3t+ 1 = 76 or 136.

Alternatively, we put x = 3t+ 2, we have modulo 53

(2 + 3t)2 ≡ −1 ⇒ 9t2 + 12t+ 5 ≡ 0;

⇒ t2 + 72t+ 30 ≡ 0

⇒ (t+ 36)2 ≡ 1266 ≡ −6 ≡ 102 (mod 53)

⇒ t+ 36 = 10 or 43 (mod 53)

⇒ t = 7 or 27

⇒ x = 23 or 83.

Hen
e the full set of solutions is {23, 76, 83, 136}.

Problem Set 6

1. Suppose to the 
ontrary that (0, 12 ) were 
ountable so there exists a

bije
tion f : N → (0, 1
2 ). Then 2f : N →(0, 1) is a bije
tion, whi
h gives

the 
ontradi
tion that (0, 1) is 
ountable. It follows therefore that (0, 12 ) is an
un
ountable set.

2. Sin
e ea
h Ai is 
ountable, the members of Ai may be listed as

a1,i, a2,i, · · · , aj,i, · · · .

Let Bm = {ai,j : i + j = m}, m = 2, 3, · · ·. Now ea
h Bm is �nite and indeed

we may list the members of Bm as a1,m−1, a2,m−2, · · · , am−1,1. We 
an de�ne a

list of the set B =
⋃∞

m=2 Bm by listing all the members of B2 then of B3, and

so on. This shows that B is a 
ountable set but 
learly B = A so that A, the
union of 
ountably many 
ountable sets, is itself 
ountable.

3. Sin
e Z ⊆ Q and a subset of a 
ountable set is 
ountable, it is enough

to prove that Q is 
ountable. After the fashion of Question 2, let Bm = { p

q
∈

Q+ : p+ q = m} (m ≥ 2). Again sin
e ea
h Bm is �nite and the union of all the

Bm is a 
ountable union of 
ountable sets, it follows that Q is 
ountable. Sin
e

the mapping x → −x de�nes a bije
tion from the positive to the negatives

rationals, it follows that the latter set, Q−
is also 
ountable. Finally then

Q = Q
+ ∪Q− ∪ {0} is the union of three 
ountable sets, and so Q is 
ountable.

4. Suppose to the 
ontrary that I was 
ountable. Then by Question 3, Q is

a 
ountable set and so R = Q∪ I would be 
ountable, it being the union of two


ountable set. However then (0, 1), being a subset of a 
ountable set, would also
be 
ountable. This is a 
ontradi
tion so we 
on
lude that I is not a 
ountable

set.

12



5. It is enough to prove the result for n = 2 for given this there is an obvious

bije
tion between A = A1 × A2 × · · · × An and (A1 × A2 × · · · × An−1) × An

and by indu
tion and the n = 2 
ase, it follows that A is 
ountable. Sin
e A1

and A2 are 
ountable their members 
an be listed as a1, a2, · · · and b1, b2, · · ·
respe
tively. We 
an then write A1 × A2 as the 
ountable union of �nite sets

Bm where Bm = {(ai, bj) : i + j = m} m = 2, 3, · · ·.
6. The members of the in�nite produ
t P = A × A × A × · · · 
onsist of all

in�nite binary strings. There is then a bije
tion from P into [0, 1) by whi
h the

binary string (ε1, ε2, · · ·) is mapped to 0 · ε1ε2 · · · taken as a binary expansion

of the 
orrepsonding real number. However [0, 1) 
ontains the un
ountable set
(0, 1) and so [0, 1) and therefore P also, is un
ountable.

7. For ea
h b ∈ f(A), 
hoose a ∈ A su
h that f(a) = b. The mapping

g : B → A by whi
h b 7→ a is then a one-to-one fun
tion from B into A. If

B were un
ountable, then so would be its bije
tive imaged, g(B) ⊆ A so that

the 
ontaining set A would be un
ountable as well. This 
ontradi
ts the give

hypothesis that A is 
ountable, so we 
on
lude that the range of a fun
tion from

a 
ountable set is itself a 
ountable set.

