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Solutions and Comments for the Problems

Problem Set 1

1. 3z = 2 (mod 6) has no solution (because the gcd(3,6) = 3 does not divide
2).
2.
52 = 2 (mod 6) = 5x = 20 (mod 6) = z = 4 (mod 6)

Note that since the gcd(5,6) = 1, there is a unique least residue solution.
3.
42 = 2 (mod 6) = 42 = 8 (mod 6) = z = 2(mod 3)

and there are 2 least residue solutions, they being x =2 and x =2 4+ 3 = 5.
4. Since 31 is prime, there is a unique least residue solution.

62 = 14 (mod 31) = 32 =7 = 3z = 69 (mod 31)

= x = 23 (mod 31).

152 = 12 (mod 57) = 5z = 4 (mod 19) = 5z = 80(mod 19)
= z = 16 (mod 19)

and so the full set of least residue solutions is {16,16 + 19 = 35,35 + 19 = 54}.
6. x =1 (mod 2) so put z = 1 + 2t;. Substitute in z = 2 (mod 3) gives:

t1£2(m0d3)$t1=2+3t2

Hence x = 1+ 2ty = 14 2(2 + 3t2) = 5 + 6t2. Substituting in z = 3(mod 5)
gives:
5+ 6ty = 3 (mod 5) = 6t = —2 = 3 (mod 5)

= 2ty = 1 (mod 5)=2t; = 6 = t5 = 3 (mod 5)
=ty = 3+ 5¢.

Hence x = 5+ 6(3 + 5t) = 23+ 30¢. In particular, the smallest positive solution
is x = 23.

Comment In general the Chinese Remainder Theorem says that the system
of k congruences x = a; (mod m;)where each pair of moduli is relatively prime
has a unique least residue solution modulo mms - - - my. The substitution tech-
nique above can be applied to find that solution.

7. We have n = 2t; + 1 and

2t1+1 = O(m0d3) =261 =2 (m0d3) =1t =3t +1



= n=2(3t+1)+1 =6ty +3.
6ta +34+2=0 (mod5) = ty = 5t3 = n = 30t3 + 3.
30t3+3+4=0 (mod7) = t3 =Tty
= n = 210t3 + 3.

We conclude that the least n > 3 that satisfies all constraints is n = 210+ 3 =
213.
8. We have that the equations imply that

x+2y =3 (mod 7)
=5z =1 (mod 7) = 52 =15 (mod 7)=z =3 (mod 7)
=2y =0 (mod 7)=y =0 (mod 7).

Hence the least residue solutions modulo 7 are x = 3, y = 0.

9. Consider az = b (mod 20) and let d = (a, 20) (the ged of a and 20). If d
does not divide b (which is possible for example if d = 2 and b = 3)), then there
are no solutions. Otherwise there are d solutions. The set of possible values
of d is the set of divisors of 20, which is {1,2,4,5, 10,20}, and each such d is
attainable by taking a = b = d in the equation. The set has 6 members so there
are 6 + 1 = 7 different possibilities for the number of least residue solutions to
such a congruence, these being 0,1,2,4,5,10 and 20.

10. Five Thursdays in February occurs exactly when we have a leap year
with February 29th being a Thursday, which happened in 1968. Starting our
count of the week from Thursday we may write this event as z = 0, where x
is the value of the weekday on February 29th. The next occurence of February
29th is 4 x 365 + 1 days later. Now

4%x365+1=4x1+1=5 (mod 7).

Hence the value of x is incremented by 5 each leap year cycle. Let us find
the least number t of cycles before z = 0 again, which is to say that 5t = 0
(mod 7) which implies ¢t = 7, so day-of-the-week coincidences happen once every
7 x 4 = 28 years. Now 2100 — 1968 = 132 and % = 4§—g. Hence the cycle will
be completed on only four subsequent occasions between 1968 and 2100, those
being

1968 4 28 = 1996, 1996 + 28 = 2024, 2024 + 28 = 2052, 2052 + 28 = 2080.

Problem Set 2

1. Working modulo 2 we get that y = 2t say, so we have

2 4+2t=2=ax=1—t;



hence the solutions set is
{(m,y)rx=1—-t,y=2t,t € Z}.

2. Working mod 15 we get y = 2 (mod 15) so we put y = 15t + 2 and we
obtain
152 4+ 16(15t + 2) = 17 = 152 = —16(15t) — 15

=2 =—16t— 1,

hence, by replacing ¢t by —t, which is legal as ¢ can be any integer, the solution
set is
{(z,y):x=16t -1,y =2—15t, t € Z}.

3. Again working mod 15 we get 3y = 2 (mod 15) and since d = (3,15) = 3
is not a factor of 2, there are no solutions.

4. Working modulo 7 we have y = 2 (mod 7) so we put y = 2 + 7t. Substi-
tuting accordingly we obtain

Tx 4+ 15(2+ Tt) =51 = 7o = 7(—15t) + 21
= =3 — 15¢.
We also require
2+7t21:>t27%:>t20;
2
3—15t21:t§1—5:>t§0.

Hence the solution set is unique: = = 3,y = 2.
5. We have
6z — 15y = 51 & 22 — 5y = 17.

