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Solutions and Comments for the Problems

Problem Set 1

1. We take the hint and write a = 0-63. Then 100a—a = 63-63—0-63 = 63.

Hence
63 7

“Too T 1
Comment We shall see this kind of trick later on as well to simplify other infinite
repeating processes. A more prosaic point is that students should not forget to
cancel down a fraction if possible.

2. 110101109 = 2' + 22 +24 + 26 4+ 27 =2+ 4 4+ 16 + 64 + 128 = 214.
3. 100 = 64+ 32 + 4 = 26 4 25 4+ 92 g0 that 100 = 11001005.

4. Following the method of Question 1 for base 3, we write a = (0-20)3, so
that 1003a —a = 20 - 203 — 0 - 203 = 203. Hence

20 10 3

a@= (5)3 - (ﬁ)g —
5. Following the hint we compute:

9 1
20 3 60 60’ 60 10 60 60’

so that
9 1.1 1
20 3 10 60
Comment This technique of subtracting the largest reiprocal possible will
always yield an Egyptian decomposition as it can be shown that the numerator of
the fraction remaining after each subtraction is less than before. The number &
that is the denominator of the largest reciprocal less than the given fraction 7+ is
given by k = [Z]. Another technique however for finding these decompositions
is that of the Akhmim papyrus (6th century AD), which is based on applying
the identity:
m m m
[E— + .
pg  plp+q) alp+a)

?ppllying this approach to the fraction 2% yields the two-fraction decomposition
= Jr =,
475

6.
1729 = 13 +12% = 93 + 103,



Comment This example is always talked about because, as Ramanujan pointed
out to Hardy in a conversation about a taxi cab number, 1729 is the smallest
number that is the sum of two cubes in two different ways.

7. Let a be the number that agree with the proposal and let b be the sample
size. Then we are told that

100a o 768 768
b =08 = 0= 700 T Tooo

The smallest the numbers in this ratio can be, given that a and b are positive
integers, is found by cancelling this fraction to its reduced form, which gives
26 " Hence the smallest the sample size could be is 125 (of which, 96 agreed

125°
with the proposal and 125 — 96 = 29 did not).

8. The first three primes are 2,3 and 5. We find in each case that 22 — 1 is a
prime as we get 3,7 and 31 respectively. Hence applying the formula of Euclid
we get the three perfect numbers 2P~1(27 — 1) as being for

p=2:2422-1)=2x3=6, p=3:2%(23-1) =4x7 =28, p=5: 2%(2°~1) = 16x31 = 496.

9. The prime factorization of 220 is 22 x 5 x 11 and so the sum of its factors
is

14 (245+11)+ (4+10+22+55) + (20 + 444 110) = 1 + 18 + 91 + 64 = 284.

On the other hand the prime factorization of 284 is 22 x 71 and so the sum of
its factors is

1+ (24 71) + (4+142) = 1 + 73 + 146 = 220.

Therefore (220, 284) is indeed an amicable pair.
Comment Indeed this is the smallest amicable pair. Another small amicable
pair is (1184,1210) found by 16-year-old Nicolo Paganini in 1866.

10. FRED, EATS < 10,000, ADDER > 10,000 = A = 1.

If T = 0 then there is no carry from column 1 and no carry from column
3. Then either R+1=Dor R=9,D=0. f R+1 =D then R < D, but
R =D + S! (contradiction). If R=9,D =0 then 0+ S = R = S = R! Hence
T #0, soT =9, and there is a carry from column 1.

Thus R < D, there is carry to column 3, so R+2=D. D+ S=10+ R =
R+24+4S5S=10+R=5=8 IfR=0then D=2. E+F =12, FE # F}
E #0,1,2,3 (for otherwise F' = 9!) or 4(otherwise F' = 8!). If E = 5 then
F=71HE=6=FE=F!If E=T7then FF=5; F#38§,9.

Now R#A#1(asA=1. fR>2=D2>4= E+F > 14. Hence
E+#0,1,234,E#4£5(asF#9) E+#6 (as FF#£8,9), E#7 (as E # F and
F #£38,9); E # 8,9. Therefore there are just the two solutions:

7,052 + 5,198 = 12, 250; 5,072 + 7,198 = 12, 270.



Problem Set 2

1. In(10%) = 61n10 ~ 19.8 and so 20 is the least positive integer k such that
2% > 108. Hence, in binary, 10° has 20 digits.

=272 g0 that as a binary *decimal’, 1 =0 01.

=

3. Any integer can be written uniquely in binary, which is to say as a sum of
powers of 2. Hence B = {1,2,4,8,16,32,64} is a set of order 7 and any number
up to the sum of its elements, which is 27 — 1 = 127, can be written as a sum
of some subset of B.

