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Solutions and Comments

Problem Set 1 Approximations
fla) = o = f() = — g and [i(3) = 2 = 4.
Also f(3) = 2. Hence
L(z) =2+ (z — %)@4) = 4z +4, or L(z) = 4(1 — 2).

2. V=2m? =V =49 = 4mr? Hence V'(5) = 47(5?) = 1007 and we

obtain the decrease in volume V' (5) — V(4 - 92) is approximately equal to:
V'(5) x 0-08 = 87 = 25 - 13 cm?.

3. f(z) =a2 = f'(z) = %z*%. Hence f'(25) = ﬁ = 15. Therefore
1
\/2_m/%+1—0(26—25):5+0~1:5-1.

(Note that (5-1)% = 26-01).

4. Here we have h = I’_T“ = 2,%1 = é. Also z; = 1+§ = %. Hence
yi = f(zi) = = = g5 (1 <1 <8). Hence the value of Sg is given by:

—1+4( AN S S )+2( 8 4 2 48 )+ °
24 8+1 8+3 8+5 8+7 8+2 8+4 8+6/ 8+8
fi(1+4(§+§+§+§)+(§+§+§)+1)f
N 9 11 13 15 5 6 7 2/

=0.693154...

This compares with the exact value In2 = 0 -693147....
5. We have f'(z) = —272, f"(2) = 2273, fOl(z) = —627%, fW(2) =
24z7°. Hence on [1,2] we have |f)(z)| < 2} = 24.

6. The error term in Sg is therefore bounded by
rlmo = 0-0000326 (3 sf).

Comments Named after Thomas Simpson (1710-61), the rule is a staple of
mathematical engineering. It is however a form of the three-point Newton-
Cotes quadrature rule and similar rules were used by Kepler a century before
Simpson. Simpson’s rule works by approximating the curve by a parabola that
matches the curve at the endpoints and the midpoint of each interval. A simpler
rule, the Trapezium Rule, approximates the curve by the straight line between
endpoints but this is generally less accurate, although the Trapezium rule can

give excellent results for periodic functions across a period.

24x(2—1)° 1

180% 84 T 15x4x8% T




7. The exact answer in this case is [2°]§ = 1. The Simpson’s estimate is:

1 5 80 405
= (04 4(m) + 2() + A =1-00260;
Sp= 150+ (256)4F (256)4F (256)4k5) 00260;
hence the exact error is 0-00260. Now £ (z) = 120 we take K = 120, (b—a) = 1
and h = 1 to get as our error bound:

120(1) 1., 1
) =— - 00261.
(=) 381 < 0-0026
8. First observe that f(1) =1-1-1= —2 < 0 while f(2) =8-2-1=5>0
so that there exists at least one root r in the interval (1,2). We also have
f'(z) = 322 — 1, so the Newton-Raphson formula becomes

xf’l—xn—1:2m§l+1
3x2 — 1 3x2 — 1

T+l = Tn —

Putting zp = 1-5 we get (just recording to 4d.p.) as the successive values of z,, :
x1 =1-3478, x9 = 1-3252, x3 = 1-3247, x4 = 1-3247, x5 = 1-32471795724 - - -.
We find that f(zs5) equal 0 to 10 decimal places, so r = 1-32471795724 rounded
to 10 decimal places.

9. We use f(x) = 23 — cosx. We get from the Newton-Raphson formula:

xi —COSTp 2:1:% + x, sinx,, + cosz,

Tl = T B0 Ysing, 322 +sinxy,

Starting with xgp = 0 - 8, the successive approximations (to 4 d.p.) are z; =
0- 8700, 22 = 0- 8655 = x3 = x4, x5 = 0- 865474033102 ---. We find f(z5) =
0-00--- equals zero to 12 decimal places, so r = 0 - 865474033102 - - - is our
approximate root satisfying 73 = cosr.

Comment The idea behind the method is to find better and better approx-
imations to a nearby root by calculating and re-calculating the z-intercept of
the tangent to the curve at (z;, f(z;)): although convergence is not guaranteed,
typically the number of correct digits in the approximation increases by 2 on
each iteration.

10. To four decimal places, the outcome of hitting the cosine button again
and again is the number ¢ = 0 - 7391(~ 42.37°). When the display stabilizes at
¢, we must therefore have ¢ = cosc so that = ¢ is the (unique) solution of the
equation x = cos .

Comment: The initial value ¢ that you choose hardly matters as, no matter
which number ¢ you select, —1 < cost < 1; since cos0 = 1 and cosx = cos(—x)
is always true, in effect, after one iteration you have a new number, ¢/, in the
range cos1 =0-5403 <t < 1.

Finding a fixed point in this fashion will work with any function f(x) that
satisfies the inequality:

[f(@) = f(y)l < |z —yl.



The fact that the cosine function behaves this way stems from the property that
for z,y € [—1,1] we have |cosz — cosy| < |z — y|, a fact that can be deduced
from the identity:

:L'*y).