Working modulo 2 gives —y = 1 (mod 2) which implies y = 1+ 2¢. Substituting
accordingly gives

20 —5(1+2t) =17 =22 =10t + 22 = = = 5t + 11.
However we also require
y=1+20<-1=2<-2=t<—1;
:c:5t+11§71é5t§712ét§7%ét§73.
Hence the solution set is
{(z,y) :x=5t+11,y=1+2¢,t < —3}.

However,
t<-3&—-t>3<-t—-3>0,



so putting s = —t — 3 so that t = —s — 3 we get the formulation: x = 5t + 11 =
5(-3—8)+11=—-4—5sandy=1+2t=1+42(—-3—s) = —5 — 2s, giving as
solution set

{(z,y) :x =—4—5s,y=—-5—2s, s > 0}.

6. Subtracting the first equation from the second eliminates x and gives
y + 2z = 10 so that y = 2t is even. Then 2z = 10 — 2t = z = 5 —t. We then
have
r+y+tz=a+2t+(B-t)=z+t+5=31=2=26—1.

Hence we require
26—t>1=1t<25 2t>0=>t>15—t>1=t<4;
=1<t<4.
This gives four solutions triples for (z,y, z)
{(25,2,4), (24,4,3), (23,6,2), (22,8, 1)}.
7. With a natural use of symbols we have the simultaneous equations:

c+ s+ w =35, 100c + 8s = 296.

Multiplying the first by 8 and subtracting from the second we get
92¢ — 8w = 16 = 23s — 2w = 4.

Modulo 2 we have s is even: s = 2t. Hence 46t — 2w = 4 so that w = 23t — 2.
Finally
c=35—s—w=235—2t—23t+2=37— 25t.

Assuming there is at least one of each type of creature we have

1
521®2t21©t2§®t21;

3
w21©23t—221®t22—3©t21;

021637725t21@t§§—§@>t§1.

Hence t = 1 and we get (¢, s,w) = (12,2,21). In particular there are 21 worms.
8. A farmer sold her sheep for £180 each and her cows for £290 a piece,
receiving £2890. How many cows did she sell?
As a diophantine equation we have, upon dividing by 10,

185 + 29¢ = 289;

modulo 18 we have 11¢ =1 (mod 18) = 11¢ = 55 (mod 18) so that ¢ =5 (mod
18). Putting ¢ = 5 we get

280 (29)5 144

y 18 BETHE



and (¢, s) = (5,8) is a feasible solution pair. Testing ¢ = 5+ 18 = 23 or any
greater value will give a negative value for s, so this is the only solution, and so
the farmer sold 5 cows.

9. Let a and m be the current ages of Anne and Mary respectively. Let ¢ be
the time in the future when the comparison in the first sentence is made. Then
we have

1
a+t:§(3m)ét:gm—a.

And the second part of the sentence translates as
3 5
m+t:5aém+(§m—a):5aé §m:6a

12a
==
Hence a is a multiple of 5. Putting a = 5 gives m = 12. Putting a = 10 gives
m = 24 and then Mary could vote. Hence Anne is 5. (Unless both Anne and
Mary are 0.)

10. Let a and b be numbers of records that Andy and and Bob sold at the full
price of £5. Letting p stand for the unknown lower price we have the equation

5a + (30 — a)p = 5b+ (40 — b)p (1)

= B80-—a—40+b)p=50b—a)=(b—a—10)p=5(0b—a)
(104 ¢)p —5c =0, wherec=a—b

c(p—5)=-10p=c= &
S5—p
The only integer values of p with 1 < p < 4 that give integer values for ¢ are
p =3 (c=15) and p =4 (c = 40). For p = 4 however we have a — b = 40 so
that a = 40 + b, which is not possible as Andy only had 30 records to sell. For
p = 3 we have a = 15+ b. The common sum received is 2a + 90 = 2b 4 120.
Since b > 0 the least they could have got is £120.

Problem Set 3

1. The positive integers k < p™ that are not relatively prime to p" are
p,2p,3p, -+ p™ " 'p and so G(p™) = p™ —p™ =t =p"H(p - 1).
2. Let the prime decomposition of k¥ be k = p! ---plr. Then by Question 1
we have
o(k) = ¢(py") -~ (o)) = W1 p" (ps — 1)
=T p (1 - ) = KTy (1 ),
i Di



Comment This formula shows that ¢(n) can be calculated just from knowledge
of the set of prime divisors of k. The full prime decomposition is not required.

3. n=pg=3x11=33. ¢(n)=(p—1)(¢—1)=2x10=20. Sincee =7
is not a factor of 20, e satisfies the given criterion.

4. We need to solve 7d = 1 (mod 20) so that 7d = 21 (mod 20) whence
d = 3 (mod 20) so d = 3 is the required least residue solution.

5. 62 =36 = 3 (mod 33); 6* = 32 =9 (mod 33) so that

Me=6"=6"x62x6=3x9x6=27x6=(—6)x6

= —36 = —3 = 30 (mod 33).

Hence Bob’s transmission is 30.
6. Since ed = 1 (mod ¢(n)) we may write ed = 1 + k¢(n) for some integer
k. Then

Med = MAFROM) = A (MO = M- 1F = M (mod n).
7. In this case M° = 30 (mod 33) so that
M = M =30 = (—3)® = —27 = 6 (mod 33).

Hence Alices recovers Bob’s plaintext message M = 6.