8. Yes. Sin
e B ∩C is a subset of the 
ountable set C, it follows that B ∩C
is 
ountable. Then A ∪ (B ∩ C) is the union of two 
ountable sets, and so by

the result of Question 2, A ∪ (B ∩ C) is 
ountable.
9.The dire
t produ
t of two un
ountable sets A,B is un
ountable, for if

A × B were 
ountable, so would be the subset S = {(a, b) : a ∈ A} where

b ∈ B is a �xed member of B. However the proje
tion mapping (a, b) 7→ a
is a bije
tion from S onto A, and this would give the 
ontradi
tion that A
were 
ountable. (In fa
t this argument shows that the dire
t produ
t of an

un
ountable set and a non-empty set is un
ountable.) In parti
ular, sin
e R is

un
ountable (as it 
ontains the un
ountable open interval (0, 1)), it follows that
R × R is un
ountable. Now observe that the mapping whereby a+ bi 7→ (a, b)
is a bije
tion from C onto R× R, and so both sets are un
ountable.

10. Let Pn denote the set of polynomials with rational 
oe�
ients of degree

at most n. Then the mapping whereby a0+a1x+· · ·+anx
n 7→ (a0, a1, · · · , an) is

a bije
tion from Pn into the n-fold dire
t produ
t Q×Q×· · ·×Q of the rationals.

By Question 5, it follows that Pn is 
ountable. Now ea
h p(x) ∈ Pn has at most

n roots. Hen
e the set of all real numbers that are roots of polynomials in Pn


an be listed by listing all members of Pn as p1, p2, · · · and forming a list of

their roots by listing all the roots of p1, then of p2, and so on. It follows that

the set of real numbers Rn that are roots of polynomials in Pn is 
ountable.

Finally, the set A of all agebrai
 numbers is the union A =
⋃∞

n=1 Rn and so A
is 
ountable by Question 2, A is a 
ountable union of 
ountable sets.

Finally, by de�nition, R is the (disjoint) union of A and T , the set of all

trans
endental (ie non-algebrai
) numbers. If T were 
ountable, then R = A∪T ,
being the union of two 
ountable sets, would be 
ountable. We know this is not

the 
ase so it follows that T is an un
ountable set.

Comment We have thus shown that the set of trans
endental numbers is

un
ountable without identifying a single one of them! The result has been

proved just through 
omparing various sets with one another and seeing whether

13



they 
an or 
annot be put into one-to-one 
orresponden
e. The trans
endentals

is an obs
ure 
lub - the famous numbers e and π are members but this is a fa
t

that either openly reveals!

Problem Set 7

1. By inspe
tion of the �rst few values of un we may try to prove indu
tively

that un = 2n − 1. Certainly this gives u0 = 0 so let us assume that the formula

holds for some value of n ≥ 0 and examine un+1. We get

un+1 = 2un + 1 = 2(2n − 1) + 1 = 2n+1 − 2 + 1 = 2n+1 − 1,

and so the validity of the solution is established by indu
tion.

2. Put un = Awn
into the give re
urren
e relation we get

Awn+1 = Awn +Awn−1 ⇒ w2 − w − 1 = 0;

solving we get w = 1±
√
5

2 . It follows that un = A1w
n
1 +A2w

n
2 , where w1 = 1+

√
5

2

and w2 = 1−
√
5

2 satis�es the Fibona

i re
urren
e. Putting u0 = 0 and u1 = 1
then gives the equations:

A1 +A2 = 0, A1w1 +A2w2 = 1;

putting A2 = −A1 = −A say we then have:

A(
1 +

√
5

2
− 1−

√
5

2
) = 1 ⇒ A =

1√
5
and so

fn =
1√
5

[(1 +
√
5

2

)n −
(1−

√
5

2

)n]

, n = 0, 1, 2, · · · .

3.

lim
n→∞

fn+1

fn
= lim

n→∞

wn+1
1 − wn+1

2

wn
1 − wn

2

,

sin
e ||w2| < 1 and |w1| > 1 it follows that this limit is w1 = 1+
√
5

2 , so that the

Fibona

i sequen
e is asymptoti
ally a geometri
 sequen
e with 
ommon ratio

equal to the golden ratio.