Y ging -

. T
cosx — cosy = —2sin(

Problem Set 2 Integration

1 1 1 1
p— = H
—22 (-o(+t2) 20+a) 20—a)

dx 1 dx 1 dx 1 1 1+
/l—zQ 2/1+z+2/17x g (Int+el-Infl-al)t+e = 5In|3—"|+e

2. Putz = %sinhu so that dox = %coshudu and v1+ 422 = V1 +sinh?u =

Veosh? u = coshu as coshu > 0. When z = 0 and 2 = 1 we have respective
values of u satisfying 0 = sinhu = v = 0 and 1 = 1sinhu = u = sinh™!(2).
Therefore our integral becomes:

sinh~1(2) ) 1 sinh ! (2) L
/ - —coshudu = / du = sinh™ " (2).
0 0

coshu 2

3. We have that sinhz < coshz so that the increment of volume by
cylindrical shells is given by (7z?)(cosha — sinhz). Now coshz — sinhz =

x

T, —a e - ~ .
gxe e =¢ —eT w
€ +26 € 26 *. Hence we require

7r/ z?(coshz — sinh z) dz = 7r/ e d.
0 0

Drop the factor 7 for the moment and integrate our integral I by parts with u =
22, dv = e " dx = du = 2xdx and v = —e % so that [ = —2%e 7 + f2:cefx dx.
Integrating again by parts in a similar fashion we obtain:

I=—2%""+ (— 2xe” " + 2/67:6 d:c) = —z%e % — 2ze™% — 27",

Evaluating between 0 and oo now gives the area A as:
A= —mle ™ (2* + 2z + 2)}80 =—m[0— (1(0+0+2))] =2

4. One line of division immediately gives y = 2x+ fog; 3_3. The denominator
factorizes as #? — 2z — 3 = (z — 3)(x + 1). Hence the graph of y(z) has vertical
asymptotes at © = —1 and = = 3 and an oblique asymtptote in the line y = 2z

which is approached for large values of |z|.




53)=3 _

5. % = _3 + % By the Cover-up method we get A = 25~ =
%zBWhileB (11)5 7272:hence
S5z —3 3 2

x272x73_z—3+:€+1'

6. From Question 4 and 5 we obtain:

203 — 42 —x—3 3 2
de = [ (22 + —— do —
/ 2 —2—3 /(:'3+ Storp®

2?2+ 3|z — 3|+ 2|z + 1| +e.

7. By a standard identity we have (/119522 — \/cos? z = |cosz|. Hence

our integral becomes

/ |cos:v|dx:2/2 cosxdx:Q[sinz]% =2[1-0]=2.
0 0

8 Put u=2—cosz = du=sinzdr; when xt =0, u =2 —1 =1, and when
x=m,u=2—cosm=2— (—1) = 3. Hence the integral becomes

5 d
2 |u|‘1 In3—-Inl1=1In3.
u

9. Integrate by parts by letting v = ™1,
dv=e""=du=(m—1)2™ ?dx,v = —e *. We obtain:

F(m) = —[:Em_le_l]go + /Ooo(m —Daz™ 2 ®de = (m—1)F(m—1).

F
_Em)
Fim-1)

Comment The function F(m) defined above is known as the beta function,
a special function that arises throughout mathematics and physics. The beta
function allows for a continuous generalization of the notion of factorial to a

Hence

function on the real line.
10. Volume is given by

4 4
T7q4
/O7Ty2d$=ﬂ'/0 xdmzﬂ[?]ozﬂ[?—ﬂ:&r.



Problem Set 3 Limits

1.
. 323 —18z-1 . 3-8 L 3 1
lim ————— = lim —%——F% = — = —_.
z—oo —6x3 4 12 z—o00  —06 4+ < —6 2
2. 7 07 .
lim S li S x:’?lim S where y = Tx
z—0 I z—0 Tx y—0 Yy
=7-1=T1.
3.
1- 2sin?(2 2
lim —— P _ iy L(Q) = (lim sin z)(lim sin(w/ )) =0-1=0
z—0 T z—0 T z—0 z—0 ;L'/2

Comment: the limits of Questions 2 & 3 are required in order to show from
first principles that (sinx)’ = cosz, from which derivatives of all trigonometric
functions can be got. The evaluation of sinz/x as x — 0 is found by a sandwich
argument, based on associated areas of triangles and corresponding sectors of
the unit circle. Since the expression in Question 3 is a % form, L’Hopital’s Rule
can also be used: differentiating top and bottom gives an equal limit, which is in

this case: lim,_,q Sirl”“ = 0. However, this pre-supposes we have the derivatives
of trigonometric functions to hand.
4.

. 1 . .
nl;n;o(n(l + ﬁ) —n)= nl;n;o(n +1—n)= nlingo(l) =1.

Comment Must avoid the sloppy argument that 1 + % — 1 so the limit is
n—n=0.

5.

. . Inz . (Inz)
hmxlnz:hm—lzhm i
x—0 z—0 x— x—0 (,’L'_ )I

-1
X .
=—lim—=—limz=-0=0
x—0 xr— x—0

Comment: here we are using L’Hopital’s rule concerning limits of indeter-
minant ratios and products. We also make use of elementary properties of
limits, those being that the operation taking limits commutes with arithmetic
operations and with continuous functions.

6.

y:i;rr%)x :lny:ln(ilg(l)x ):ilg})(lnx )

= lim (zInx) = 0. Hence y = e’ = 1.
z—0



|
y= lim n* = Iny = lim (lnn%) = lim — =0
n—o0o n—o0o n— n

:>y:eozl.

lim (14 —)" = (lim (14 %)2")% =\

n—o00 2n n—o00

Comment: we are making use of the standard limit of e = lim,, o0 (14 2)".

9.
- 1
lim (VAT T — i) = lim VI VA T4 Vn)
n_m e Vnt1l+/n
Cnooyntl4/n nooeynt 14/
10.