8. We have n = pg = 23 x 47 = 1081 and e = 15 is given. Bob transmits
7715 (mod 1081). Now 772 = 5929 = 5 x 108a + 524 = 524 (mod 1081);
77 = 5242 = 274,576 = 254 x 1081 + 2 = 2 (mod 1081); 778 = 22 = 4 (mod
1081). Hence

T =T x 7T X T2 x 77T =4 x 2 X 524 x 77 = 616 x 524 = 308 x 1048

=308 x (—33) = 924 x (—11) = (—157) x (—11) = 1727 = 646 (mod 1081).

Hence Bob’s transmission is 646.

9. First, ¢(n) = (p—1)(¢—1) = 22x46 = 1012. We solve ed = 1 (mod ¢(n)),
which is 15d = 1 (mod 1012). We note for the information in our calculation
that 1012 =4 x 11 x 23.

15d = 2025 (mod 1012) = 3d = 405 (mod 1012) = d = 135 (mod 1012).

And so the final ingredient in Alice’s private key is d = 135.
10. Alice needs to calculate M°? (mod n), which is to say 6463 (mod 1081).
Working modulo 1081 throughout we get 6462 = 417316 = 386 x 1081 +50 = 50;

6461 = 507 = 2500 = 2 x 1081 + 338 = 338;

646° = (646")? = 338% = 114244 = 105 x 1081 + 739 = 739;
646'0 = (646%)% = 739% = 546121 = 505 x 1081 + 216 = 216;
646'% = (646'%)% = 216° = 62* = (6*)° = 1296° = 215° = (46225)3



= (42 x 1081 + 823)° = (—253) = —17173512
= 15886 x 1081 — 746 = 335.
Hence 6463 = 646'2% x 646* x 6462 x 646 = 335 x 338 x 50 x 646
= 113230 x 32300 = (104 x 1081 4 806)(29 x 1081 + 951)
=806 x 951 = (—275)(—130) = 35750 = 33 x 1081 + 77 = 77;

therefore Alice recovers Bob’s plaintext message as M = 77.

Problem Set 4

1. Since A # 0 (mod p) we can multiply through by A’ where AA’ = 1 (mod
p) to get an equivalent equation 22 + A’Bx + C = 0 (mod p). If A'B is even we
may now complete the square:

A’'B

(o4 50" = ()
2

( 5 )" = C (modp)

to get an equation of the form y? = a (mod p). On the other hand, if A’B is odd,
then A’B = A’ B+p (mod p) and the latter is even and we can proceed in the same way to get:

A'B + A'B +
(z+ Tp)z = (Tp)z — C (mod p).

2. First we solve 2a = 1 (mod 7), which gives a = 4 (mod 7). Hence,
multiplying through by 4 and working modulo 7 we have

20 +3x+1=a’+5x+4=2>—-22+4=0 (mod 7)

= (r—1)2=-4+1=4 (mod 7).
sr—1=42=2x=3 or—1.
Hence the least residue solutions are 3 and 6.

3. First we solve 3a = 1 (mod 7), which is 3a = 15 (mod 7) so that a = 5
(mod 7). Hence, multiplying 322 + = + 4 by 5 we have modulo 7:

=22 -1=0=(z—1)*=1+1=2 (mod 7)

=z—-1=3o0r4d (mod 7)=2=4 orb (mod 7).

Hence the solutions are 4 and 5.

4. Given that r?2 = a (mod p) it follows that p — r is also a solution as
(p—r)2 =p*—2pr+7? =r? = a (mod p). Moreover p — r is a new solution for
if r =p—r (mod p) then 2r = p =0 (mod p) and so r = 0 (mod p), which is
not the case as a #Z 0 (mod p).



Next suppose that s2 = 0 (mod p) for some least residue s. Then r? — 5% =

(r —s)(r+s) =0 (mod p) so that p is a factor of r — s or r + s. Since r — s
are least residues it follows that either r — s = 0 so that s =7 or r + s = p so
that s = p — r. Hence there are either no solutions or exactly two least residue
solutions to 22 = a (mod p).

5. For a prime p we have ¢(p) = p — 1 so that if p is not a factor of a then
a?® =1 (mod p) becomes a?~* = 1 (mod p) so that a”? = a (mod p). On the
other hand, if @ = 0 (mod p) then a” = 0 (mod p) also so that, in any event,
a? = a (mod p).

6. Since p is odd, p—;l is integral. Let a®= =r. Then by Question 5

r? = (aprl)2 =a’"!' =1 (mod p)

so r = +1 (mod p).
7. Here p—;l = L;l =15 and a = 7. Now working mod 31 we have
72 =49=18, 7 =182 =324 =14, 78 = 14> = 196 = 10 (mod 31)

= 7' =10% = 100 = 7 (mod 31)
= 7% = 1 (mod 31)

and so, by the Euler criterion, 7 is a quadratic residue mod 31.
8.
22 =7=38=69=100=10? (mod 31)

= 2z = +10 (mod 31),

soxz =10 or x = 21.