4. We require
a +(* = ¢*)? =0+ ) = a® =49’ = a=2pq.

5. We put p? + ¢ = 17, so we take p = 4 and ¢ = 1. Then p? — ¢ =
16 — 1 = 15 and 2pq = 8. The trio of sides for the required right-angled triangle
is (8,15,17).

6.
13 6 1 18—-13 5

_:3 - - = = —

[6] 13 3 39 39’

(39 _g 5 _1_40-39_ 1

5' 73 8 312 312’

7 {l 11213234
1524235722523 4° 5"

8 & 9. Since $1 = 100 cents and all coins except the penny are multiples of
5, the number of pennies must be a multiple of 5. If that number were 35, the
remaining coins would total at least (50—35) x5 = 15x5 = 75 and 35+ 75 = 110,
exceeding the target total. Clearly if the number of pennies were less than 35
the target would drift further out of reach. On the other hand 50 pennies won’t
work and therefore the number of pennies in any solution is 40 or 45.

If we try 40 pennies then the remaining 10 coins sum to 100 — 40 = 60c.
By the same argument as in the previous paragraph we see that the number
of nickels (5¢ coins) must be at least 8, but 9 or 10 nickels do not provide a
solution. With 8 nickels there is 60 — (8 x 5) = 60 — 40 = 20c remaining to be
made up of two coins, which then must be 2 dimes (10c coins). This gives the
first solution:

(40 x 1) + (8 x 5) + (2 x 10) = 100.



Next, let us examine the alternative possibility that the number of pennies is
45, which requires us to make up 100 — 45 = 55¢ from 50 — 45 = 5 coins. If
the number of nickels is even, we require 1 quarter to give 55 (as 55 is an odd
multiple of 5). Hence we need to make up (55 — 25) = 30c from the 4 remaining
coins. Clearly this is only possible with 2 nickels and 2 dimes, giving a second
solution:

(45 x 1) 4+ (2 x 5) + (2 x 10) + (1 x 25) = 100.

If on the other hand the number of nickels were odd, then we cannot use any
quarters and we would have to compile 55¢ from 5 coins, each of which is a
nickel or a dime. However, if there were just a single nickel, we would need 5
dimes to make 55c, while if we try 3 nickels we need 4 dimes, while 5 (or more)
nickels are clearly impossible. Hence there is no other solution to this problem
apart from the two that we have identified.

10. Each man has % = 2% loaves, costing the hunter 8 piasters, that is
8+ % = 3 piasters/loaf. The shepherd with 3 loaves gave away % of a loaf so
is owed :li -3 = 1 piaster. The other gets 8 — 1 = 7 piasters (having given the

hunter 25 = % loaves worth % -3 = 7 piasters).

Problem Set 3

1. 146 =3 +2-3%+3%+0-3' +2-3° = (12102)5.

2. The sum of the vertices is 1 +2+--- +8 = 5 - 8.9 = 36. Each vertex
contributes to 3 faces of the cube so the total sum of the faces is 3 x 36. Since
each face has the same sum, that common sum is 32# =18.

3. The sum of the edgesis 1 +2 4 --- + 12 = %~12~13 = 78. Each edge
contributes to 2 faces and so the common edge sum of the faces is % = 7—38 =
26.

Comment And it is possible to find a number of solutions to the problems

of Question 2 and 3.

4. We see that ¢ must satisfy

¢:1+%:>¢2—¢—1=0:>¢=1i7 V21+4,

1+v5
2

and since it is also evident that ¢ > 0 we conclude that ¢ =
ratio.

, the golden

5. Up to and including 1000 there are 9% = 500 even numbers, [0 | = 333



multiples of 3, and = 166 multiples of 6. Hence the total of all numbers
not divisible by either 2 or 3 in this range is

|45

1000 — (500 + 333 — 166) = 1000 — 667 = 333.
6. 74 = 2401 =1 (mod 100). Now 355 = (88 x 4) + 3 so we get
7355 = (74)88 . 73 = 188 . 343 = 43 (mod 100).

Hence the final two digits of 73°° are 43.

7. All factorials n! where n > 10 contain the factors 2,5 and 10 and thus
are divisible by 2 x 5 x 10 = 100 and so their final two digits are 00. Hence

0'+5!'+10'+---+100!' = 1+ 120 + 0 (mod 100) = 21 (mod 100).

Hence the final two digits of this sum are 21.