. siny/z . cosz?
lim = lim =
z—0+t x z—0 2\/5 -1

Problem Set 4 Differentiation

1. y = cosh 'z (z > 1)so write

dx dy 1
— cosh & — sinh L
x = coshy = i sinhy = iz~ snhy
1 1
(x> 1).

a Veosh?y — 1 S Va? -1

Comment At z = 1 we have cosh™'(1) = 0 and the tangent line to the curve
y = cosh™' z is vertical, so no derivative exists.

2. We are given that % =0-1land V = %777“3, where r and V' are the
respective radius and volume of the bubble. Hence % = 47r%. By the Chain

Rule we get

dav.dV dr
% = W a = (47T7’2>(01> :0'47'(7"2.
We require
v 2 3
g\r:o.s =0-47(0-8)* = 0- 2567 ~ 0 - 8042 cm? /sec.

3. Writing s for the separation of the lorries we have the equation s2 = x2+y2
where the x and y directions correspond to east and north. Differentiating with
respect to time and dividing through by 2 yields:

T + Yy

ss=zxr+yy=85=
s



Now 6 minutes corresponds to & = 0- 1 hours. We have 2(0-1) =30 x0-1 =

3,y(0-1) =40 x 0-1 = 4. Hence after 6 minutes we have s? = 22 + y? =
9+ 16 = 25, so that s = 5. Moreover & = 30 and §y = 40 are given. We may
now evaluate:

3(30) +4(40)  90+160 250

$lt=0.1 = — = h.
5t=01 5 5 5 50mp

Comment Alternatively, using a velocity vector diagram, we can see that we
have essentially a 3,4, 5 triangle of velocities.

4. We write A = zy so that A = 2y + iy. We want to evaluate A when z =
15,4 = 3and y = 6,5 = 2, so that A = (15)(2) + (3)(6) = 30 + 18 = 48m?/sec.

5. For y = x® we have y/ = 322 while for y = /= we have ' = %x_%. At
the common point (1,1) we have tan6; = 3(12) = 3 and tanf, = 3(1)"% = 1,
where 61,05 are the respective angles that the tangents make with the z-axis.

Our required angle is then 6#; — 65 and we have by a standard identity:

tan@; — tan 6y _37% _6-1 5

= = = _—:1
1+tanftanfy 143 243 5

)

tan(91 — 92)

and so the angle between the two tangents is 45°.

6.

dz 1 1 . 1 _1

- = 5@y +y) 2 (y)(=sint) + 5 (zy +y)72 (z + 1) cost
when ¢ = 7,we have r = cos § = 0, and y = sin § = 1. Substitutingz =0,y = 1
and t = 5 gives us

dz 1 1
—lies = 5(MOED + 5MM0) = —3.

7. % + % = = = 6, u(t) = 4. Differentiating the equation with respect to

time gives

~s|=

1 du 1dv7 dvi v? du

St =0 — = ———.
ca T i d

= 1_1_1_ 1 — :
Nowu=5= =5 — 5 = 55 = v =30. We require

[

dv 302

_|u:5 = 7?

o -4 = —144cm/sec.

That is to say the image is retreating at a rate of 144cm/sec.
8. Putting 6 equal to the angle between the ground and the ladder, the
length of the ladder is given by L(0) = — + =25. Since 0 < § < I and since

cos 0
L(0) — oo as 0 approaches either 0 or 7, it follows that there is a minimum

value that can be found by solving L'(6) = 0:

sinf  2cosf sin® 6 — 2 cos 0

0="L'(6) = - -
() cos2f  sin?6 cos2fsin? 0




At any critical points we have sin®6 = 2cos® 0 < tan®6 = 2. Now sec? 6
1+ tan26 = 1 + 23 for the critical value of 6. Continuing we have:

Wi

2
(142

1
(1+23)2

and sinf = tanf cosf =

o)
[N

cosf =
)

Therefore the minimum value of L(0) is

1 2
cosf  sinf

2.1 1+2%)2 2.
:(14_25)5_,_2%:(14-25)%z4-16m.

23

9. Let us take the shoreline for the z-axis with the origin at the point where
a right-angle to the axis passes through the lighthouse. Let the increasing
direction of = be the same direction as the beam moves along the shore and
let w be the angle that the ray from the beacon makes with the y-axis. Then

tanw = % = ¢ = 4tanw. Hence
P — 4 2 .
T =4sec”w - W.

We need to evaluate £ when w = 7. Now w is the constant angular velocity of
2r — T yadians/sec. Hence the required value of i is

10 5
2 167 8T
4(v2)2 28 = 21 _ Oy :
(V2)' 15 = 1g = 5 km/sec

10. f(z) =e* +x so
1 1
—1 ! _ _
f (‘T) |f(90) - f”(:c) |1 T er 41’

putting f(xz) = f(In2) in this expression then gives
111
em241 241 3

Problem Set 5 Integration

1. Put u = 2™ so that du = n2"~! and dv = e®dx so that v = e”. Integrating

by parts then gives I = z"e* — n [ 2" 'e” dz. Hence
I, =2"e" —nl,_1.

2. Using the result of Question 1 we obtain

I3 = 23e* 31y = a3e” 3 (x%e”—21)) = x3e*—3z%e"+61; = 2°e”—3x%e” +6(xe”—1Ip)



= 236" — 32%e" + 6ze” — 6 / e” dx. Therefore

/:C?’e”” dx = (23 — 322 + 62 — 6) + c.

