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Solutions and Comments

Problem Set 1 Approximations

1.

f(x) = x−1 ⇒ f ′(x) = − 1

x2
; and f ′(12 ) = −22 = −4.

Also f(12 ) = 2. Hen
e

L(x) = 2 + (x− 1

2
)(−4) = −4x+ 4, orL(x) = 4(1− x).

2. V = 4
3πr

3 ⇒ V ′ = dV
dr = 4πr2. Hen
e V ′(5) = 4π(52) = 100π and we

obtain the de
rease in volume V (5)− V (4 · 92) is approximately equal to:

V ′(5)× 0 · 08 = 8π = 25 · 13 
m3.

3. f(x) = x
1
2 ⇒ f ′(x) = 1

2x
− 1

2
. Hen
e f ′(25) = 1

2
√
25

= 1
10 . Therefore

√
26 ≈

√
25 +

1

10
(26− 25) = 5 + 0 · 1 = 5 · 1.

(Note that (5 · 1)2 = 26 · 01).
4. Here we have h = b−a

n = 2−1
8 = 1

8 . Also xi = 1 + i
8 = 8+i

8 . Hen
e

yi = f(xi) =
1
xi

= 8
8+i (1 ≤ i ≤ 8). Hen
e the value of S8 is given by:

1

24

[

1+ 4
( 8

8 + 1
+

8

8 + 3
+

8

8 + 5
+

8

8 + 7

)

+2
( 8

8 + 2
+

8

8 + 4
+

8

8 + 6

)

+
8

8 + 8

]

=
1

24

(

1 + 4
(8

9
+

8

11
+

8

13
+

8

15

)

+
(8

5
+

8

6
+

8

7

)

+
1

2

)

=

= 0.693154...

This 
ompares with the exa
t value ln 2 = 0 · 693147....
5. We have f ′(x) = −x−2

, f ′′(x) = 2x−3
, f (3)(x) = −6x−4

, f (4)(x) =
24x−5

. Hen
e on [1, 2] we have |f (4)(x)| ≤ 24
15 = 24.

6. The error term in S8 is therefore bounded by

24×(2−1)5

180×84 = 1
15×4×83 =

1
30,720 = 0 · 0000326 (3 sf).

Comments Named after Thomas Simpson (1710-61), the rule is a staple of

mathemati
al engineering. It is however a form of the three-point Newton-

Cotes quadrature rule and similar rules were used by Kepler a 
entury before

Simpson. Simpson's rule works by approximating the 
urve by a parabola that

mat
hes the 
urve at the endpoints and the midpoint of ea
h interval. A simpler

rule, the Trapezium Rule, approximates the 
urve by the straight line between

endpoints but this is generally less a

urate, although the Trapezium rule 
an

give ex
ellent results for periodi
 fun
tions a
ross a period.
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7. The exa
t answer in this 
ase is [x5]10 = 1. The Simpson's estimate is:

S4 =
1

12
(0 + 4(

5

256
) + 2(

80

256
) + 4(

405

256
) + 5) = 1 · 00260;

hen
e the exa
t error is 0·00260. Now f (4)(x) = 120we takeK = 120, (b−a) = 1
and h = 1

4 to get as our error bound:

|ES | ≤
120(1)

180
(
1

4
)4 =

1

384
< 0 · 00261.

8. First observe that f(1) = 1−1−1 = −2 < 0 while f(2) = 8−2−1 = 5 > 0
so that there exists at least one root r in the interval (1, 2). We also have

f ′(x) = 3x2 − 1, so the Newton-Raphson formula be
omes

xn+1 = xn − x3
n − xn − 1

3x2
n − 1

=
2x3

n + 1

3x2
n − 1

.

Putting x0 = 1 ·5 we get (just re
ording to 4d.p.) as the su

essive values of xn :
x1 = 1 ·3478, x2 = 1 ·3252, x3 = 1 ·3247, x4 = 1 ·3247, x5 = 1 ·32471795724 · · · .
We �nd that f(x5) equal 0 to 10 de
imal pla
es, so r = 1 ·32471795724 rounded
to 10 de
imal pla
es.

9. We use f(x) = x3 − cosx. We get from the Newton-Raphson formula:

xn+1 = xn − x3
n − cosxn

3x2
n + sinxn

=
2x3

n + xn sinxn + cosxn

3x2
n + sinxn

.

Starting with x0 = 0 · 8, the su

essive approximations (to 4 d.p.) are x1 =
0 · 8700, x2 = 0 · 8655 = x3 = x4, x5 = 0 · 865474033102 · · · . We �nd f(x5) =
0 · 00 · · · equals zero to 12 de
imal pla
es, so r = 0 · 865474033102 · · · is our
approximate root satisfying r3 = cos r.

Comment The idea behind the method is to �nd better and better approx-

imations to a nearby root by 
al
ulating and re-
al
ulating the x-inter
ept of
the tangent to the 
urve at (xi, f(xi)): although 
onvergen
e is not guaranteed,

typi
ally the number of 
orre
t digits in the approximation in
reases by 2 on

ea
h iteration.

10. To four de
imal pla
es, the out
ome of hitting the 
osine button again

and again is the number c = 0 · 7391(≈ 42.37◦). When the display stabilizes at

c, we must therefore have c = cos c so that x = c is the (unique) solution of the

equation x = cosx.
Comment: The initial value t that you 
hoose hardly matters as, no matter

whi
h number t you sele
t, −1 ≤ cos t ≤ 1; sin
e cos 0 = 1 and cosx = cos(−x)
is always true, in e�e
t, after one iteration you have a new number, t′, in the

range cos 1 = 0 · 5403 ≤ t′ ≤ 1.
Finding a �xed point in this fashion will work with any fun
tion f(x) that

satis�es the inequality:

|f(x)− f(y)| < |x− y|.
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The fa
t that the 
osine fun
tion behaves this way stems from the property that

for x, y ∈ [−1, 1] we have | cosx − cos y| < |x − y|, a fa
t that 
an be dedu
ed

from the identity:

cosx− cos y = −2 sin(
x+ y

2
) sin(

x− y

2
).

Problem Set 2 Integration

1.

1

1− x2
=

1

(1− x)(1 + x)
=

1

2(1 + x)
+

1

2(1− x)
, Hen
e

∫

dx

1− x2
=

1

2

∫

dx

1 + x
+
1

2

∫

dx

1− x
=

1

2

(

ln |1+x|−ln |1−x|
)

+c =
1

2
ln
∣

∣

1 + x

1− x

∣

∣+c.

2. Put x = 1
2 sinhu so that dx = 1

2 coshu du and
√
1 + 4x2 =

√

1 + sinh2 u =√
cosh2 u = coshu as coshu > 0. When x = 0 and x = 1 we have respe
tive

values of u satisfying 0 = sinhu ⇒ u = 0 and 1 = 1
2 sinhu ⇒ u = sinh−1(2).