8. The highest prime powers up to 10 are 22 = 8, 32 = 9, 5, and 7. Hence
the smallest number divisible by all integers from 1 to 10 is their product 8 x
9 x b xT7=2520.

9. Let L = {50,4x20,1x5,4x2}. The sum of L is £1.43. It is not possible
to get £1 from L, for suppose this were possible. We must include the 50p (as
the remainder only make 93p). Since 50 + 5 + 8 = 63 we must have at least 2
x 20p, and not more than 2 x 20p as we must include 50p. We then have 50 +
2 x 20 = 90p and the remaining 10p cannot be made up from the smaller coins.
Hence L is a solution.

Now let C' be a maximal collection that can’t make £1. Suppose that C
sums to at least £1.43. We show that in this case C' = L, which completes the
proof.

Clearly C has no more than 1 x 50p and no more than 4 x 20p.

If C' has more than 1 x 10p, we can take one 10p and pair off the remaining
10p pieces, replacing each pair by 20p to give a new collection that has the same
total value and also cannot make £1. (For if we could make £1 with the new
collection, by replacing 20p coins by pairs of 10p’s, we could make £1 from the
original C'; which we cannot.) The same argument applies to multiple 5p pieces,
(replacing pairs by 10p pieces) so we may assume that C has at most 1 x 10p
and at most 1 x 5p. By the same token, we may assume that there are no more
than 4 x 2p pieces (as we could replace 5 x 2 by a 10) and at most 1 x 1p piece
(as pairs of 1p’s could be replaced by 2p’s).

This means that C' is contained in the set {50, 4 x 20,10, 5,4 x 2, 1]. However,
50 + 4 x 20 + 10 = 100, so at least one of these coins must be deleted from
C. If we delete 50p then C sums to only £1.04, so 50 is included. If we have
no more than 3 x 20, then C' sums to only £1.34, so that C' also contains 4 x
20, and so not 10p. Hence either C = L or C = L + 1p, but the latter is not



possible as it gives 50 + (2 x20) + 5 + (2x 2) + 1 = £1.00. Hence C' = L, as
required.

10. From column 5, M = 1 since it is the only carry-over possible from the
sum of two single-digit numbers in column 4. Since there is a carry in column
5, O must be less than or equal to M (from column 4). But O cannot be equal
to M, so O is less than M. Therefore O = 0. Since O is 1 less than M, S is
either 8 or 9 depending on whether there is a carry in column 4. But if there
were a carry in column 4, N would be less than or equal to O (from column 3).
This is impossible since O = 0. Therefore there is no carry in column 4 and
S = 9. If there were no carry in column 3 then £ = N, which is impossible.
Therefore there is a carry and N = E + 1. If there were no carry in column
2, then (N 4+ R) (mod10) = E, and N = E+ 1,80 (E+ 1+ R) (mod 10) = E
which means (1 + R) (mod 10) =0, so R = 9. But S =9, so there must be a
carry in column 2, and so R = 8. To produce a carry in column 2, we must have
D+ FE=10+4+Y. Now Y is at least 2 so D+ F is at least 12. The only two pairs
of available numbers that sum to at least 12 are (5,7) and (6,7) so either E =7
or D=7. Since N = F+ 1, E can’t be 7 because then N =8 = Rso D = 7.
Finally E can’t be 6 because then N =7 =D so F =5 and D+ E = 12 so
Y = 2. Our final sum is therefore 9,567 + 1,085 = 10, 652.

Comment This puzzle type goes under the heading of verbal puzzles or al-
phametics.

Problem Set 4

(3675,2058) — (2058,1617) — (1617,441) — (1176,441)
— (735,441) — (441,294) — (294, 147) — (147,147).
Hence the hef of 3675 and 2058 is 147.

516 =1 x 432 + 84
432 =5 x84+ 12
84 =17 x12;
Hence the hcf of 516 and 432 is 12.

3. Starting from the penultimate line of the calculation:
12 =432 — (5 x 84) =

84 =516 — 432 =



12 = 432 — 5(516 — 432) = 432 — (5 x 516) + (5 x 432) =
12 = 6 x 432 — 5 x 516.

Hence m = —5 and n = 6.