3. Integrate by parts by putting dv = dx so that v = 2 and u = (sin™! z)"

so that du = n(sin~* z)"~! \/%. Hence our integral I becomes:

zdr
V1—a22’

for this new integral .J, integrate by parts again with v = (sin”' z)"~! so that
1

du = (n— 1)% dx and dv = \/% so that v = —v/1 — 22. Our integral
J then becomes:

J=—V1—a2(sin”tz)" 14+ (n—1) /(sin_1 x)""? dr; and hence

I =x(sin'z)" — n/(silrf1 r)" !

F=afsin™ )"+ ny/T= i ) = 1) [ a7

4. Putting n = 2 in the recursion of Question 3 now gives:

/(sin_1 z)?dr = z(sin™' 2)? + 21 — 22sin" 'z — 2/d:c =
z(sin~!z)? +2v/1 — 22 — 2.

5. Applying the arc length formula for y = 22 we get L = fol V1 + 4x2dx.
Put z = %sinht we get dor = %coshtdt,

\/1—1—4952 = \/1 + sinh? ¢t = \/cosh2t:cosht.

Using ¢ = sinh™"(2z) we get a lower limit of ¢ = sinh™'(0) = 0 and an upper
limit of ¢+ = sinh ™" (2). Hence we obtain:

1 sinh~1(2) 1 sinh~!(2)
L:—/ costhdt:—/ (14 cosh2t)dt =
2Jo 2 Jo

1 1 inh~ | .- . e
5lt+ 5 sinh 2[5 bR 5 sinh ™! (2) +cosh(sinh ™ (2)) sinh(sinh ™" (2)) —(0+0)].

Now cosh®t = 1 4 sinh®t so that cosh?(sinh™*(2)) = 1+ 2% = 5. Hence

L= %[sinhfl(z) +2V5] = w

6.

/2 /1
L= / V' ()2 +y (62 + 2/(t)2 dt = / Va2sin?t + a2 cos? t + b2dt
0 0

10



/2
Va2 +02dt = Z\/a? + 2.
2
0

7. The integrand diverges to infinity at x = 2 so we must split the integral
into: T+ J = f12+f24. Now

l
dx
I=li ———— = lim 3(-2)"?-31-2)"%]=3
A g~ AU =80 -2 7 =3,

J = lim [3(4 —2)'/3 = 3(1 — 2)1/%] = 3(2"/%).

=2+

Thus the answer is I 4 J = 3(1 + 21/3).

Comment: When evaluating an integral f: f@)dx = F(b) — F(a) we are
using the Fundamental Theorem of Calculus, whose proof requires that f(z) be

continuous along the interval (a,b). If this is not true, like in this example, it

may not work. To see an instance of failure, take f02 (md——ﬁ)z' If we ignore the

singularity at = 1 and evaluate —ﬁ}i = —1— (1) = —2, we have a nonsense
answer as the integrand is always positive where it is defined so the integral
cannot be negative. If you evaluate each part of this integral either side of the
singularity you will see that each diverges to 400 as the troublesome point z =1
is approached.

8. Substitute y = —z into the first integral I so that dox = —dy; we get

I=—1[ [fydy= [ [f(y)dy
which, up to the naming of variables, is the integral on the right

9. Denote the integral by I and use the result of Question 8 with a = —1 to
get

1—/1 dz
11—+ /14210

Adding the two versions of I together then gives:

21/1 (1 —2° 4+ V14 210) + (1 +2° + V1 + 210)
—1 (T =25+ V14 210)(1 + 25 + V1 + 219)

:I—/l 1+ vV1+20de
11—+ 1+ 204 (1 — 25+ 1+ 25) (V1 + 210)

_/1 L+ Vitalde  (tde 1,
T )i 2421420 S, 2 T2 7
10. From the substitution =z = % we get dxr = —% so that the integral I

becomes:

0 00
In4—1Int 4 dt
I:—/%-—dt:lnél/ A
oot_2+?+4 12 0 t2+2t+4

11



:>2[:1n4/ T di ;- b du
0

P8 2w (VAP
In4z U \joo  In2 1
=1= N [arctan(jg)} ' T4 [arctan(co) — arctan(ﬁ)]

ln_27r T 71112 T m/31n2

N v 5L g~ 0419,

Problem Set 6 Separable and linear first order differential equations

1. A separable equation:

% = —% =y l=—ht|+C
=y=(nlt|+C)".
2. Again separating variables:
dy
1492

=e”dr = arctany = e + C

=y = tan(e® + O).

3. The information translates as the d.e.

d 1
—y:—:/ydy:/dx
de vy

1
:>§y2:x+0:>y=\/m-

4. Similary to Question 3 we obtain:

dy _ o /dy /
dr 7 y2 *
1 1
=5 ——=x4+C=2y=——-—-.
Y 4 z+C
5. We have y = vz = Z_Z =0+ z% and our equation becomes

n dv_vx—4x_v—4:>dv_1(v—4 )_
v xdx_zfvz_l—v dr  z'l1—w v) =

| —

v—4—v(l—v) 1 0v*—4

1—w r 1—w

8

12



dzx 1—w
- 1
T v274dv (1)

and so the equation is separable in v and x. Now

1—1}7 1—vw 1 3

v2—4  (v—-2)(v+2) 4v—2) 4v+2)

Integrating both sides of the expression in (1) gives
1
Inz = —Z(ln|v —2/+3lnjv+2]) +c=jz7! =n|(v-2)(v+2)*|+c=
- y y y—2z (y+22)°
274 = Al(= - 2)(= +2)°| = 4] : | =
x x x

23
|(y — 22)(y + 22)®| = C, a positive constant.