Therefore our integral be
omes:

∫ sinh−1(2)

0

2

coshu
· 1
2
coshu du =

∫ sinh−1(2)

0

du = sinh−1(2).

3. We have that sinhx < coshx so that the in
rement of volume by


ylindri
al shells is given by (πx2)(coshx − sinhx). Now coshx − sinhx =
ex+e−x

2 − ex−e−x

2 = e−x
. Hen
e we require

π

∫ ∞

0

x2(coshx− sinhx) dx = π

∫ ∞

0

x2e−x dx.

Drop the fa
tor π for the moment and integrate our integral I by parts with u =
x2
, dv = e−x dx ⇒ du = 2xdx and v = −e−x

so that I = −x2e−x +
∫

2xe−x dx.
Integrating again by parts in a similar fashion we obtain:

I = −x2e−x +
(

− 2xe−x + 2

∫

e−x dx
)

= −x2e−x − 2xe−x − 2e−x.

Evaluating between 0 and ∞ now gives the area A as:

A = −π
[

e−x(x2 + 2x+ 2)
]∞

0
= −π

[

0− (1(0 + 0 + 2))
]

= 2π.

4. One line of division immediately gives y = 2x+ 5x−3
x2−2x−3 . The denominator

fa
torizes as x2 − 2x− 3 = (x− 3)(x+ 1). Hen
e the graph of y(x) has verti
al
asymptotes at x = −1 and x = 3 and an oblique asymtptote in the line y = 2x
whi
h is approa
hed for large values of |x|.
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5.

5x−3
(x−3)(x+1) ≡ A

x−3 + B
x+1 . By the Cover-up method we get A = 5(3)−3

3+1 =
12
4 = 3 while B = 5(−1)−3

−1−3 = 8
4 = 2 : hen
e

5x− 3

x2 − 2x− 3
=

3

x− 3
+

2

x+ 1
.

6. From Question 4 and 5 we obtain:

∫

2x3 − 4x2 − x− 3

x2 − 2x− 3
dx =

∫

(

2x+
3

x− 3
+

2

x+ 1

)

dx =

x2 + 3 ln |x− 3|+ 2 ln |x+ 1|+ c.

7. By a standard identity we have

√

1+cos 2x
2 =

√
cos2 x = | cosx|. Hen
e

our integral be
omes

∫ π

0

| cosx| dx = 2

∫ π

2

0

cosx dx = 2[sinx]
π

2
0 = 2[1− 0] = 2.

8. Put u = 2− cosx ⇒ du = sinx dx; when x = 0, u = 2− 1 = 1, and when

x = π, u = 2− cosπ = 2− (−1) = 3. Hen
e the integral be
omes

∫ 3

1

du

u
= ln |u|

∣

∣

3

1
= ln 3− ln 1 = ln 3.

9. Integrate by parts by letting u = xm−1,

dv = e−x ⇒ du = (m− 1)xm−2 dx, v = −e−x.We obtain:

F (m) = −[xm−1e−x]∞0 +

∫ ∞

0

(m− 1)xm−2e−x dx = (m− 1)F (m− 1).

Hen
e

F (m)

F (m− 1)
= m− 1.

Comment The fun
tion F (m) de�ned above is known as the beta fun
tion,

a spe
ial fun
tion that arises throughout mathemati
s and physi
s. The beta

fun
tion allows for a 
ontinuous generalization of the notion of fa
torial to a

fun
tion on the real line.

10. Volume is given by

∫ 4

0

πy2 dx = π

∫ 4

0

x dx = π
[x2

2

]4

0
= π

[16

2
− 0

]

= 8π.

5



Problem Set 3 Limits

1.

lim
x→∞

3x3 − 18x− 1

−6x3 + x2
= lim

x→∞

3− 18
x2 − 1

x3

−6 + 1
x

=
3

−6
= −1

2
.

2.

lim
x→0

sin 7x

x
= 7 lim

x→0

sin 7x

7x
= 7 lim

y→0

sin y

y
where y = 7x

= 7 · 1 = 7.

3.

lim
x→0

1− cosx

x
= lim

x→0

2 sin2(x2 )

x
= ( lim

x→0
sinx)( lim

x→0

sin(x/2)

x/2
) = 0 · 1 = 0.

Comment : the limits of Questions 2 & 3 are required in order to show from

�rst prin
iples that (sinx)′ = cosx, from whi
h derivatives of all trigonometri


fun
tions 
an be got. The evaluation of sinx/x as x → 0 is found by a sandwi
h

argument based on asso
iated areas of triangles and 
orresponding se
tors of

the unit 
ir
le. Sin
e the expression in Question 3 is a

0
0 form, L'Hopital's Rule


an also be used: di�erentiating top and bottom gives an equal limit, whi
h is in

this 
ase: limx→0
sin x
1 = 0. However, this pre-supposes we have the derivatives

of trigonometri
 fun
tions to hand.

4.

lim
n→∞

(n(1 +
1

n
)− n) = lim

n→∞
(n+ 1− n) = lim

n→∞
(1) = 1.

Comment Must avoid the sloppy argument that 1 + 1
n → 1 so the limit is

n− n = 0.
5.

lim
x→0

x ln x = lim
x→0

lnx

x−1
= lim

x→0

(lnx)′

(x−1)′

= − lim
x→0

x−1

x−2
= − lim

x→0
x = −0 = 0.

Comment : here we are using L'Hopital's rule 
on
erning limits of indeter-

minant ratios and produ
ts. We also make use of elementary properties of

limits, those being that the operation taking limits 
ommutes with arithmeti


operations and with 
ontinuous fun
tions.

6.

y = lim
x→0

xx ⇒ ln y = ln( lim
x→0

xx) = lim
x→0

(lnxx)

= lim
x→0

(x ln x) = 0. Hen
e y = e0 = 1.
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7.

y = lim
n→∞

n
1
n ⇒ ln y = lim

n→∞
(lnn

1
n ) = lim

n→

lnn

n
= 0

⇒ y = e0 = 1.

8.

lim
n→∞

(1 +
1

2n
)n = ( lim

n→∞
(1 +

1

2n
)2n)

1
2 =

√
e.

Comment : we are making use of the standard limit of ex = limn→∞(1+ x
n )

n
.

9.

lim
n→∞

(
√
n+ 1−

√
n) = lim

n→∞

(
√
n+ 1−√

n)(
√
n+ 1 +

√

n)√
n+ 1 +

√
n

= lim
n→∞

n+ 1− n√
n+ 1 +

√
n
= lim

n→∞

1√
n+ 1 +

√
n
= 0.

.

10.

lim
x→0+

sin
√
x

x
= lim

x→0

cosx2

2
√
x · 1 = +∞.

Problem Set 4 Di�erentiation

1. y = cosh−1 x (x ≥ 1)so write

x = cosh y ⇒ dx

dy
= sinh y ⇒ dy

dx
=

1

sinh y

=
1

√

cosh2 y − 1
=

1√
x2 − 1

(x > 1).