9.
22 =41 =102 = 163 = 224 = 42 x 14 (mod 61)
:(2)2514575:52X3(m0d 61)
= (—)?=3=64=8 (mod 61)
4x5

= 2% = 4% x 5% x 8% (mod 61)
= 2 =+44x5x8=+160 = £38 (mod 61),

so that x = 38 or z = 61 — 38 = 23.
10. The equation ab = r (mod p) implies that

p—1_ p—1

(ab)"T =a"T b"T =r"7 (mod p) (2)

and since a is a quadratic residue this is equivalent to

p—1

VT =t (mod p),

and so for b to be a quadratic residue,  must be a quadratic residue. Conversely,
-1
if r is a quadratic residue then so is ab and then, since a“z =1 (mod p), the



same must be true of b. Therefore b will be a quadratic residue if and only if r
is a quadratic residue.

Problem Set 5

1. If one of the equations z? = a (mod p), 22 = b (mod p) has a solution

then so does the other (the same solution) as a = b (mod p).

2. Let r be the least residue of a (mod p). Then 22 = r? (mod p) has the
two solutions x = +r and since a® = r? these are also solutions to 72 = a? (mod
p). Therefore (a?/p) = 1.

3. Since (a/p) = 1 if and only if "t =1 (mod p) it follows that (a/p) =
a’z (mod p). Hence

p—1_ p—1

(ab/p) = (ab)"= = a"T b"%" = (a/p)(b/p) (mod p).
Now we need only note that both sides of this congruence are equal to +1 and
since p is an odd prime, 1 = —1 (mod p) is impossible. Therefore we conclude
that (ab/p) = (a/p)(b/p).

4. By Question 1 and then 2 we have (19/5) = (4/5) = 1; (=9/13) =
(4/13) = (22/13) = 1.

5. We want (85/97) = (5 x 17/97) = (5/97)(17/97). Now, since 5 = 1 (mod
4) by the QRT

(5/97) = (97/5) = (2/5) = —1

the last equality be found by inspecting cases or using the given rule for (2/p).
On the other hand, again by the QRT

(17/97) = (97/17) = (12/17) = (3/17)(4/17) = (17/3) x 1

=(2/3)=-1

hence (85/97) = (—1)(—1) and so the congruence has solutions.
Comment Another calculation route uses the result of Question 6:

(85/97) = (—12/97) = (—1/97)(3/97)(4/97) = (—1/97)(97/3) x 1

= (=1/97)(1/3) = (=1/97) x 1 =1

since 97 = 1 (mod 4).

6. By Euler’s criterion (—1/p) = (—=1)*=" (mod4). Hence (—1/p) = 1 if and
only if p—;l = 2k say, whence p = 4k + 1, which is to say if and only if p = 1
(mod 4).

7.

(3201/8191) = (3/8191)(11/8191)(97/8191);

10



but since 8191 = 3 (mod 4) we have by the QRT:
(3/8191) = —(8191/3) = —(1/3) = —1;
(11/8191) = —(8191/11) = —(7/11) = —=(—(11/7)) = (4/7) = 1;
(97/8191) = (8191/97) = (43/97) = (97/43) = (11/43)
= —(43/11) = —(—=1/11) = —(—1) = 1.
-.(3201/8191) = (—1)(1)(1) = —1.

Hence there is no solution to the quadratic congruence x? = 3210 (mod 8191).

8.
(14/31) = (2/31)(7/31) = (=1)(=(31/7) = (4/7) = 1.
2 =14 =45=3% x5 (mod 31

)
= (5)2 =5=36 =6 (mod 31)

= % — 46 (mod 31)=z = +18 (mod 31)

so that the solutions are 13 and 18.

9.
(p/q) = (g +4a/q) = (4a/q) = (4/9)(a/q) = (a/q)
(a/p) = (p — 4a/p) = (=4a/p) = (4/p)(=1/p)(a/p) = (=1/p)(a/p).
Now if p = ¢ =3 (mod 4) then (—1/p) = —1 and by the CRT
(a/q) = (p/q) = —(a/p) = —(~1)(a/p)

so that (a/p) = (a/q) in this case. Since p = g (mod 4) the only other case is
when p = ¢ =1 (mod 4) then

(a/q) = (p/q) = (¢/p) = (1)(a/p)

(1)
and so again (a/p) = (a/q). In both cases then (a/p) = (q/p).
10. Here 159 = 3 x 53. We wish to solve 22 = 211 = 52 (mod 159). Since
159 = 3 x 53, we have 22 = 52 (mod 3) and 2? = 52 (mod 53). Taking the first
of these congruences:

> =1 (mod 3)=2z = 1,2 (mod 3).

Putting = = 3¢ + 1 and substitute into 22 = —1 (mod 53) so that modulo 53 we
have
(143t =-1=9>+6t+2=0;

9a =1 (mod 53) implies the multiplier a = 6 so
t2 436t +12 = (t +18)* = —12 + 324 = 312 = —6 (mod 53)

= (t +18)% = 100 (mod 53)

11



=t+18=100r 43 =t = 250r 45
=x=3t+1="T760r136.

Alternatively, we put = 3t + 2, we have modulo 53
(2+3t)2=—1=9t> 4 12t + 5= 0;

=1t +72t+30=0
= (t+36)% = 1266 = —6 = 10* (mod 53)
= t+4 36 = 10 or 43 (mod 53)
=t="7or 27
= x =23 or 83.
Hence the full set of solutions is {23,76,83,136}.