6. Homogeneous equation: put y = vz. Then dy _ v+x% and our equation

becomes: p ) dml—i— )
v v
vreg =500 ) =-—
éz@ ::71+02+21)2:731)2+1
dx 2v 2v
2v dv dx
_302+1:?

1

= -3 In(1+ 3v?) =Injz| +C
= In|z|(1+ 30?5 = C

1437 == P14 L) =0

= 2°(1+ 3v°) = C = 27( +?)—
= 2° + 3zy* = C.
Applying the initial condition that y(1) = 1 gives 13 + 3(1)(1) = C so that
3 4 3xy? = 4.

7. Exact equation as with M(z,y) = 22 + y? and N(z,y) = 2zy + cosy

we have %—I‘y/f = %_1;/ = 2y. We therefore seek a solution f(z,y) = C where

%:zQerQ andg—£:2xy+cosy giving
x5 af dg
f:z:,y:—+xy2+gy = — =2zy+ — =22y + cosy
(e,0) = % W= o

= ¢g(y) = siny and so our solution is:

3
fla,y) = % +ay® +siny = C.

13



8. We seek f(z,y) such that
fo =ycosz + 2xe¥ = f =ysinz + x%e¥ + g(y),
we then obtain f, = sinx + 2%¢? + ¢'(y) = sinz + 2%y + 2 whence f(z,y) =
ysinx + x2e¥ + 2y (the constant of integration may be omitted, or what is the

same, taken as zero). Hence our solution is

ysinz + z2e¥ + 2y = C.

9. This is not exact as %f =2 and % = 1. Multiplying by the integrating
factor of z gives 2zydzr + 22dy = 0 and %zy) =2z = %j). Putting % = 2zy

gives f(z,y) = 2%y + g(y) so that g_zj; =22 + Z—Z = 22 so that we may take

g(y) = 0 and for our general solution we obtain:
2?y=Cory= I%
10. pu = (2y?)~! is an integrating factor for multiplying through by u gives
the equation:

1 1 T

To check: M(z,y) = 3+ = My = —5 and N(z,y) = —5 = No = —5,
thus showing exactness. To find f(z,y) we next write

1 1 T
fo=M= 5+§éf(z,y):1nlfcl+§+g(y); hence

r dg x

fy=——7S+-—"=

2 dy oy

so we may take g(y) = 0 to obtain the implicit solution to our differential
equation:

2

1n|x|+£:c;$7é0,y7é0.
Y

Comment: Here we relied on a rabbit-out-of-the-hat integrating factor but
sometimes we can be systematic. For instance, if (M, — N,)/N is a function of
2 only then the equation can be made exact by multiplying by the integrating
factor p, which is itself the solution of the linear differential equation

du My —N,
dx N

For example, this method will yield that 4 = z is an integrating factor of
(3zy + y?)dz + (2% + zy)dy = 0, the solution of which is then found to be
:I:3y + %nyQ =c.

14



Problem Set 7 Linear and second order differential equations

1. We have %Jr%y = x, which is a first order linear equation with integrating
factor p(z) = e/ " = e3In@ = ¢na® — 23 Multiplying throughout by p(z)
gives

d
B3 322y = 2 = (23y) = 2*
dx
5
= iy = % +C

' 7x2+C
Y=t

Comment: as with any equation, we can check that the solution works:

dy 2z C 32> 3C 9
x%+3y:x?f3xﬁ+7+gzx.

2. Another linear first order equation, % + ytanhx = W with

plx) = el TEsE = eln(eoshz) — cosh 50 we obtain:
d
coshz ¥ +ysinhz =e™*
dx
= (ycoshz) = e * = ycoshex =C — e *

C —2e " Ce* -2
:}y:— —

eT — e~ e2rx _1°
3. We have the linear equation % + & = ¥ 5o that p(t) = el Tt = e

Hence we have
(e%i)/ = Ke% =eTi=C+ Ke
L N R

Using the initial condition that ¢(0) = 0 we obtain 0 = C'+ % so that C' = —4:

B

t

o

= eTi(t) = %(e% —1)
i(t) = %(1 _ e,

15



1 3

0
— == —:
2 7T Y

1=
ce )

Sy = §€Z2 — -

2 2
5. The auxiliary equation is A2 =3\ —4= (A —4)(A+1)=0= A =4or
A = —1. Hence the general solution is y(z) = Ae?* + Be™*.
We put y,(r) = Acosz + Bsinx so that y,(r) = —Asinz + Bcosx and
y,(x) = —Acosx — Bsinz. Substituting accordingly into our equation and
collecting like terms gives;

—_

(—A—3B—4A)cosz+ (—B+3A—4B)sinz = 2sinx

3 5
= 5A-3B=0&34-5B=2=A= 1 B=-

1
= yp(z) = ﬁ(?) cosx — hsinz).
Hence the general solution to our equation is

1 1
y = Ae4m+Be_I+ﬁ(3 cosz—5sinr) =y = 4Ae4I—Be_””—ﬁ(3 sin x+5 cos x).

Putting y(0) = 3'(0) = 1 gives the equations A+ B + 1—?’7 =1, 4A—- B - 3% =1.
Adding these equations gives 54 =38 = A = 38 whence B=1—-£& — £ = 2.
Hence the solution required is:
56 A T 4 3 cos si
= —€ —-€ - r— ——S1inax.
T 5 17 17

6. We seek a particular solution as a polynomial of the same degree, that
is put y,(z) = Az® + Bz + C = y,(z) = 24z + B, y/(x) = 2A. Substituting
accordingly gives the equation

2A — 3(2Az + B) — 4(Az? + Bz + C) = 42*
= —4Ax? — (4B + 6A)x + (—4C — 3B + 24) = 4a2°.