Comment At x = 1 we have cosh−1(1) = 0 and the tangent line to the 
urve

y = cosh−1 x is verti
al, so no derivative exists.

2. We are given that

dr
dt = 0 · 1 and V = 4

3πr
3
, where r and V are the

respe
tive radius and volume of the bubble. Hen
e

dV
dr = 4πr2. By the Chain

Rule we get

dV

dt
=

dV

dr
· dr
dt

= (4πr2)(0 · 1) = 0 · 4πr2.

We require

dV

dt

∣

∣

r=0·8
= 0 · 4π(0 · 8)2 = 0 · 256π ≈ 0 · 8042 
m

3/se
.

3. Writing s for the separation of the lorries we have the equation s2 = x2+y2

where the x and y dire
tions 
orrespond to east and north. Di�erentiating with

respe
t to time and dividing through by 2 yields:

sṡ = xẋ+ yẏ ⇒ ṡ =
xẋ+ yẏ

s
.
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Now 6 minutes 
orresponds to

6
60 = 0 · 1 hours. We have x(0 · 1) = 30× 0 · 1 =

3, y(0 · 1) = 40 × 0 · 1 = 4. Hen
e after 6 minutes we have s2 = x2 + y2 =
9 + 16 = 25, so that s = 5. Moreover ẋ = 30 and ẏ = 40 are given. We may

now evaluate:

ṡ|t=0·1 =
3(30) + 4(40)

5
=

90 + 160

5
=

250

5
= 50mph.

Comment Alternatively, using a velo
ity ve
tor diagram, we 
an see that we

have essentially a 3, 4, 5 triangle of velo
ities.

4. We write A = xy so that Ȧ = xẏ+ ẋy. We want to evaluate Ȧ when x =
15, ẋ = 3and y = 6, ẏ = 2, so that Ȧ = (15)(2) + (3)(6) = 30 + 18 = 48m2

/se
.

5. For y = x3
we have y′ = 3x2

while for y =
√
x we have y′ = 1

2x
− 1

2
. At

the 
ommon point (1, 1) we have tan θ1 = 3(12) = 3 and tan θ2 = 1
2 (1)

− 1
2 = 1

2 ,

where θ1, θ2 are the respe
tive angles that the tangents make with the x-axis.
Our required angle is then θ1 − θ2 and we have by a standard identity:

tan(θ1 − θ2) =
tan θ1 − tan θ2
1 + tan θ1 tan θ2

=
3− 1

2

1 + 3
2

=
6− 1

2 + 3
=

5

5
= 1,

and so the angle between the two tangents is 45◦.
6.

dz

dt
=

1

2
(xy + y)−

1
2 (y)(− sin t) +

1

2
(xy + y)−

1
2 (x+ 1) cos t

when t = π
2 ,we have x = cos π

2 = 0, and y = sin π
2 = 1. Substituting x = 0,y = 1

and t = π
2 gives us

dz

dt

∣

∣

t=π

2

=
1

2
(1)(1)(−1) +

1

2
(1)(1)(0) = −1

2
.

7.

1
u + 1

v = 1
f = 6, u̇(t) = 4. Di�erentiating the equation with respe
t to

time gives

1

u2

du

dt
+

1

v2
dv

dt
= 0 ⇒ dv

dt
= − v2

u2

du

dt
.

Now u = 5 ⇒ 1
v = 1

6 − 1
5 = 1

30 ⇒ v = 30. We require

dv

dt
|u=5 = −302

52
· 4 = −144
m/se
.

That is to say the image is retreating at a rate of 144
m/se
.

8. Putting θ equal to the angle between the ground and the ladder, the

length of the ladder is given by L(θ) = 1
cos θ + 2

sin θ . Sin
e 0 < θ < π
2 and sin
e

L(θ) → ∞ as θ approa
hes either 0 or

π
2 , it follows that there is a minimum

value that 
an be found by solving L′(θ) = 0:

0 = L′(θ) =
sin θ

cos2 θ
− 2 cos θ

sin2 θ
=

sin3 θ − 2 cos3 θ

cos2 θ sin2 θ
.
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At any 
riti
al points we have sin3 θ = 2 cos3 θ ⇔ tan3 θ = 2. Now sec2 θ =
1 + tan2 θ = 1 + 2

2
3
for the 
riti
al value of θ. Continuing we have:

cos θ =
1

(1 + 2
2
3 )

1
2

and sin θ = tan θ cos θ = 2
1
3

(1+2
2
3 )

3
2
.

Therefore the minimum value of L(θ) is

1

cos θ
+

2

sin θ
= (1 + 2

2
3 )

1
2 + 2

(1 + 2
2
3 )

1
2

2
1
3

= (1 + 2
2
3 )

3
2 ≈ 4 · 16m.

9. Let us take the shoreline for the x-axis with the origin at the point where

a right-angle to the axis passes through the lighthouse. Let the in
reasing

dire
tion of x be the same dire
tion as the beam moves along the shore and

let ω be the angle that the ray from the bea
on makes with the y-axis. Then

tanω = x
4 ⇒ x = 4 tanω. Hen
e

ẋ = 4 sec2 ω · ω̇.

We need to evaluate ẋ when ω = π
4 . Now ω̇ is the 
onstant angular velo
ity of

2π
10 = π

5 radians/se
. Hen
e the required value of ẋ is

4(
√
2)2

2π

10
=

16π

10
=

8π

5
km/se
.

10. f(x) = ex + x so

f−1(x)′|f(x) =
1

f ′′(x)
|x =

1

ex + 1
,

putting f(x) = f(ln 2) in this expression then gives

1

eln 2 + 1
=

1

2 + 1
=

1

3
.

Problem Set 5 Integration

1. Put u = xn
so that du = nxn−1

and dv = exdx so that v = ex. Integrating
by parts then gives I = xnex − n

∫

xn−1ex dx. Hen
e

In = xnex − nIn−1.

2. Using the result of Question 1 we obtain

I3 = x3ex−3I2 = x3ex−3(x2ex−2I1) = x3ex−3x2ex+6I1 = x3ex−3x2ex+6(xex−I0)
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= x3ex − 3x2ex + 6xex − 6

∫

ex dx.Therefore

∫

x3ex dx = ex(x3 − 3x2 + 6x− 6) + c.

3. Integrate by parts by putting dv = dx so that v = x and u = (sin−1 x)n

so that du = n(sin−1 x)n−1 dx√
1−x2

. Hen
e our integral I be
omes:

I = x(sin−1 x)n − n

∫

(sin−1 x)n−1 x dx√
1− x2

;

for this new integral J , integrate by parts again with u = (sin−1 x)n−1
so that

du = (n−1) (sin
−1 x)n−2

√
1−x2 dx and dv = x dx√

1−x2 so that v = −
√
1− x2

. Our integral

J then be
omes:

J = −
√

1− x2(sin−1 x)n−1 + (n− 1)

∫

(sin−1 x)n−2 dx; and hen
e

I = x(sin−1 x)n + n
√

1− x2(sin−1 x)n−1 − n(n− 1)

∫

(sin−1 x)n−2 dx.