Problem Set 6

1. Suppose to the contrary that (O, %) were countable so there exists a
bijection f : N — (0,4). Then 2f : N —(0,1) is a bijection, which gives
the contradiction that (0,1) is countable. It follows therefore that (0, 1) is an
uncountable set.

2. Since each A; is countable, the members of A; may be listed as
al,i) a2,ia T aj,i) Tt

Let By, = {a;; : i+ j =m}, m = 2,3,---. Now each B, is finite and indeed
we may list the members of B, as a1, m—1,02,m—2," ", am-1,1. We can define a
list of the set B = |J;._, By, by listing all the members of By then of Bs, and
so on. This shows that B is a countable set but clearly B = A so that A, the
union of countably many countable sets, is itself countable.

3. Since Z C Q and a subset of a countable set is countable, it is enough
to prove that Q is countable. After the fashion of Question 2, let B,, = {g €
Q' :p+qg=m} (m > 2). Again since each B,, is finite and the union of all the
B,, is a countable union of countable sets, it follows that Q is countable. Since
the mapping © — —x defines a bijection from the positive to the negatives
rationals, it follows that the latter set, Q~ is also countable. Finally then
Q=QtuQuU {0} is the union of three countable sets, and so Q is countable.

4. Suppose to the contrary that I was countable. Then by Question 3, Q is
a countable set and so R = QU I would be countable, it being the union of two
countable set. However then (0, 1), being a subset of a countable set, would also
be countable. This is a contradiction so we conclude that I is not a countable
set.

12



5. It is enough to prove the result for n = 2 for given this there is an obvious
bijection between A = A7 X Ag X -+ X A, and (A1 X Ay X -+ X A1) X A,
and by induction and the n = 2 case, it follows that A is countable. Since A;
and A, are countable their members can be listed as ay,as,--- and by, bo, - - -
respectively. We can then write A; X As as the countable union of finite sets
B,, where By, = {(a;,b;) :i+j=m} m=2,3,---.

6. The members of the infinite product P = A x A x A X --- consist of all
infinite binary strings. There is then a bijection from P into [0,1) by which the
binary string (1,2, --) is mapped to 0 - e1£2 - - - taken as a binary expansion
of the correpsonding real number. However [0,1) contains the uncountable set
(0,1) and so [0, 1) and therefore P also, is uncountable.

7. For each b € f(A), choose a € A such that f(a) = b. The mapping
g : B — A by which b — a is then a one-to-one function from B into A. If
B were uncountable, then so would be its bijective imaged, g(B) C A so that
the containing set A would be uncountable as well. This contradicts the give
hypothesis that A is countable, so we conclude that the range of a function from
a countable set is itself a countable set.

8. Yes. Since BN C is a subset of the countable set C, it follows that BN C
is countable. Then A U (B N () is the union of two countable sets, and so by
the result of Question 2, AU (BN C) is countable.

9.The direct product of two uncountable sets A, B is uncountable, for if
A x B were countable, so would be the subset S = {(a,b) : a € A} where
b € B is a fixed member of B. However the projection mapping (a,b) — a
is a bijection from S onto A, and this would give the contradiction that A
were countable. (In fact this argument shows that the direct product of an
uncountable set and a non-empty set is uncountable.) In particular, since R is
uncountable (as it contains the uncountable open interval (0, 1)), it follows that
R x R is uncountable. Now observe that the mapping whereby a + bi — (a,b)
is a bijection from C onto R x R, and so both sets are uncountable.

10. Let P, denote the set of polynomials with rational coefficients of degree
at most n. Then the mapping whereby ap+ajx+-- -+ a,z™ — (ag, a1, -+, an) is
a bijection from P, into the n-fold direct product Q xQ x - - - x Q of the rationals.
By Question 5, it follows that P, is countable. Now each p(z) € P,, has at most
n roots. Hence the set of all real numbers that are roots of polynomials in P,
can be listed by listing all members of P, as pi,pe,--- and forming a list of
their roots by listing all the roots of p;, then of ps, and so on. It follows that
the set of real numbers R, that are roots of polynomials in P, is countable.
Finally, the set A of all agebraic numbers is the union A = |J7~, R, and so A
is countable by Question 2, A is a countable union of countable sets.

Finally, by definition, R is the (disjoint) union of A and T, the set of all
transcendental (ie non-algebraic) numbers. If T were countable, then R = AUT,
being the union of two countable sets, would be countable. We know this is not
the case so it follows that 7" is an uncountable set.

Comment We have thus shown that the set of transcendental numbers is
uncountable without identifying a single one of them! The result has been
proved just through comparing various sets with one another and seeing whether

13



they can or cannot be put into one-to-one correspondence. The transcendentals
is an obscure club - the famous numbers e and 7 are members but this is a fact
that either openly reveals!