4. The given substitution yields the equation

pAwn+1 −Awn + qAwn−1 = 0 ⇒ pw2 − (p+ q)w + q = 0,

⇒ (w − 1)(pw − q) = 0 ⇒ w1 = 1, w2 =
q

p

so 
andidate solutions are un = A1(1)
n = A1 and un = A2

(

q

p

)n
, n = 0, 1, 2, · · ·.

14



5. Put un = A1 +A2

(

q

p
)n into pun+1 − un + qun−1to obtain:

[

pA1 + pA2

(q

p

)n+1]−
[

A1 +A2

(q

p

)n]

+
[

qA1 + qA2

(q

p

)n−1]

= A1(p− 1 + q) +A2

(q

p

)n−1[
p
(q

p

)2 − q

p
+ q

]

,

whi
h, sin
e p+ q = 1 simpli�es to

A2

(q

p

)n−1
[
q2

p
− q

p
+ q] = 0

as required be
ause the inside bra
ket equals

q2 − q + pq

p
=

q(q − 1) + pq

p
=

−pq + pq

p
= 0.

6. From our general solution un = A1 + A2

(

q

p

)n
we put u0 = 0 to get

A1 +A2 = 0, so that we may write A2 = −A1. Next putting ul = 1 gives,

A1 −A1

(q

p

)l
= 1 ⇒ A1 =

1

1−
(

q

p

)l
, A2 =

1
(

q

p

)l − 1
, hen
e

un =
1

1−
(

q

p

)l
+

(

q

p

)n

(

q

p

)l − 1
=

(

q

p

)n − 1
(

q

p

)l − 1
, n = 0, 1, 2, · · · .

7. We seek a solution of the form un = A1 + A2n, whi
h we verify does

satisfy the re
urren
e:

un+1 + un−1

2
=

A1 + (n+ 1)A2 +A1 + (n− 1)A2

2

=
2A1 + 2nA2

2
= A1 +A2n = un, as required.

Putting u0 = 0 gives A1 = 0 and then ul = 1 gives A2l = 1 so that A2 = 1
l
, our

required solution is thus un = n
l
.

8. From Question 5 we have that the suggested augmented solution has the

form

vn = A1 +A2

(q

p

)n
+ kn.

We require that pvn+1 − vn + qvn−1 return the value −1 so that k must satisfy:

pk(n+ 1)− kn+ qk(n− 1) = −1 so that

pkn+ pk − kn+ qkn− qk = −1 ⇒ (p+ q − 1)kn+ (p− q)k = −1

15



and sin
e p+ q = 1 we 
on
lude that

k =
1

q − p
.

Giving the general solution:

vn = A1 +A2

(q

p

)n
+

n

q − p
.

9. The suggested 
andidate for solution has the form vn = A1 +A2n+ kn2
.

Hen
e we require that substituion of vn = kn2
into the expression pvn+1 − vn+

qvn−1 yields −1, whi
h is to say:

k(n+ 1)2

2
− kn2 +

k(n− 1)2

2
= −1

⇒ k(n2 + 2n+ 1− 2n2 + n2 − 2n+ 1) = −2

⇒ 2k = −2 ⇒ k = −1,

giving as our general solution vn = A1 +A2n− n2,n = 0, 1, 2 · · · .
10. Given the initial 
onditions that v0 = vl = 0 gives the equations A1 = 0

and A2l− l2 = 0 so that A2 = l. Hen
e our parti
ular solution is vn = ln−n2 =
n(l − n), n = 0, 1, 2, · · ·.

Problem Set 8

1.

g(x) = (x2)5(1 + x+ x2 + · · ·)5 = x10
( 1

1− x

)5

and so we require the 
oe�
ient of xr−10
in the expansion of (1 − x)−5

. By

putting n = 5 in the given identity we obtain

(

r − 10 + 5− 1

r − 10

)

=

(

r − 6

r − 10

)

=
(r − 6)(r − 7)(r − 8)(r − 9)

24

.

2. Here we want the 
oe�
ient of x8−2 = x6
in (1 − x)−10

; putting r = 6
and n = 10 then gives:

(

6 + 10− 1

6

)

=

(

15

6

)

=
15× 14× 13× 12× 11× 10

6× 5× 4× 3× 2
= 5005.