4. Putting n = 2 in the re
ursion of Question 3 now gives:

∫

(sin−1 x)2 dx = x(sin−1 x)2 + 2
√

1− x2 sin−1 x− 2

∫

dx =

x(sin−1 x)2 + 2
√

1− x2 − 2x.

5. Applying the ar
 length formula for y = x2
we get L =

∫ 1

0

√
1 + 4x2dx.

Put x = 1
2 sinh t we get dx = 1

2 cosh t dt,

√

1 + 4x2 =
√

1 + sinh2 t =
√

cosh2 t = cosh t.

Using t = sinh−1(2x) we get a lower limit of t = sinh−1(0) = 0 and an upper

limit of t = sinh−1(2). Hen
e we obtain:

L =
1

2

∫ sinh−1(2)

0

cosh2 t dt =
1

2

∫ sinh−1(2)

0

(1 + cosh 2t) dt =

1

2
[t+

1

2
sinh 2t]

sinh−1(2)
0 =

1

2
[sinh−1(2)+cosh(sinh−1(2)) sinh(sinh−1(2))−(0+0)].

Now cosh2 t = 1 + sinh2 t so that cosh2(sinh−1(2)) = 1 + 22 = 5. Hen
e

L =
1

2
[sinh−1(2) + 2

√
5] =

sinh−1(2) +
√
5

2
.

6.

L =

∫ π/2

0

√

x′(t)2 + y′(t)2 + z′(t)2 dt =

∫ π/1

0

√

a2 sin2 t+ a2 cos2 t+ b2dt

10



∫ π/2

0

√

a2 + b2dt =
π

2

√

a2 + b2.

7. The integrand diverges to in�nity at x = 2 so we must split the integral

into: I + J =
∫ 2

1
+
∫ 4

2
. Now

I = lim
l→2−

∫ l

1

dx

(x− 2)2/3
= lim

l→2−
[3(l− 2)1/3 − 3(1− 2)1/3] = 3,

J = lim
l→2+

[3(4− 2)1/3 − 3(l − 2)1/3] = 3(21/3).

Thus the answer is I + J = 3(1 + 21/3).

Comment: When evaluating an integral

∫ b

a
f(x)dx = F (b) − F (a) we are

using the Fundamental Theorem of Cal
ulus, whose proof requires that f(x) be

ontinuous along the interval (a, b). If this is not true, like in this example, it

may not work. To see an instan
e of failure, take

∫ 2

0
dx

(x−1)2 . If we ignore the

singularity at x = 1 and evaluate − 1
x−1

∣

∣

2

0
= −1− (1) = −2, we have a nonsense

answer as the integrand is always positive where it is de�ned so the integral


annot be negative. If you evaluate ea
h part of this integral either side of the

singularity you will see that ea
h diverges to +∞ as the troublesome point x = 1
is approa
hed.

8. Substitute y = −x into the �rst integral I so that dx = −dy; we get

I = −
∫ −a

a

f(y)dy =

∫ a

−a

f(y)dy

whi
h, up to the naming of variables, is the integral on the right

9. Denote the integral by I and use the result of Question 8 with a = −1 to
get

I =

∫ 1

−1

dx

1− x5 +
√
1 + x10

Adding the two versions of I together then gives:

2I =

∫ 1

−1

(1− x5 +
√
1 + x10) + (1 + x5 +

√
1 + x10)

((1 − x5 +
√
1 + x10)(1 + x5 +

√
1 + x10)

⇒ I =

∫ 1

−1

1 +
√
1 + x10 dx

1− x10 + 1 + x10 + (1− x5 + 1 + x5)(
√
1 + x10)

=

∫ 1

−1

1 +
√
1 + x10dx

2 + 2
√
1 + x10

=

∫ 1

−1

dx

2
= 2× 1

2
= 1.

10. From the substitution x = 4
t we get dx = − 4dt

t2 so that the integral I
be
omes:

I = −
∫ 0

∞

ln 4− ln t
16
t2 + 8

t + 4
· 4

t2
dt = ln 4

∫ ∞

0

dt

t2 + 2t+ 4
− I

11



⇒ 2I = ln 4

∫ ∞

0

dt

(t+ 1)2 + 3
⇒ I =

ln 4

2

∫ ∞

1

du

u2 + (
√
3)2

⇒ I =
ln 4

1
2

√
3

[

arctan(
u√
3
)
]∞

1
=

ln 2√
3

[

arctan(∞)− arctan(
1√
3
)]

=
ln 2√
3
[
π

2
− π

6
] =

ln 2√
3
(
π

3
) =

π
√
3 ln 2

9
≈ 0 · 419.

Problem Set 6 Separable and linear �rst order di�erential equations

1. A separable equation:

dy

y2
= −dt

t
⇒ −y−1 = − ln |t|+ C

⇒ y = (ln |t|+ C)−1.

2. Again separating variables:

dy

1 + y2
= ex dx ⇒ arctan y = ex + C

⇒ y = tan(ex + C).

3. The information translates as the d.e.

dy

dx
=

1

y
⇒

∫

y dy =

∫

dx

⇒ 1

2
y2 = x+ C ⇒ y =

√
2x+ C.

4. Similary to Question 3 we obtain:

dy

dx
= y2 ⇒

∫

dy

y2
=

∫

dx

⇒ −1

y
= x+ C ⇒ y = − 1

x+ C
.

5. We have y = vx ⇒ dy
dx = v + x dv

dx and our equation be
omes

v + x
dv

dx
=

vx − 4x

x− vx
=

v − 4

1− v
⇒ dv

dx
=

1

x

(v − 4

1− v
− v

)

=

1

x
· v − 4− v(1− v)

1− v
=

1

x
· v

2 − 4

1− v
⇒

12



dx

x
=

1− v

v2 − 4
dv (1)

and so the equation is separable in v and x. Now

1− v

v2 − 4
=

1− v

(v − 2)(v + 2)
= − 1

4(v − 2)
− 3

4(v + 2)
.

Integrating both sides of the expression in (1) gives

lnx = −1

4

(

ln |v − 2|+ 3 ln |v + 2|)
)

+ c ⇒ ln |x−4| = ln |(v − 2)(v + 2)3|+ c ⇒

|x−4| = A|(y
x
− 2)(

y

x
+ 2)3| = A|y − 2x

x
· (y + 2x)3

x3
| ⇒

|(y − 2x)(y + 2x)3| = C, a positive 
onstant.

6. Homogeneous equation: put y = vx. Then dy
dx = v+x dv

dx and our equation

be
omes:

v + x
dv

dx
= −1

2

(

v−1 + v) = −1 + v2

2v

⇒ x
dv

dx
== −1 + v2 + 2v2

2v
= −3v2 + 1

2v

⇒ − 2v dv

3v2 + 1
=

dx

x

⇒ −1

3
ln(1 + 3v2) = ln |x|+ C

⇒ ln |x|(1 + 3v2)
1
3 = C

⇒ x3(1 + 3v2) = C ⇒ x3(1 +
3y2

x2
) = C

⇒ x3 + 3xy2 = C.