Problem Set 7

1. By inspection of the first few values of u,, we may try to prove inductively
that u,, = 2™ — 1. Certainly this gives ug = 0 so let us assume that the formula
holds for some value of n > 0 and examine u, 1. We get

Ung1 =2u, +1=202" —1)+1=2"" —2 41 =211

and so the validity of the solution is established by induction.
2. Put u,, = Aw™ into the give recurrence relation we get

A" = Aw" + A" = w? —w -1 =0;

S

solving we get w = %‘/5 It follows that u, = Ajw} 4+ Aswl, where w; = 1%

2
and wy = 1’2\/5 satisfies the Fibonacci recurrence. Putting ug = 0 and u; =
then gives the equations:

1

Ap+ A2 =0, Aywy + Agwz = 15
putting As = —A; = — A say we then have:

1+v56 1-V5
2 2

1 ., 1+5

1
)=1= A= — and so

A( NG

1-+/5

fn:ﬁ[( 2 )ni( 2 )n}’n:071’27'”
3' n+1 n+1
lim frt1 — lim u,
n—oo  f, n—oo Wl —wy

since [[ws| < 1 and |w;| > 1 it follows that this limit is w; = 2£¥2 5o that the
Fibonacci sequence is asymptotically a geometric sequence with common ratio
equal to the golden ratio.

4. The given substitution yields the equation
pAw™ T — Aw™ + qAw" ! = 0= pw? — (p+Qw +q =0,

= (w-1Dpw—q)=0=>w =1, we =

hSHES

so candidate solutions are u, = A1(1)" = 4; and u, = As( )n, n=0,1,2,---.

hSRISY
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5. Put u,, = A1 + AQ(%)” into pun+1 — Uy + quy—1to obtain:

[pA14-pA2(%)"+T-—[A14-A2(%)"]+[qA¢-FqA2(%)"_T

which, since p + ¢ = 1 simplifies to

2
-1
AQ(g)n [q— _ 1 +q] =0
p p p
as required because the inside bracket equals
—q+pg _ale—V)+ps _ —pa+pq _
b b b

0.

6. From our general solution u, = A; + Ag(%)" we put ug = 0 to get
Ay + As =0, so that we may write Ao = —A;. Next putting u; = 1 gives,

1
el A= ——

I
3

Ay — Al(%) , hence

L @
(oY ey«
=) ¢ -1 (¢
7. We seek a solution of the form w, = A; + Asn, which we verify does
satisfy the recurrence:

Un+1 + Up—1 - Al + (TL + 1)142 + A1 + (n — 1)A2

2 2

o 2A1 + 271142

B 2
Putting ug = 0 gives A; = 0 and then u; = 1 gives A3l =1 so that As = %, our
required solution is thus u, = 7.

8. From Question 5 we have that the suggested augmented solution has the
form

= A + Asn = u,,, as required.

vy = Ay + AQ(%)” + kn.
We require that pv,4+1 — v, + qu,—1 return the value —1 so that k must satisfy:
pk(n+1) — kn+ gk(n — 1) = —1 so that

pkn+pk —kn+qgkn—qgk=—-1= (p+q—Dkn+ (p — )k = —1

15



and since p + ¢ = 1 we conclude that

1
k=——m:
q—p
Giving the general solution:
n n
’Un:A1+A2(g) + .
p q—>p

9. The suggested candidate for solution has the form v, = A; + Ayn + kn?.
Hence we require that substituion of v, = kn? into the expression puv, 1 — v, +
qUn—1 yields —1, which is to say:

k/’(”"'l)Q 2
-~k -~ 7
2 T
=k(n®*+2n+1-2n*+n?> -2n+1)= -2
=2k=-2=k=-1,

giving as our general solution v, = A; + Aon —n?n =10,1,2
10. Given the initial conditions that vg = v; = 0 gives the equations 43 =0
and Ayl —12 = 0 so that Ay = [. Hence our particular solution is v,, = In —n? =

n(l—n),n=0,1,2,---

Problem Set 8

g(z) = @) (1 +a+a2+-)° = xm(ﬁ

)5
and so we require the coefficient of 2"7!° in the expansion of (1 — z)~°. By
putting n = 5 in the given identity we obtain

(7’ - i0_+13 - 1) _ <Tr_160) (- 6)(r - 7;55 —8)(r—9)

2. Here we want the coefficient of 2572 = 2 in (1 — 2)719; putting r = 6
and n = 10 then gives:

(6+10—1)(15)15><14><13><12><11><10

6 6 6x5x4x3x2 = 5005.

3. Our generating function here is (1 4+ 2 + 22 +--)2(1 + 22 + 2% +--.) =
(1 —2)72(1 — 22)~L. The generating functions in this product are respectively

Z(T+2—1)T: ir‘i‘l 7"+2 ix%",
= r=0

r=0

16



Denoting the corresponding coefficients by a; and b;, we require agbig + a1b” +
. -+a10b0. Since b2i+1 = 0and bgi = 1 this simpliﬁes to ag+az+as+agt+ag+aig.
Hence we obtain

1464154284454 66 = 161.

4. Here we want the coefficient of z!2 in the product

1—2°

g(x):(1+x+z2+z3+z4)5:(

5
1—:1:)

—(1- (‘;’)xE’ + (2)x10+~~)(1+ <?>z+ (g)ﬁ ++<Ti4>xr+m)

so the required coefficient is

16 11\ /5 5\ /6 16-15-14-13 _11-10-9-8
(12) - <7> (1) * <2) (2) - 24 =9 24 +10-15

= 1820 — 1650 4 150 = 320.