3. Our generating fun
tion here is (1 + x + x2 + · · ·)2(1 + x2 + x4 + · · ·) =
(1− x)−2(1− x2)−1

. The generating fun
tions in this produ
t are respe
tively

∞
∑

r=0

(

r + 2− 1

2

)

xr =
1

2

∞
∑

r=0

(r + 1)(r + 2)xr,
∞
∑

r=0

x2r,
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Denoting the 
orresponding 
oe�
ients by ai and bi, we require a0b10 + a1b
9 +

· · ·+a10b0. Sin
e b2i+1 = 0 and b2i = 1 this simpli�es to a0+a2+a4+a6+a8+a10.
Hen
e we obtain

1 + 6 + 15 + 28 + 45 + 66 = 161.

4. Here we want the 
oe�
ient of x12
in the produ
t

g(x) = (1 + x+ x2 + x3 + x4)5 =
(1− x5

1− x

)5

= (1−
(

5

1

)

x5 +

(

5

2

)

x10 + · · ·)(1 +
(

5

1

)

x+

(

6

2

)

x2 ++

(

r + 4

r

)

xr + · · ·)

so the required 
oe�
ient is

(

16

12

)

−
(

11

7

)(

5

1

)

+

(

5

2

)(

6

2

)

=
16 · 15 · 14 · 13

24
− 5

11 · 10 · 9 · 8
24

+ 10 · 15

= 1820− 1650 + 150 = 320.

5. In this 
ase g(x) = (1+x)19(1+x+x5) and we require the 
oe�
ient of x15
.

Again this has the form a0b15 + a1b14 + · · ·+ a15b0. However, b0 = b1 = b5 = 1,
all other bi = 0. Hen
e we require just

a15 + a14 + a10 =

(

19

15

)

+

(

19

14

)

+

(

19

10

)

.

6. Here we require the 
oe�
ient of x25
in the generating fun
tion:

g(x) = (1 + x+ x2 + · · ·+ x10)(1 + x+ x2 + · · ·)6 = (1 − x)−7 · (1 − x11);

in this 
ase this gives a sum of produ
ts of the form

a14b11 + a25b0 =

(

25 + 7− 1

25

)

−
(

14 + 7− 1

14

)

=

(

31

25

)

−
(

20

14

)

.

7. Here we require the 
oe�
ient of x25
in the generating fun
tion

g(x) = (x2 + x3 + x4 + x5 + x6)7 = x14(1 + x+ x2 + x3 + x4)7;

so we just need the 
oe�
ient of x25−14 = x11
in

(1− x5

1− x

)7
= (1−

(

7

1

)

x5+

(

7

2

)

x10+ · · ·)(1+
(

1 + 6

1

)

x+ · · ·+
(

r + 6

r

)

xr + · · ·)

whi
h is

(

17

11

)

− 7

(

12

6

)

+

(

7

2

)(

7

1

)

.

8. Again it's the 
oe�
ient of x25
this time in

g(x) = (x+ x2 + · · ·+ x6)10 = x10(1 + x+ · · ·+ x5)10,
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whi
h is the 
oe�
ient of x25−10 = x15
in

(1− x6

1− x

)10

= (1− x6)10(1 +

(

1 + 9

1

)

x+ · · ·+
(

r + 9

r

)

xr + · · ·)

whi
h is

(

24

11

)

− 10

(

18

9

)

+

(

10

2

)(

14

5

)

.

9. The exponential generating fun
tion is in this 
ase

g(x) = (x+
x2

2!
+

x3

3!
+ · · ·)3 = (ex − 1)3.

The 
oe�
ient of xr
in this 
ase is the number of ways of putting r distin
t

obje
ts into 3 distin
t rooms in a parti
ular order. Sin
e we are not interested

in the order in whi
h the people enter the room in our problem, our answer will

in general be

ar

r! . Continuing we have

g(x) = e3x − 3e2x + 3ex − 1 =

=

∞
∑

r=0

3r
xr

r!
− 3

∞
∑

r=0

2r
xr

r!
+ 3

∞
∑

r=0

xr

r!
− 1

=

∞
∑

r=0

(3r − 3 · 2r + 3)
xr

r!
− 1;

in parti
ular, the 
oe�
ient of

x25

25! is 3
25 − 3 · 225 + 3.