Equating coefficients gives

3 3
A:—l,B:—5A25 and

2A-3B 1 9 13
C=—p=3(-2-9)=-%
1
Therefore y,(r) = —2* + gz — ;

7. From Question 5 we see that e~ is a solution to the homogeneous equa-
tion so our form of particular solution is y,(z) = Aze™®, whence

yp(x) = Ae™® — Aze™, y/(x) = —2Ae™" + Aze™".

16



Substituting accordingly gives:

(—2Ae ™" + Axe™) — 3(Ae™ — Aze™™) — 4(Aze™ ") = ™"
_ _ 1
= —bAde " =e zéA:—g.

Hence a particular solution is

yp(x) = ——ze”

8. Putting p = % gives 2 + p = 22 so that 2 + 2 = z. Hence p(z) =
el ¥ = eln® = . Therefore
3

(px)’:xQ:px:%—i—C

dy =22 C z3
N = —— = — —_ = — 1 D
L= 3+x:>y(:13) 9+Cn|:z:|+

Substituting ¥y = 0 and ¢y’ = 1 when x = 1 into the solution gives, 0 =
% 4+ 0+ D so that D = f% and 1 = % + C so that C' = %, which all yields:

) 1
= 4+ -,
y(@) =5 + glnfa] —

9. Differentiating xj = x1 + 2 and substituting using the given equations
gives
" / / !/
] =] +xy =27 + (4o + x2)

=) =) +4x1 + (2} —21) = 2 — 22} — 321 = 0.

The characteristic equation of this d.e. is A2 —2A -3 = (A +1)(A —3) = 0 so
that
z1(t) = Ae™' + Be* = 2 (t) = —Ae™" 4 3Be®

= 29(t) = 2 (t) —21(t) = —Ae™" +3Be3* — Ae™" — Be?!
= —2A4e " +2Be%,
xi(t) = Ae™t + Bedt xo(t) = —2A4e™ + 2Be.

10. Writing x = (z1(),72(¢))7 we may express the system in the form

x’ = Ax where
1 1
a=[i 1]

(1-AN?’=4=1-A=+2= )€ {-1,3};

with characteristic equation

17



taking A = —1 we get for an eignevector the equation 2x + y = 0 so that
e; = (1,—2)T while for A = 3 we have —2z +y = 0 so we may take ez = (1,2)7.
Our general solution is then:

1 1
x = AeMle; + Bettey, = Aet( 2) + Be3t (2)

& 21(t) = Ae ' + Be®', x5(t) = —24e7" + 2Be®.

Comment Note that the characteristic equation of the second order differ-
ential equation in Question 9 is the same as the characteristic equation of the
coefficient matrix in Question 10.

Problem Set 8 Power Series

1. The series has the form

oo

2.n 1 S\n
Z(g) AT ty)
n=0
so that the centre of convergence is © = —g. The radius of convergence R
satisfies
2\n+1 1
1 B e, 2 n?4d 2
= =L=lim [~ = lim So——— = o
Thus R = 2. The series then converges absolutely on (-2 — 3, -5+ 3) =
(—4,—1). At the endpoints of © = —4 and z = —1 the respective series are
I LI I
o n24+1’ = n2+1’

which both converge. Therefore the interval of convergence of the power series
is [—4, —1].
2. Integrating term-by-term we find that

o (71)nx2n+1

T dt o x
tanz = => )Mt =y
arctan /0 112 n_o/o (1) o+ 1

n=0
23 25 (—1)"$2"+1
—p 4 Ly L <<
3.
T g oo T o0 (_1)n$n+1
Inll - = —1)"™"t"dt = —, <z <]
it = [ =3 [y =3 RS :

18



replacing by —x in the previous formula gives:

e n+1

x
1n|1—:1:|:Z .
n:On+1

Summing these formulas and dividing by 2 then gives on the interval (—1,1):

1+z x2ntl A
’1—x’722n+1zx+§+?+.”

4. The pattern of derivatives of sinx, beginning from the Oth derivative,
is sinx, cosx, —sinx, —cosx,sinz,---, a cycle of length 4. Hence the terms
f((0) in this case have the pattern sin 0, cos0, —sin0, — cos0, - - - , which is to
say 0,1,0,—1,- - .It follows that the McLaurin series for f(x) = sinz is

n 2n+1 3 5

f(" -

n=0
which, by the ratio test converges for all z € R:
1 (—1)nHlg2nt3  (2n +1)! ) z?

— = lim |
R

. =1 — | =0.
nSoo! (21 + 3)! p4wm%ﬂ| nf&kmp+m@n+2ﬂ

Since this series alternates in sign and the absolute value of the terms decreases
montonically to 0, the error in truncating the series at the nth term, a, is
bounded by |an+1| We wish to estimate the value of sin3° = sin 2% = sin .
For n = 2 in (2) we find that term has absolute value

o

0 5,<0 5x 107°.

Hence our required approximate value for sin 3° is given by

s 7'('3

— — —— =~ 0-05234.
60 603 -3! 0-0523
5.
x ) 4 tG t8
E(z) = /0(14 +575+57---)dt
t3 t° t7 9

3 5x2 7Tx3  9x4!
2n+1

- ;(71)71 (2n + D)n!’

and this series converges for all x as this is true of the series for e*. Again, the
error does not exceed the first omitted term so, with x = 1, we need the least n
such that,

n n.
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By trial we find that 13 x 6! = 9,360 we suffice. Thus we take

Boz) = 00X

(n+1)! !