Applying the initial 
ondition that y(1) = 1 gives 13 + 3(1)(1) = C so that

x3 + 3xy2 = 4.

7. Exa
t equation as with M(x, y) = x2 + y2 and N(x, y) = 2xy + cos y
we have

∂M
∂y = ∂N

∂x = 2y. We therefore seek a solution f(x, y) = C where

∂f
∂x = x2 + y2 and

∂f
∂y = 2xy + cos y giving

f(x, y) =
x3

3
+ xy2 + g(y) ⇒ ∂f

∂y
= 2xy +

dg

dy
= 2xy + cos y

⇒ g(y) = sin y and so our solution is:

f(x, y) =
x3

3
+ xy2 + sin y = C.

13



8. We seek f(x, y) su
h that

fx = y cosx+ 2xey ⇒ f = y sinx+ x2ey + g(y),

we then obtain fy = sinx + x2ey + g′(y) = sinx + x2y + 2 when
e f(x, y) =
y sinx+ x2ey + 2y (the 
onstant of integration may be omitted, or what is the

same, taken as zero). Hen
e our solution is

y sinx+ x2ey + 2y = C.

9. This is not exa
t as

∂(2y)
∂y = 2 and ∂x

∂x = 1. Multiplying by the integrating

fa
tor of x gives 2xydx+ x2dy = 0 and

∂(2xy)
∂y = 2x = ∂(x2)

∂x . Putting

∂f
∂x = 2xy

gives f(x, y) = x2y + g(y) so that

∂f
∂y = x2 + dg

dy = x2
so that we may take

g(y) = 0 and for our general solution we obtain:

x2y = C or y = C
x2 .

10. µ = (xy2)−1
is an integrating fa
tor for multiplying through by µ gives

the equation:

( 1

x
+

1

y

)

dx− x

y2
dy = 0.

To 
he
k: M(x, y) = 1
x + 1

y ⇒ My = − 1
y2 and N(x, y) = − x

y2 ⇒ Nx = − 1
y2 ,

thus showing exa
tness. To �nd f(x, y) we next write

fx = M =
1

x
+

1

y
⇒ f(x, y) = ln |x|+ x

y
+ g(y); hen
e

fy = − x

y2
+

dg

dy
= − x

y2

so we may take g(y) = 0 to obtain the impli
it solution to our di�erential

equation:

ln |x|+ x

y
= c; x 6= 0, y 6= 0.

Comment: Here we relied on a rabbit-out-of-the-hat integrating fa
tor but

sometimes we 
an be systemati
. For instan
e, if (My −Nx)/N is a fun
tion of

x only then the equation 
an be made exa
t by multiplying by the integrating

fa
tor µ, whi
h is itself the solution of the linear di�erential equation

dµ

dx
=

My −Nx

N
µ.

For example, this method will yield that µ = x is an integrating fa
tor of

(3xy + y2)dx + (x2 + xy)dy = 0, the solution of whi
h is then found to be

x3y + 1
2x

2y2 = c.
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Problem Set 7 Linear and se
ond order di�erential equations

1. We have

dy
dx+

3
xy = x, whi
h is a �rst order linear equation with integrating

fa
tor ρ(x) = e
∫

3 dx

x = e3 ln x = elnx3

= x3
. Multiplying throughout by ρ(x)

gives

x3 dy

dx
+ 3x2y = x4 ⇒ (x3y)′ = x4

⇒ x3y =
x5

5
+ C

∴ y =
x2

5
+

C

x3
.

Comment : as with any equation, we 
an 
he
k that the solution works:

x
dy

dx
+ 3y = x

2x

5
− 3x

C

x4
+

3x2

5
+

3C

x3
= x2.

2. Another linear �rst order equation,

dy
dx + y tanhx = 2

ex(ex+e−x) with

ρ(x) = e
∫

sinh x dx

cosh x = eln(coshx) = coshx so we obtain:

coshx
dy

dx
+ y sinhx = e−x

⇒ (y coshx)′ = e−x ⇒ y coshx = C − e−x

⇒ y = −C − 2e−x

ex − e−x
=

Cex − 2

e2x − 1
.

3. We have the linear equation

di
dt +

Ri
L = V

L so that ρ(t) = e
∫

Rdt

L = e
Rt

L
.

Hen
e we have

(

e
Rt

L i)′ =
V

L
e

Rt

L ⇒ e
Rt

L i = C +
V

R
e

Rt

L .

Using the initial 
ondition that i(0) = 0 we obtain 0 = C + V
R so that C = −V

R :

⇒ e
Rt

L i(t) =
V

R
(e

Rt

L − 1)

∴ i(t) =
V

R
(1 − e−

Ri

L ).

4. ρ(x) = e
∫
−2x dx = e−x2

so that

(ye−x2

)′ = xe−x2 ⇒ ye−x2

=

∫

xe−x2

dx = c− 1

2
e−x2

⇒ y = cex
2 − 1

2
; put y(0) = 1;
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1 = ce0 − 1

2
⇒ c =

3

2
;

∴ y =
3

2
ex

2 − 1

2
.

5. The auxiliary equation is λ2 − 3λ − 4 = (λ − 4)(λ + 1) = 0 ⇒ λ = 4 or

λ = −1. Hen
e the general solution is y(x) = Ae4x +Be−x
.

We put yp(x) = A cosx + B sinx so that y′p(x) = −A sinx + B cosx and

y′′p (x) = −A cosx − B sinx. Substituting a

ordingly into our equation and


olle
ting like terms gives;

(−A− 3B − 4A) cosx+ (−B + 3A− 4B) sinx = 2 sinx

⇒ −5A− 3B = 0&3A− 5B = 2 ⇒ A =
3

17
, B = − 5

17

⇒ yp(x) =
1

17

(

3 cosx− 5 sinx).

Hen
e the general solution to our equation is

y = Ae4x+Be−x+
1

17
(3 cosx−5 sinx) ⇒ y′ = 4Ae4x−Be−x− 1

17
(3 sinx+5 cosx).

Putting y(0) = y′(0) = 1 gives the equations A+B+ 3
17 = 1, 4A−B− 5

17 = 1.
Adding these equations gives 5A = 36

17 ⇒ A = 36
85 , when
e B = 1− 3

17 − 36
85 = 2

5 .
Hen
e the solution required is:

y =
36

85
e4x +

2

5
e−x +

3

17
cosx− 5

17
sinx.

6. We seek a parti
ular solution as a polynomial of the same degree, that

is put yp(x) = Ax2 + Bx + C ⇒ y′p(x) = 2Ax + B, y′′p (x) = 2A. Substituting

a

ordingly gives the equation

2A− 3(2Ax+B)− 4(Ax2 +Bx+ C) = 4x2

⇒ −4Ax2 − (4B + 6A)x+ (−4C − 3B + 2A) = 4x2.