10. The exponential generating fun
tion for this problem is

g(x) = (1 +
x2

2!
+

x4

4!
+ · · ·)(x+

x3

3!
+

x5

5!
+ · · ·)(1 + x+

x2

2!
+ · · ·)2

=
1

2
(ex + e−x)

1

2
(ex − e−x)exex

=
1

4
(e2x − e−2x)(e2x) =

1

4
(e4x − 1).

It is the exponential generating fun
tion that is required as the ordering of the

repetitions of a parti
ular digit within a parti
ular 
hoi
e of set of pla
es for

that digit does not matter. Hen
e we require the 
oe�
ient of

xr

r! in g(x), whi
h
is

1
4 · 4r = 4r−1

.

Problem Set 9

1. Let A1 be the set of hands with a void in spades, and similarly de�ne

A2, A3 and A4. We have N =
(

52
5

)

and |Ai| =
(

39
5

)

, |AiAj | =
(

26
5

)

, |AiAjAk| =

18



(

13
5

)

while a void in all suits is impossible. Hen
e we obtain:

|Ā1Ā2Ā3Ā4| =
(

52

5

)

− 4

(

39

5

)

+ 6

(

26

5

)

− 4

(

13

5

)

.

Comment In general, Sk is a sum of

(

n
k

)

di�erent k-tuple interse
tions of the
n Ai's. To �nd |A1 ∪ · · · ∪ An| we just note that this set is the 
omplement of

the interse
tion of the 
omplements and so

|A1 ∪ A2 ∪ · · · ∪ An| = S1 − S2 + S3 − · · ·+ (−1)nSn.

2. Here we have N = 610. Let Ai denote the set of rolls in whi
h the

number i does not appear, 1 ≤ i ≤ 6. Then |Ai| = 510, and S1 = 6 · 510. Next
|AiAj | = 410 and so S2 =

(

6
2

)

410. In general |Ai1 · · ·Ait | = (6 − t)10 so that

St =
(

6
t

)

(6− t)10. Hen
e

|Ā1 · · · Ā6| = 610 − 6 · 510 + 15 · 410 − 30 · 310 + 15 · 210 − 6.

3. Here we have N = 10n. Let Ai be the set of sequen
es in whi
h i is absent
(i = 1, 2, 3). Then S1 = 3 · 9n, S2 = 3 · 8n and S3 = 7n and we have

|Ā1Ā2Ā3| = 10n − 3 · 9n + 3 · 8n − 7n.

4. Let Ai be the set of distributions with a void in box i (1 ≤ i ≤ 5).
Here we require to know |A1 ∪ · · · ∪ A5| = S1 − S2 + S3 − S4 + S5. In general,

St =
(

5
t

)

(5− t)r so we obtain:

5 · 4r − 10 · 3r + 10 · 2r − 5.

5. We require the 
oe�
ient of x20
in the generating fun
tion

g(x) = (1 + x+ x2 + · · ·+ x8)6 =
(1− x9

1− x

)6

= (1− 6x9 +

(

6

2

)

x18 − · · ·)(1 +
(

6

1

)

x+ · · ·+
(

r + 5

r

)

xr + · · ·),

so the required 
oe�
ient is

(

25

20

)

− 6

(

16

11

)

+ 15

(

7

2

)

.

6. Let our universe U be the set of all non-negative integer solutions and

let Ai be the subset of integer solutions in whi
h xi ≥ 9. Hen
e N = |U| =
(

20+6−1
20

)

=
(

25
20

)

. Next |Ai| =
(

(20−9)+6−1
20−9

)

=
(

16
11

)

and |AiAj | =
(

(20−9−9)+6−1
20−9−9

)

=
(

7
2

)

. Interse
tions of more than two of the Ai's are empty. Hen
e we again �nd

our answer is

(

25

20

)

− 6

(

16

11

)

+ 15

(

7

2

)

.
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7. Our universe is the set of all permutations on an n-set so that N = n!
Let Ai be the subset of solutions where lead i is 
orre
tly plugged into so
ket

i. Then |Ai| = (n− 1)! and in general |Ai1 · · ·Aik | = (n − k)! We see therefore

that Sk =
(

n

k

)

(n− k)! Hen
e we get

Dn =
n
∑

k=0

(−1)k
(

n

k

)

(n− k)! = n!
n
∑

k=0

(−1)k

k!
.