5. In this case g(z) = (14)*°(14+2+2°) and we require the coefficient of z1°.
Again this has the form agbis + a1b14 + - - - + a15b9. However, bg = by = bs = 1,
all other b; = 0. Hence we require just

o (19), (19) (19
@15 T AT a0 = | 4 14 10)°

6. Here we require the coefficient of 22° in the generating function:

gx)=Q+z+2"+- 421 +az+2>+ ) =1 —a2) 7 (1-2");

in this case this gives a sum of products of the form

25+7—1 4+7-1 31 20
a14b11 + ags5bp = 25 - 14 “\os) " \ua)

7. Here we require the coefficient of 2?° in the generating function
g(x) = (2 +2® + 2* + 2° + 25)7 = 2" (1 + 2 + 2% + 2° + 2*);

25-14 _ .11 ;

so we just need the coefficient of x 't in

(111325)7: (1— (Dx5+(g)x10+...)(1+ (1J{6)x+---+(ri_6)ﬂ+---)

i () () ())

8. Again it’s the coefficient of 22° this time in

9@) = (@ + 22+ + 250 = 200 £ o4+ 4 27)10,
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which is the coefficient of 2210 = 15 in

(1f)w(1fﬂ%1+<1j%x+.~+<f+%xr+~o

() () ()

9. The exponential generating function is in this case

which is

z?2 28

3 3

9) = (ot Grbgrae = -0
The coefficient of z” in this case is the number of ways of putting r distinct
objects into 3 distinct rooms in a particular order. Since we are not interested
in the order in which the people enter the room in our problem, our answer will

in general be <+. Continuing we have

g(x) = €3 — 3e* £ 3" — 1 =
(o] T:L'T o0 T:r,r [e ] :L'T
=D 3-8 2 3Y -
r=0 r=0 r=0
=Y (3 -3 2+35 -1
—o0 T

in particular, the coefficient of ””2—;5, is 325 — 3.2%5 + 3.

10. The exponential generating function for this problem is

2 4 3 5 2

_ ¢ x > x x 5
glo) =t gt gqp F et gt gt ) tet g
1 1
= 5(696 + 671)5(6z —e M)eTe”
_ 1 2x —2x 2x\ 1 4x
- 4(6 € )(6 )_ 4(6 1)

It is the exponential generating function that is required as the ordering of the
repetitions of a particular digit within a particular choice of set of places for
that digit does not matter. Hence we require the coefficient of 7 in g(«), which

e Loogr — yr—1
is 7-4"=4""".

Problem Set 9

1. Let A; be the set of hands with a void in spades, and similarly define

As, Az and As. We have N = () and [A;| = (7)), |44y = (¥), |AiA;Ax| =
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(13) while a void in all suits is impossible. Hence we obtain:

5
o 52 39 26 13
A1 AsAsAy| = —4 6 —4 .
st = (5) =) +o(5) -1 (5)
Comment In general, S is a sum of (2) different k-tuple intersections of the

n A;’s. To find |4; U--- U A,| we just note that this set is the complement of
the intersection of the complements and so

[AiUAs U UA,| =851 —S24+ S35 — -+ (—1)"S5h.

2. Here we have N = 610, Let A; denote the set of rolls in which the
number i does not appear, 1 < i < 6. Then |A;| = 5'°, and S; = 6 - 5!°. Next
|A;A;| = 410 and so S, = (5)4!°. In general [A;, -~ A;,| = (6 — ¢)¥° so that
Sy = (f) (6 —t)19. Hence

|A;---Ag) =610 —6-519+15.41° - 30310 4 15. 210 —¢.

3. Here we have NV = 10™. Let A; be the set of sequences in which 7 is absent
(t=1,2,3). Then S; =3-9", S; =3-8" and S3 = 7" and we have

|A1 Ay Az| = 10" —3-9™ +3-8" — 7"

4. Let A; be the set of distributions with a void in box i (1 < i < 5).
Here we require to know |A; U---U As| =51 — S2 + S5 — Sy + S5. In general,
Sy = (i’) (5—1t)" so we obtain:

5-4"—-10-3"4+10-2" — 5.

5. We require the coefficient of 22° in the generating function

6
1—:1:)

(16x9+<g>zl8~~)(1+<?>z+~~+<Tj5>:ﬂ+~~),

so the required coefficient is

(o) ~o(21) +5(3)

6. Let our universe U be the set of all non-negative integer solutions and
let A; be the subset of integer solutions in which z; > 9. Hence N = |U| =

(5 1) = ()~ Next |4y = (P0507771) = (1) and |4i4;| = (#507515") =

(;) Intersections of more than two of the A;’s are empty. Hence we again find

our answer is o 16 .
— 1 .
(an) —o(11) +12(3)
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7. Our universe is the set of all permutations on an n-set so that N = n!
Let A; be the subset of solutions where lead i is correctly plugged into socket
i. Then |A;| = (n — 1)! and in general |A;, --- A;,.| = (n — k)! We see therefore
that S = (})(n — k)! Hence we get

Hence the required probability is

no ok
Dn/nlzz%.

k=0

8. Note that 22 =11+ 24 — L +... + E° which is the first n + 1
terms of the series for e ~ 0-366. Since this alternating series converges very
rapidly, for all but small n the proportion of derangements is very close to %

9. Using the expression of Question 7 we get

n—1
—1)k
nDp_1+ (—-1)" =n! ( k') +(-1)"
k=0 ’
n 1 k
=nl (=1) =D,

k=0

10. To start the induction we note that 1 = Dy =1- Dy + (—=1)? as D; =0
so the recursion holds for n = 2. Using induction and then invoking Question 9
we then get for n > 3

(TL — 1)(Dn,1 —+ Dn,Q) = TLDn,1 + (n — 1)Dn,2 — Dn,1

=nDp_1+ (Dpy1 — (=1)" Y)Y =Dy =nD,—1 + (=1)" = D,,.