11 1 1 1
E)ml—ocd —— —f — — —— ~ (- T47,
S st 0 2t 1320”0

6. We apply the error bound E,(z) = %(x x0)" "1 here 7o = 0,

f(”+1)(:z:) = eX < el = e and so we seek the least n such that

e
—— <10 %= !> e x 10%
CESH S ntrii>e
we find that 10! = 3,628, 800 is the least factorial that exceed our bound, giving
n = 9 gives the required approximation, so the final term required in the sum
o 1
1S 91

7. With f(z) = (1 +z)" we see that for n > 1, f("(z) = r(r —1)---(r —
n+1)(1 + x)"~" so the binomial series is

(1+2)" i r(r—1)( T—2)~ ~(r—n+1)xn.

To apply the ratio test we seek the limit

r(r=1)--(r=n) .n+1

lim (ntL)! = lim |— ‘ = |zl,
n—oo | r(r=1)-- ('7" n+1) " n—oo 'n 4+ 1
n:
so that the series converges if —1 < x < 1.
8. Putting r = f% in the binomial series gives the expansion
2n—1
oy

_1+Z *% *%> ( 2 /.

1H"1-3-5---(2n—1
—1+Z @),

2

this series converges for —1 < x < 1 (for x = 1, series converges by alternating
series test).

9. Replacing = by —t? in the series of Question 8 and then integrating we
get

1 1-3-5 ) s
=1 £,
Vv1—t2 +nz::1 21 ’

L Tdt > 1-3-5---(2n—1)
1 — — 2n+1
e /0 iRk Dl e

n=

20



3
3
—rb S (1< < 1),

6 40
10. We assume that
. e - \Nn 4n 4n+2 S 1+4n 3+4n
e = (zsc') :Z : I . il : I . )i
— nl o (4n)!  (4n+2)! o (I+4n)!  (3+4n)!

taking the real part of this equation then gives

_ e (71)"562" _ 72 74 76
n=0

Problem Set 9 Functions of several variables

1. The point P is indeed on the given circle, as is readily verified and in the
upper half sphere, which is described by the equation z = /1 — 22 — y2. Then

2 o2\t
% = o —a”—y7)?) =— Y and we require
oy oy V1—2a2—y?

0z L

— 3 —
2

1
ol y=1 5
3973 2

o Ji-3r-0y

Comment Alternatively, differentiate 22 +y2+ 22 = 1 implicitly with respect
to y with = held constant to get 2y + 2zg—§ = 0 so that g—; = —%; evaluating
this at P then gives the same answer.

2. We have P = KTV ! so that

oP KT 1 kKT P
ov. vz v v VvV
3. f(x,y) = e**7Y + sinzy so that
fo=2e*""Y 4 ycoswy = fyo = —2** 7Y + cosxy — wysinzy;
fy=—€*"Y 4 xcosay = fuy = —2€** 7Y + coszy — 2YSinTY = fy0.
4. We see that f, = zf—fyz so that
fon = 2(2% +y?) — 4o 2y® — 227
re = @2 +12)2 (2422
By symmetry it follows that
f = 222 — 2y
vy — (xz 4 y2)2
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5. We have
) 2 0 2 2
au _ %, @ e = — x 5, in accord with the first equation.
or x2+4+y? Oy 1+ (%) 2*+y
0 2 0 2(=% 2
au_ 7y’ T (122 = Y , in accord with the second equation.
oy x2+4y? O 1+ 4 2+ y?
6.
dw Owdr Owdy OJwdz
Rt i et A Hn —sint t 1)(1
@ orda Taya T osa (y)(=sint) + (z)(cost) + (1)(1)
= (sint)(—sint) + (cost)(cost) = 1 = —sin®t + cos®t + 1 = 1 + cos 2t.
d
d_1:|t:0 =1+ cos(0) = 2.
7. 5 )
5o = Wer)(2) + (2e™)(5) = (2y + - )e™
I . MR}
v v v
0z - . u U\ o
= e (e (— ) = (= (o))
2
_ U U 2utv)(u/v) __ 2u 2u+v)(u/v
—(;—(Qu—i—v)(ﬁ)e( ) /)__v_2€( )(u/v)
> oT oT 2 2
™ ™
dT = —dL + —dg = ——dL — —dg.
oL T o T o Ty T 28 Y
We have dL = 135 L and dg = —1559. Thus

1 L 2 L 1
dT — —— 97 __(_i)_” —=—3T.
100 g 10007 2 g 1000

Therefore the period T of the pendulum increases by 1.3%.

9.
vf_((x2+y2)—2$2 -2z )= ( y? —a? B 222 )
- (z2+y2)2 ’(x2+y2)2 - (z2+y2)2’ (12+y2)2 :
2 52 2 22
Hence vf(2)3) = ((232_;’_322)2) _(222_32))2) = (%a _%)

10. At the point (zg,y0) = (2,3) we have zy = ﬁ = %; fu(zo,y0) =

1—29, fy(zo,y0) = 71%9. The equation of the tangent plane at (zo,yo, 20) is

fe(w0,y0)(® — 20) + f,(20,%0) (¥ — Yo) = 2 — 20, Which gives:
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5) 8 2

O (2 Sy —3) =z =,
6o * Y g3 =273

Problem Set 10

1. Vf(z,y) = (6zy,32?); Vf’(u) = (6(1)(2),3(1?)) = (12,3); next |u| =
V32+42=5and so 1 :%u. Hence

2. VT'(x,y) = (2ze™Y, —x%e7¥). The temperature increases most rapidly in
the direction of the gradient, which at (2,1) has value VT'(1,2) = (2e 72, —e™2);
equivalently the direction of (2, —1).