Equating 
oe�
ients gives

A = −1, B = −3

2
A =

3

2
and

C =
2A− 3B

4
=

1

4

(

− 2− 9

2

)

= −13

8
.

Therefore yp(x) = −x2 +
3

2
x− 13

8
.

.

7. From Question 5 we see that e−x
is a solution to the homogeneous equa-

tion so our form of parti
ular solution is yp(x) = Axe−x
, when
e

y′p(x) = Ae−x −Axe−x, y′′p (x) = −2Ae−x +Axe−x.
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Substituting a

ordingly gives:

(−2Ae−x +Axe−x)− 3(Ae−x −Axe−x)− 4(Axe−x) = e−x

⇒ −5Ae−x = e−x ⇒ A = −1

5
.

Hen
e a parti
ular solution is

yp(x) = −1

5
xe−x.

8. Putting p = dy
dx gives x dp

dx + p = x2
so that

dp
dx + p

x = x. Hen
e ρ(x) =

e
∫

dx

x = elnx = x. Therefore

(px)′ = x2 ⇒ px =
x3

3
+ C

∴ p =
dy

dx
=

x2

3
+

C

x
⇒ y(x) =

x3

9
+ C ln |x|+D.

Substituting y = 0 and y′ = 1 when x = 1 into the solution gives, 0 =
1
9 + 0 +D so that D = − 1

9 and 1 = 1
3 + C so that C = 2

3 , whi
h all yields:

y(x) =
x3

9
+

2

3
ln |x| − 1

9
.

9. Di�erentiating x′
1 = x1 + x2 and substituting using the given equations

gives

x′′
1 = x′

1 + x′
2 = x′

1 + (4x1 + x2)

⇒ x′′
1 = x′

1 + 4x1 + (x′
1 − x1) ⇒ x′′

1 − 2x′
1 − 3x1 = 0.

The 
hara
teristi
 equation of this d.e. is λ2 − 2λ − 3 = (λ + 1)(λ − 3) = 0 so

that

x1(t) = Ae−t +Be3t ⇒ x′
1(t) = −Ae−t + 3Be3t

⇒ x2(t) = x′
1(t)− x1(t) = −Ae−t + 3Be3t −Ae−t − Be3t

= −2Ae−t + 2Be3t.

∴ x1(t) = Ae−t +Be3t, x2(t) = −2Ae−t + 2Be3t.

10. Writing x = (x1(t), x2(t))
T

we may express the system in the form

x
′ = Ax where

A =

[

1 1
4 1

]

,

with 
hara
teristi
 equation

(1− λ)2 = 4 ⇒ 1− λ = ±2 ⇒ λ ∈ {−1, 3};
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taking λ = −1 we get for an eigneve
tor the equation 2x + y = 0 so that

e1 = (1,−2)T while for λ = 3 we have −2x+y = 0 so we may take e2 = (1, 2)T .
Our general solution is then:

x = Aeλ1t
e1 + Beλ2t

e2 = Ae−t

(

1

−2

)

+Be3t
(

1

2

)

⇔ x1(t) = Ae−t +Be3t, x2(t) = −2Ae−t + 2Be3t.

Comment Note that the 
hara
teristi
 equation of the se
ond order di�er-

ential equation in Question 9 is the same as the 
hara
teristi
 equation of the


oe�
ient matrix in Question 10.

Problem Set 8 Power Series

1. The series has the form

∞
∑

n=0

(2

3

)n 1

n2 + 1

(

x+
5

2

)n

so that the 
entre of 
onvergen
e is x = − 5
2 . The radius of 
onvergen
e R

satis�es

1

R
= L = lim

n→∞

∣

∣

(

2
3

)n+1 1
(n+1)2+1

(

2
3

)n 1
n2+1

∣

∣ = lim
n→∞

2

3

n2 + 1

(n+ 1)2 + 1
=

2

3
.

Thus R = 3
2 . The series then 
onverges absolutely on (− 5

2 − 3
2 ,− 5

2 + 3
2 ) =

(−4,−1). At the endpoints of x = −4 and x = −1 the respe
tive series are

∞
∑

n=0

(−1)n

n2 + 1
,

∞
∑

n=0

1

n2 + 1
,

whi
h both 
onverge. Therefore the interval of 
onvergen
e of the power series

is [−4,−1].
2. Integrating term-by-term we �nd that

arctanx =

∫ x

0

dt

1 + t2
=

∞
∑

n=0

∫ x

0

(−1)nt2ndt =

∞
∑

n=0

(−1)nx2n+1

2n+ 1

= x− x3

3
+

x5

5
− · · ·+ (−1)nx2n+1

2n+ 1
+ · · · , −1 < x < 1.

3.

ln |1 + x| =
∫ x

0

dt

1 + t
=

∞
∑

n=0

∫ x

0

(−1)ntndt =
∞
∑

n=0

(−1)nxn+1

n+ 1
, −1 < x < 1;
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repla
ing x by −x in the previous formula gives:

ln |1− x| =
∞
∑

n=0

xn+1

n+ 1
.

Summing these formulas and dividing by 2 then gives on the interval (−1, 1):

1

2
ln
∣

∣

1 + x

1− x

∣

∣ =
∞
∑

n=0

x2n+1

2n+ 1
= x+

x3

3
+

x5

5
+ · · · .

4. The pattern of derivatives of sinx, beginning from the 0th derivative,

is sinx, cos x,− sinx,− cosx, sinx, · · · , a 
y
le of length 4. Hen
e the terms

f (n)(0) in this 
ase have the pattern sin 0, cos 0,− sin 0,− cos 0, · · · , whi
h is to

say 0, 1, 0,−1, · · · .It follows that the M
Laurin series for f(x) = sinx is

∞
∑

n=0

f (n)(0)

n!
xn =

∞
∑

n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− · · · . (2)

whi
h, by the ratio test 
onverges for all x ∈ R:

1

R
= lim

n→∞
| (−1)n+1x2n+3

(2n+ 3)!
· (2n+ 1)!

(−1)nx2n+1
| = lim

n→∞
| x2

(2n+ 3)(2n+ 2)
| = 0.

Sin
e this series alternates in sign and the absolute value of the terms de
reases

montoni
ally to 0, the error in trun
ating the series at the nth term, an is

bounded by |an+1|. We wish to estimate the value of sin 3◦ = sin 3π
180 = sin π

60 .

For n = 2 in (2) we �nd that term has absolute value

π5

605 · 5! < 0 · 5× 10−5.

Hen
e our required approximate value for sin 3◦ is given by

π

60
− π3

603 · 3! ≈ 0 · 05234.

5.