Hen
e the required probability is

Dn/n! =

n
∑

k=0

(−1)k

k!
.

8. Note that

Dn

N
= 1 − 1 + 1

2! − 1
3! + · · · + (−1)n

n! , whi
h is the �rst n + 1
terms of the series for e−1 ≈ 0 · 366. Sin
e this alternating series 
onverges very
rapidly, for all but small n the proportion of derangements is very 
lose to

1
e
.

9. Using the expression of Question 7 we get

nDn−1 + (−1)n = n!

n−1
∑

k=0

(−1)k

k!
+ (−1)n

= n!
n
∑

k=0

(−1)k

k!
= Dn.

.

10. To start the indu
tion we note that 1 = D2 = 1 ·D1 + (−1)2 as D1 = 0
so the re
ursion holds for n = 2. Using indu
tion and then invoking Question 9

we then get for n ≥ 3

(n− 1)(Dn−1 +Dn−2) = nDn−1 + (n− 1)Dn−2 −Dn−1

= nDn−1 + (Dn−1 − (−1)n−1)−Dn−1 = nDn−1 + (−1)n = Dn.

Comment Alternatively we 
an argue that the 
olle
tion 
ounted by the Dn

is the union of two mutually ex
lusive types as follows. Given a derangement α
of Xn−1 
hoose i ∈ Xn−1 ((n− 1) 
hoi
es) and de�ne a derangement α′

on Xn

by putting iα′ = n, nα′ = iα and α, with α′
agreeing otherwise. This pro
ess

is one-to-one so this gives (n − 1)Dn−1 derangements of Xn. Next, 
hoose a

point i ∈ Xn−1 ((n − 1) 
hoi
es) and let α be a derangement of Xn−1 \ {i}.
De�ne a derangement α′

of Xn by putting iα = n and nα = i with α and

α′
agreeing on Xn−1 \ {i}. Again this pro
ess is also one-to-one so provides

a further (n − 1)Dn−2 derangements of Xn. Furthermore no derangement on

Xn 
an arise from both of these pro
esses and so pooling the two types gives a

total of (n− 1)(Dn−1 +Dn−2) derangements of the n-set Xn. This exhausts all

the derangements of Xn for any su
h derangement is the out
ome of one of the

other of these pro
esses. Hen
e Dn = (n− 1)(Dn−1 +Dn−2).
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Problem Set 10

1. By inspe
ting triangles, re
tangles and pentagons we see that C1 = 1,
C2 = 2 and C3 = 5.

2. Label the verti
es of the (n + 2)-gon N by the integers 1, 2, · · · , n and

�x attention on the edge E = 1 2. In any partition of N by non-interse
ting

triangles, E is the base of some triangle Tk, where k is the third vertex of Tk

(3 ≤ k ≤ n + 2). The sides 1 k and 2 k split N into an (n − k + 4)-gon and

a (k − 1)-gon respe
tively. Ea
h of these 
an, independently of the other, be

partitioned into Cn−k+2 and Ck−3 triangles, so the total number of ways this


an be done is the produ
t Ck−3Cn−k+2. Summing these produ
ts over k gives:

Cn =

n+2
∑

k=3

Ck−3Cn−k+2 =

n
∑

k=1

Ck−1Cn−k.

3. The number of ways of 
hoosing m balls from a 
olle
tion of n red and

m blue labelled balls is a sum, from k = 0 to k = n, of the number of ways of

hoosing k blue balls and m− k red balls, whi
h in symbols is:

n
∑

k=0

(

n

k

)(

m

k

)

=

(

n+m

m

)

, (n ≤ m).

4. For n = 1 we have

(

2
1

)

= 2 =
(− 1

2
)

1! (−4)1 to start the indu
tion. Next

assume the formula holds for some n ≥ 1 and 
onsider indu
tively the (n + 1)

ase:

(2(n+ 1))!