3. The tangent plane equation is Vf‘(xoyyo)o(x—xo) =z—2zp, where x =(z,y), Xo =
(20,90). We have

Vf‘(g,l) = (21‘y;1’2)‘(271) = ((2(2)(]‘)ﬂ 22) = (4ﬂ4)
Hence our tangent plane is given by
(4,49)e ((z-2),(y—1) =2z—-4=4r-2)+4(y-1)=2-4=

dr+4y — 2z = 8.

The vector (4,4,1) is normal to this plane so the normal line at (2,1,4) has
equation:
r—2 y-—1
Ak —Y

4 4

4. We have f,(z,y) = 2e—4y+12, f,(z,y) = —4x—4y—12. For a horizontal
tangent plane at (xg, yo) we must have both partial derivatives equal 0, thus we
obtain the equations:

(x—2y=-6,&z+y=-3)=>-3y=-3=y=12x=-3—-1=—4.

Hence (x0,y0) = (—4,1). The corresponding value of z = zy on the surface
satisfies zg =

(—4)>—4(-4)(1) - 2(1%) +12(—4) - 12(1) =1 =16+ 16 —2—48 — 12— 1 = —31.

Hence the point of tangency is (—4,1, —31). The equation of the tangent plane
is z = —31.
5.
fm(xvy) = 31‘2 - — 25 fy(z;y) = 9y2 -9
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For stationary points, we put f, = f, = 0 giving

2
307 —x—-2=0Bx+2)(z-1)=0=z=1, -3

and 42 = 1 = y = £1. Hence our four stationary points on the surface form

the set
2

(0,1, 0,71, (-2,1), (-2, -1},

6. We have

fzz(xvy) = 6x — 1, fyy(z;y) = 18y, facy(xvy) = 0.

Hence D(z,y) = foxfyy — (fay)® = feafyy- At the respective points as listed in
Q8 we obtain:

D(1,1) = (6 —1)(18) > 0, fz2(1,1) > 0= (1,1)is a minimum;
D(1,-1)= (6 —1)(—18) < 0 = (1,—1)is a saddle point;
D(—; )=(—4-1)(18) < 0= (—%, 1)is a saddle point,
D(=2,-1) = (=4 = 1)(=18) > 0, fou(—3%,—1) <0 = (—2,—1)is a maximum.

7. We minimize the square of the distance of the point (—1,3,2) to points
(x,y,z) where z = 4 — 2 + 2y. This gives the function

f(z,y) = (x+1)*+(y—3)*+(4—2+2y—2)* = 222 +5y° —4xy—2x+2y+14. Hence
Put f, = f, = 0 to obtain:

7
:-

y &=

|~

20 —2y=1=2x—-by=y=0,2 =

Therefore the required closest point is (%, 0, %)

Comment Note that fiufyy — (fzy) = 4 X 4 — (—4)? = 0 is inconclusive in
this case but the point must represent a minimum as it is the extreme point of a
positive quantity that becomes unbounded far from the point from which we are
measuring. The geometric alternative is to find the intersection of the plane with
the line through (—1, 3,2) in the direction of a normal vector to the plane, which
we can take to by u = (1, —2,1). This gives the line x + 1 = f%(y —-3)=2-2,
which yields z = x + 3 and we also have z = 4 + 2y — x, which quickly gives the
required point (3,0, 2) also.

8.

Vi(z,y) = (32%y°, 52°y*) = AVg(z,y) = (1,1).

Thus
3225 =X =523yt = 3y =5z alsox +y = 8;
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:x+g$:8:> 21628:30:3,9:8—96:8—3:5-
This gives the extreme point P(z,y) = (3,5). Since f(z,y) is negative on the
line except for the interval 0 < z < 8 we see that P is indeed a maximum of f
on the line x +y = 8.

9. Here we have, with an obvious notation, zyz = 32 so that g(x,y,z) =
xyz — 32 = 0 is our constraint function; summing the area of the five sides of
the open box we obtain the area function f(z,y,2) = 2zy + 2yz = zy. Hence
we put

Vi(x,y,z) = (22z4+y,22 +x,22 4+ 2y) = AVg(z,y, 2) = Myz, wz, zy).

Hence
22+y=2Ayz, 2z =2 =Arz, 2(x +y) = \zy =
2 1 2 1 2

2 2 2 Yy x
Yy z T z x Yy Yy ox 2 2

Substituting in xyz = 32 we get 23 = 64 = = y = 4, z = 2. The box with
minimum surface area for a volume of 32cm?® has dimensions 4 x 4 x 2.

10. We wish to minimize f(x,y) = 22 +y? subject to the constraint g(z,y) =
22y — 16 = 0. We get

20 =2 zy = (1 —Ay) =0
2y =AM =2y—\?=0
z?y = 16.

The first equation gives either x = 0 or Ay = 1. However z = 0 is inconsistent
with 22y = 16. Hence Ay = 1. Multiplying the second equation by y gives

2% = \ya? =2 = 2 = £V2y,

and from x%y = 16 we now get 2y = 16 so that y = 2. This gives two candidate
points: (+2v/2,2), both of which have distance to the origin of /8 + 4 = /12 =
2v/3 units, which clearly do represent points of closest approach.
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