E(x) =

∫ x

0

(1− t2 +
t4

2!
− t6

3!
+

t8

4!
− · · · ) dt

= (t− t3

3
+

t5

5× 2!
− t7

7× 3!
+

t9

9× 4!
− · · · )|x0

=

∞
∑

n=0

(−1)n
x2n+1

(2n+ 1)n!
,

and this series 
onverges for all x as this is true of the series for ex. Again, the
error does not ex
eed the �rst omitted term so, with x = 1, we need the least n
su
h that,

1

(2n+ 1)n!
< 0 · 0005 ⇔ (2n+ 1)n! > 2, 000.
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By trial we �nd that 13× 6! = 9, 360 we su�
e. Thus we take

En(x) =
f (n+1)(X)

(n+ 1)!
(x− x0)

n+1

E(1) ≈ 1− 1

3
+

1

10
− 1

42
+

1

216
− 1

1.320
≈ 0 · 747.

6. We apply the error bound En(x) = f(n+1)(X)
(n+1)! (x − x0)

n+1
; here x0 = 0,

f (n+1)(x) = eX ≤ e1 = e and so we seek the least n su
h that

e

(n+ 1)!
< 10−6 ⇔ (n+ 1)! > e× 106;

we �nd that 10! = 3, 628, 800 is the least fa
torial that ex
eed our bound, giving

n = 9 gives the required approximation, so the �nal term required in the sum

is

1
9! .

7. With f(x) = (1 + x)r we see that for n ≥ 1, f (n)(x) = r(r − 1) · · · (r −
n+ 1)(1 + x)r−n

so the binomial series is

(1 + x)r = 1 +

∞
∑

n=1

r(r − 1)(r − 2) · · · (r − n+ 1)

n!
xn.

To apply the ratio test we seek the limit

lim
n→∞

∣

∣

r(r−1)···(r−n)
(n+1)! xn+1

r(r−1)···(r−n+1)
n! xn

∣

∣ = lim
n→∞

∣

∣

r − n

n+ 1

∣

∣ = |x|,

so that the series 
onverges if −1 < x < 1.
8. Putting r = − 1

2 in the binomial series gives the expansion

1√
1 + x

= 1 +
∞
∑

n=1

(− 1
2 )(− 3

2 ) · · · (− 2n−1
2 )

n!
xn

= 1 +

∞
∑

n=1

(−1)n1 · 3 · 5 · · · (2n− 1)

2nn!
xn;

this series 
onverges for −1 < x ≤ 1 (for x = 1, series 
onverges by alternating

series test).

9. Repla
ing x by −t2 in the series of Question 8 and then integrating we

get

1√
1− t2

= 1 +

∞
∑

n=1

1 · 3 · 5 · · · (2n− 1)

2nn!
t2n;

sin−1 x =

∫ x

0

dt√
1− t2

= x+
∞
∑

n=1

1 · 3 · 5 · · · (2n− 1)

2nn!(2n+ 1)
x2n+1
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= x+
x3

6
+

3

40
x5 + · · · (−1 < x < 1).

10. We assume that

eix =
∞
∑

n=0

(ix)n

n!
=

∞
∑

n=0

x4n

(4n)!
− x4n+2

(4n+ 2)!
+ i

(

∞
∑

n=0

x1+4n

(1 + 4n)!
− x3+4n

(3 + 4n)!

)

;

taking the real part of this equation then gives

cosx =

∞
∑

n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
− · · · , x ∈ R.

Problem Set 9 Fun
tions of several variables

1. The point P is indeed on the given 
ir
le, as is readily veri�ed and in the

upper half sphere, whi
h is des
ribed by the equation z =
√

1− x2 − y2. Then

∂z

∂y
=

∂((1− x2 − y2)
1
2 )

∂y
= − y

√

1− x2 − y2
and we require

∂z

∂y
|x= 2

3 ,y=
1
3
= −

1
3

√

1− (23 )
2 − (13 )

2
= −1

2
.

Comment Alternatively, di�erentiate x2+y2+z2 = 1 impli
itly with respe
t

to y with x held 
onstant to get 2y + 2z ∂z
∂y = 0 so that

∂z
∂y = − y

z ; evaluating

this at P then gives the same answer.

2. We have P = kTV −1
so that

∂P

∂V
= −kT

V 2
= − 1

V
· kT
V

= −P

V
.

3. f(x, y) = e2x−y + sinxy so that

fx = 2e2x−y + y cosxy ⇒ fyx = −2e2x−y + cosxy − xy sinxy;

fy = −e2x−y + x cos xy ⇒ fxy = −2e2x−y + cosxy − xy sinxy = fyx.

4. We see that fx = 2x
x2+y2 so that

fxx =
2(x2 + y2)− 4x2

(x2 + y2)2
=

2y2 − 2x2

(x2 + y2)2
;

By symmetry it follows that

fyy =
2x2 − 2y2

(x2 + y2)2
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⇒ fxx + fyy = 0.

5. We have

∂u

∂x
=

2x

x2 + y2
,
∂v

∂y
=

2
x

1 + ( y
2

x2 )
=

2x

x2 + y2
, in a

ord with the �rst equation.

∂u

∂y
=

2y

x2 + y2
, −∂v

∂x
= − 2(−y

x2 )

1 + y2

x2

=
2y

x2 + y2
, in a

ord with the se
ond equation.

6.

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂z

dz

dt
= (y)(− sin t) + (x)(cos t) + (1)(1)

= (sin t)(− sin t) + (cos t)(cos t) = 1 = − sin2 t+ cos2 t+ 1 = 1 + cos 2t.

dw

dt
|t=0 = 1 + cos(0) = 2.

7.

∂z

∂u
= (yexy)(2) + (xexy)(

1

v
) = (2y +

x

v
)exy

=
(2u

v
+

2u+ v

v

)

e(2u+v)(u

v
) =

(

1 +
4u

v

)

e(2u+v)(u/v).

∂z

∂v
= (yexy)(1)(xexy)

(

− u

v2
)

=
(

y − x
( u

v2
)

)exy

=
(u

v
− (2u+ v)

( u

v2
)

e(2u+v)(u/v) = −2u2

v2
e(2u+v)(u/v).

8.

dT =
∂T

∂L
dL+

∂T

∂g
dg =

2π

2
√
Lg

dL− 2π

2g
3
2

dg.

We have dL = 2
100L and dg = − 6

1000g. Thus

dT =
1

100
2π

√

L

g
−
(

− 6

1000

)2π

2

√

L

g
=

13

1000
T.

Therefore the period T of the pendulum in
reases by 1.3%.

9.

∇f =
( (x2 + y2)− 2x2

(x2 + y2)2
,

−2x2

(x2 + y2)2
)

=
( y2 − x2

(x2 + y2)2
, − 2x2

(x2 + y2)2
)

.

Hen
e ∇f(2, 3) =
(

32−22

(22+32)2 , −
2(22)

(22+32)2

)

= ( 5
169 , − 8

169

)

.

10. At the point (x0, y0) = (2, 3) we have z0 = 2
22+32 = 2

9 ; fx(x0, y0) =
5

169 , fy(x0, y0) = − 8
169 . The equation of the tangent plane at (x0, y0, z0) is

fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) = z − z0, whi
h gives:
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5

169
(x− 2)− 8

169
(y − 3) = z − 2

9
.