(n+ 1)!(n+ 1)!
=

(2n+ 2)(2n+ 1)

(n+ 1)2
· (2n!)
n!n!

=
2(2n+ 1)

n+ 1
· (−

1
2 )(− 3

2 ) · · · (− 2n−1
2 )

n!
(−4)n

= −2n+ 1

2
· (−

1
2 )(− 3

2 ) · · · (− 2n−1
2 )

(n+ 1)!
(−4)n(−4)

=
(− 1

2 )(− 3
2 ) · · · (− 2n−1

2 )(− 2(n+1)−1
2 )

(n+ 1)!
(−4)n+1,

and so the indu
tion 
ontinues, thus establishing the result.

5. We need to show that the 
oe�
ient of xn
in the expansion of (1− 4x)−

1

2

mat
hes that of the answer of Question 4. But by the binomial expansion we

get:

(1 − 4x)−
1

2 =

∞
∑

n=0

(− 1
2 )(− 3

2 ) · · · (− 1
2 − n+ 1)

n!
(−4x)n

and sin
e − 1
2 −n+1 = −1−2n+2

2 = − 2n−1
2 we see that the 
oe�
ients do indeed

mat
h.

6. The 
oe�
ient ak of xk
in the series for g(x) =

√
1− 4x is

(

2k
k

)

. Hen
e

the 
oe�
ient for xn
in (g(x))2 is a0an + a1an−1 + · · · + ana0. On the other
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hand the 
oe�
ient of xn
for the geometri
 series (1 − 4x)−1

is 4n. Hen
e we

obtain the required identity in the form:

n
∑

k=0

(

2k

k

)(

2(n− k)

n− k

)

= 4n.

7.

∞
∑

n=0

(

2n

n

)
ˆ

1

4

0

x2n dx =

ˆ

1

4

0

dx√
1− 4x2

⇒
∞
∑

n=0

(

2n

n

)

[ x2n+1

2n+ 1

]
1

4

0
=

1

2

ˆ

1

2

0

du√
1− u2

⇒
∞
∑

n=0

(

2n

n

)

1

42n+1(2n+ 1)
=

1

2

[

sin−1 u
]

1

2

0

⇒
∞
∑

n=0

1

42n(2n+ 1)

(

2n

n

)

= 2 sin−1(
1

2
) = 2 · π

6
=

π

3
.

8.

(h(x))2 =
(

∞
∑

k=0

Ckx
k
)2
;

the 
oe�
ient of xk
in this square is C0Ck + C1Ck−1 + · · · + CkC0 = Ck+1 by

Question 2 . Therefore (h(x))2 =
∑∞

k=0 Ck+1x
k
.

9.

x(h(x))2 =

∞
∑

k=0

Ck+1x
k+1 =

∞
∑

k=1

Ckx
k = h(x)− 1

∴ x((h(x))2 − h(x) + 1 = 0.

Solving this as a quadrati
 in the unknown h(x) gives

h(x) =
1±

√
1− 4x

2x
;

note that, for the positive sign, the limit as x ↓ 0 of this expression is +∞ while

C0 = 1. Hen
e it is the negative root (whi
h has the 
orre
t limiting behaviour)

that we want:

h(x) =
1−

√
1− 4x

2x
.

10.

h(x) =
1

2x

(

1−
[

1+
(12 )

1!
(−4x)+

(12 )(− 1
2 )

2!
(−4x)2 +

(12 )(− 1
2 )(− 3

2 )

3!
(−4x)3 + · · ·

])

=
1

4x

( 1

1!
(4x) +

(12 )

2!
(4x)2 +

(12 )(
3
2 )

3!
(4x)3 + · · ·+ (12 )(

3
2 ) · · · (2n−1

2 )

(n+ 1)!
(4x)n+1 + · · ·

)
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= 1 + x+ 2x2 + · · ·+ 4n × 1× 3× 5× · · · × (2n− 1)

2n(n+ 1)!
xn + · · ·

⇒ Cn =
1

n+ 1
· 2

n × 1× 3× · · · × (2n− 1)

n!

=
1

n+ 1
· (2n)!
(n!)2

=
1

n+ 1

(

2n

n

)

.
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