Comment Alternatively we can argue that the collection counted by the D,,
is the union of two mutually exclusive types as follows. Given a derangement «
of X,,—1 choose i € X,,_1 ((n — 1) choices) and define a derangement o’ on X,
by putting ia/ = n, na’ = ia and «, with o/ agreeing otherwise. This process
is one-to-one so this gives (n — 1)D,,_1 derangements of X,,. Next, choose a
point i € X,_1 ((n — 1) choices) and let a be a derangement of X,_; \ {i}.
Define a derangement o’ of X,, by putting i« = n and na = i with o and
o agreeing on X, \ {i}. Again this process is also one-to-one so provides
a further (n — 1)D,,_o derangements of X,,. Furthermore no derangement on
X, can arise from both of these processes and so pooling the two types gives a
total of (n —1)(D,—1 + Dy,—2) derangements of the n-set X,,. This exhausts all
the derangements of X, for any such derangement is the outcome of one of the
other of these processes. Hence D,, = (n — 1)(Dy,—1 + Dj,—2).
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Problem Set 10

1. By inspecting triangles, rectangles and pentagons we see that C; = 1,
02:2811(2103:5.

2. Label the vertices of the (n + 2)-gon N by the integers 1,2, ---,n and
fix attention on the edge £ = 12. In any partition of N by non-intersecting
triangles, E' is the base of some triangle T, where k is the third vertex of Ty
(3 <k <n+2). The sides 1k and 2k split NV into an (n — k + 4)-gon and
a (k — 1)-gon respectively. Each of these can, independently of the other, be
partitioned into C),_xto and Cj_s triangles, so the total number of ways this
can be done is the product Cy_3C,,_+2. Summing these products over k gives:

n+2 n
Cn =2 Cr-3Cn-rs2= ) Cr-1Cnp.
k=3 k=1

3. The number of ways of choosing m balls from a collection of n red and
m blue labelled balls is a sum, from k = 0 to k = n, of the number of ways of
choosing k blue balls and m — k red balls, which in symbols is:

S0 - (30 wem

4. For n = 1 we have (f) =2= (71—,%)(74)1 to start the induction. Next

assume the formula holds for some n > 1 and consider inductively the (n+1)
case:

2n+1) (@2n+2)@2n+1) (2n) 2(2n+1).(_%)(_%)'“(_2%—71)(74)71
(n+1(n+1) (n+1)2 nln!  n+1 n!
2n+1 (—=3)(=3) (=) .,
T e e - e
(C3)(=3) - (B

and so the induction continues, thus establishing the result.

5. We need to show that the coefficient of 2™ in the expansion of (1 — 4x)
matches that of the answer of Question 4. But by the binomial expansion we
get:

_1
2

o (_1y(_3)...(_1_p
(174z)7%:2( 2)(=3) (=3 +1)(74:c)”

n!
n=0
and since f% —n+1= ’1*22”” = — 2”;1 we see that the coefficients do indeed

match.
6. The coefficient aj, of 2* in the series for g(z) = /1 — 4x is (Qkk) Hence
the coefficient for 2" in (g(z))? is apan + a1an_1 + -+ + anag. On the other
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hand the coefficient of 2" for the geometric series (1 — 4z)~! is 4. Hence we
obtain the required identity in the form:

2 () -

k

7. )
S () [ [
— 0 0o V1—4a?
:¢‘§: <2n) 1@n+1}§ ::lt/ﬁ du
«\n/)t2n+1 2o VIi—u?
= /2n 1 1o 4 41
;$7;J<n>42n+1(2n+1)§[sm ulg
= 1 2n 1 T m
=) =2sin"H(2) =2 = = —.
712_()42”(2n+1)(n) sin = (3) 6 3
8.

(h(@))* = (Y Cra™);
k=0

the coefficient of z* in this square is CoCy + C1Cx_1 + - -+ + CrCy = Cr11 by
Question 2 . Therefore (h(z))? = Y 5o, Cry12F.
9.

2(h(x))® = Crpaa?t =" Cpa® = h(z) -1
k=0 k=1

sz((h(x)? = h(z) +1=0.
Solving this as a quadratic in the unknown h(z) gives

1+ V1-—dx

2z

h(z)

note that, for the positive sign, the limit as « | 0 of this expression is +o0o while
Co = 1. Hence it is the negative root (which has the correct limiting behaviour)
that we want:

M) = L2
10.

1 y_1 Ly_1ly_3
h(@:%(y[u%(% )+(2);! 2 (zpe 1 (2 §!)( D (ay))
1 1y(3 1y(3Y...(2n=1
- (G + e B ey B g



4" x 1 x3x5x---x(2n—1)

-1 202 4 ... n
+ X+ 207 4+ 2+ 1)! x"+
1 2" x1x3x---x(2n—1
- 2" x1x3x--x(2n—1)
n+1 n!

- n—lu ' EZL)); n—1|—1<2:>
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