Problem Set 10

1. ∇f(x, y) = (6xy, 3x2); ∇f
∣

∣

(1,2)
= (6(1)(2), 3(12)) = (12, 3); next |u| =√

32 + 42 = 5 and so û = 1
5u. Hen
e

Duf(1, 2) =
1

5
(12, 3) • (3, 4) = 1

5
(36 + 12) =

48

5
.

2. ∇T (x, y) = (2xe−y,−x2e−y). The temperature in
reases most rapidly in

the dire
tion of the gradient, whi
h at (2, 1) has value ∇T (1, 2) = (2e−2,−e−2);
equivalently the dire
tion of (2,−1).

3. The tangent plane equation is∇f
∣

∣

(x0,y0)
•(x−x0) =z−z0, where x =(x, y), x0 =

(x0, y0). We have

∇f
∣

∣

(2,1)
= (2xy, x2)

∣

∣

(2,1)
=

(

(2(2)(1), 22
)

= (4, 4).

Hen
e our tangent plane is given by

(4, 4) •
(

(x− 2), (y − 1)
)

= z − 4 ⇒ 4(x− 2) + 4(y − 1) = z − 4 ⇒

4x+ 4y − z = 8.

The ve
tor (4, 4, 1) is normal to this plane so the normal line at (2, 1, 4) has
equation:

x− 2

4
=

y − 1

4
= z − 4.

4. We have fx(x, y) = 2x−4y+12, fy(x, y) = −4x−4y−12. For a horizontal
tangent plane at (x0, y0) we must have both partial derivatives equal 0, thus we
obtain the equations:

(x− 2y = −6, & x+ y = −3) ⇒ −3y = −3 ⇒ y = 1, x = −3− 1 = −4.

Hen
e (x0, y0) = (−4, 1). The 
orresponding value of z = z0 on the surfa
e

satis�es z0 =

(−4)2−4(−4)(1)−2(12)+12(−4)−12(1)−1 = 16+16−2−48−12−1 = −31.

Hen
e the point of tangen
y is (−4, 1,−31). The equation of the tangent plane

is z = −31.
5.

fx(x, y) = 3x2 − x− 2, fy(x, y) = 9y2 − 9.
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For stationary points, we put fx = fy = 0 giving

3x2 − x− 2 = (3x+ 2)(x− 1) = 0 ⇒ x = 1, −2

3

and y2 = 1 ⇒ y = ±1. Hen
e our four stationary points on the surfa
e form

the set

{(1, 1), (1,−1), (−2

3
, 1), (−2

3
,−1)}.

6. We have

fxx(x, y) = 6x− 1, fyy(x, y) = 18y, fxy(x, y) = 0.

Hen
e D(x, y) = fxxfyy − (fxy)
2 = fxxfyy. At the respe
tive points as listed in

Q8 we obtain:

D(1, 1) = (6 − 1)(18) > 0, fxx(1, 1) > 0 ⇒ (1, 1) is a minimum;

D(1,−1) = (6− 1)(−18) < 0 ⇒ (1,−1) is a saddle point;

D(−2

3
, 1) = (−4− 1)(18) < 0 ⇒ (−2

3
, 1) is a saddle point,

D(− 2
3 ,−1) = (−4− 1)(−18) > 0, fxx(− 2

3 ,−1) < 0 ⇒ (− 2
3 ,−1) is a maximum.

7. We minimize the square of the distan
e of the point (−1, 3, 2) to points

(x, y, z) where z = 4− x+ 2y. This gives the fun
tion

f(x, y) = (x+1)2+(y−3)2+(4−x+2y−2)2 = 2x2+5y2−4xy−2x+2y+14. Hen
e

fx(x, y) = 4x− 4y − 2, fy(x, y) = 10y − 4x+ 2.

Put fx = fy = 0 to obtain:

2x− 2y = 1 = 2x− 5y ⇒ y = 0, x =
1

2
, z =

7

2
.

Therefore the required 
losest point is (12 , 0,
7
2 ).

Comment Note that fxxfyy − (fxy) = 4 × 4 − (−4)2 = 0 is in
on
lusive in

this 
ase but the point must represent a minimum as it is the extreme point of a

positive quantity that be
omes unbounded far from the point from whi
h we are

measuring. The geometri
 alternative is to �nd the interse
tion of the plane with

the line through (−1, 3, 2) in the dire
tion of a normal ve
tor to the plane, whi
h

we 
an take to by u = (1,−2, 1). This gives the line x+1 = − 1
2 (y− 3) = z− 2,

whi
h yields z = x+3 and we also have z = 4+2y− x, whi
h qui
kly gives the

required point (12 , 0,
7
2 ) also.

8.

∇f(x, y) = (3x2y5, 5x3y4) = λ∇g(x, y) = (1, 1).

Thus

3x2y5 = λ = 5x3y4,⇒ 3y = 5x; also x+ y = 8;
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⇒ x+
5

3
x = 8 ⇒ 8

3
x = 8 ⇒ x = 3, y = 8− x = 8− 3 = 5.

This gives the extreme point P (x, y) = (3, 5). Sin
e f(x, y) is negative on the

line ex
ept for the interval 0 ≤ x ≤ 8 we see that P is indeed a maximum of f
on the line x+ y = 8.

9. Here we have, with an obvious notation, xyz = 32 so that g(x, y, z) =
xyz − 32 = 0 is our 
onstraint fun
tion; summing the area of the �ve sides of

the open box we obtain the area fun
tion f(x, y, z) = 2xy + 2yz = xy. Hen
e

we put

∇f(x, y, z) = (2z + y, 2z + x, 2x+ 2y) = λ∇g(x, y, z) = λ(yz, wz, xy).

Hen
e

2z + y = λyz, 2z = x = λxz, 2(x+ y) = λxy ⇒
2

y
+

1

z
=

2

x
+

1

z
=

2

x
+

2

y
⇒ 2

y
=

2

x
⇒ x = y, z =

y

2
=

x

2
.

Substituting in xyz = 32 we get x3 = 64 ⇒ x = y = 4, z = 2. The box with

minimum surfa
e area for a volume of 32
m3
has dimensions 4× 4× 2.

10. We wish to minimize f(x, y) = x2+y2 subje
t to the 
onstraint g(x, y) =
x2y − 16 = 0. We get

2x = 2λxy ⇒ x(1 − λy) = 0

2y = λx2 ⇒ 2y − λx2 = 0

x2y = 16.

The �rst equation gives either x = 0 or λy = 1. However x = 0 is in
onsistent

with x2y = 16. Hen
e λy = 1. Multiplying the se
ond equation by y gives

2y2 = λyx2 = x2 ⇒ x = ±
√
2y,

and from x2y = 16 we now get 2y3 = 16 so that y = 2. This gives two 
andidate
points: (±2

√
2, 2), both of whi
h have distan
e to the origin of

√
8 + 4 =

√
12 =

2
√
3 units, whi
h 
learly do represent points of 
losest approa
h.
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