Comment This process of reversing the algorithm, beginning with the penul-
timate equation and working each equations in reverse, eliminating the interme-
diate remainders at each stage, will always yield the gcd expressed as a linear
combination of the original number pair. In this way the hcf of a pair of numbers
can be expressed as a linear combination of the two numbers in question and
this is very important for both practical and theoretical reasons. It forms the
basis for the general method of solving linear congruences, that is equations of
the form ax = b (mod m)(meaning find x such that m is a factor of ax — b) and
more generally for solving systems of such congruences using what is known as
the Chinese Remainder Theorem, that name arising because this problem type
was popular in ancient Chinese problem sets. Moreover, if two numbers a and
b are coprime , meaning that their hcf is 1, then the algorithm can be reversed
to find integers (of opposite signs) x and y such that ax + by = 1. This fact
is often exploited in number theory including in the proof of Fuclid’s Lemma,
which says that if p is a prime factor of a product ab, then p divides at least one
of the numbers @ and b. The modern theory of internet cryptography is very
firmly based on a body results which all stem from the euclidean algorithm.

4.
35=22+13
22=13+4+9
13=9+4
9=2x4+1

Working these equations backwards then gives
1=9-2(4)=9-2(13-9)=—-2(13) + 3(9)
= —2(13) + 3(22 — 13) = 3(22) — 5(13) = 3(22) — 5(35 — 22)
= 8(22) — 5(35)

and so m = 8 and n = —5.

5. We have the lem of 9 and 15 is 45 so we want (32, 22) = (2024) _ 4

15 15 15"

6. We want the least integers m and n such that %" = 22, which gives 2 =
8x9 _ 72 _ 6 H iq 4 — 8 —_24 _'8
551 = 6o = 7~ Hence the least common multiple is § x 6 = 1z X 5 = 5 = 3.




7. Let us begin by denoting (=< by h, where [b, d] denotes the lem of b and

[b,d]
d. Write r = ¢ and s = 2 . Then
r_a [bd _ a [bd
h b (a,c) (a,c) b

and by definition of highest common factor and least common multiple, both
numbers in the preceding product are positive integers, and so h|r (meaing h is
a factor of ). By the same argument, h|s also and hence h is a common factor
of r and s.

Conversely, let y = % be any common factor of r and s so that

% k:% g - l%say with k,1 € Z+.

Without loss we may now take (a,b) = (¢,d) = (e, f) = 1. Since (a,b) = 1 there
exists t € ZT such that ke = ta and f = tb. Tt follows that f is a multiple of
b and, by the same token, a multiple of d and so f = u[b,d] for some u € Z¥.
Next we verify that e|a. If this were not so that there would exist a prime factor
p of e such that p|t. But then plt||f so that p is a common factor of e and f,
contrary to the condition that (e, f) = 1. Hence e|a and likewise we have that
elc so that e|(a,c). Therefore we may write (a,c) = ve for some v € ZT giving

us:
e_ (a9 _ (a0 _

f oulb,d] ~ [b,d
which shows that & is indeed the highest common factor of r» and s. Finally we
note that it follows from the previous equation that h is a multiple (vu) of any

common factor % of r and s.

8. For positive rational numbers r = £ and s = £ the least common multiple

b
| exists and
a c [a, c]

L=l = (b,d)’

For the given number [ is a multiple of r as

and both terms in the product in are integers. Similarly é € ZT and so | as
defined in is a multiple of both r and s.

Next suppose y is a multiple of r and s so that y = ? = k—lf = =3¢ for some
k,m € Z*. Without loss we may now take (a,b) = (¢,d) == (e, f) = 1. Since
(e, f) = 1 there exists ¢t € Z*such that te = ka and tf = b. Hence f|b and by
the same token f|d so that f|(b,d) and we may write (b,d) = uf say. Next we
show that ale. If we suppose this is not the case, it would follow from te = ka



that there exists a prime p such that pla and p|t. It then follows from ¢f = b
that p|b also, contradicting that (a,b) = 1. Hence ale and likewise we may infer
that c|e also. Hence e is a multiple of both a and ¢ and so e = v[a, ¢] for some
v € Z*. From this analysis we conclude that

e [a, c}

- =uv = uvl

f (b,d)

so that [ is indeed the least common multiple of r and s and l|y as claimed.

9. Assume that (a,b) = (¢,d) = 1. Let p be a prime factor of (a, ¢) so that p|a
and p|e. If it were the case that p|[b, d] then p|b or p|d. In the first case it would
then follows that p|(a,b) and in the second that p|(c,d), giving a contradicting
at least one of the assumptions that (a,b) = 1 and (¢,d) = 1. Therefore h as
given in will be in reduced form if the same is true of the representations of r
and s.

Next suppose that the given fractions are in reduced form and let p be a
prime factor of (b, d) so that p|b and p|d. If p were also a factor of [a, c] then p
would also be a factor of at least one of ¢ and ¢ giving the contradiction that
at least one of the pairs (a,b) and (¢, d) were not coprime. Hence we conclude
that there is no such common factor p and that [ as given is in reduced form.

__ 24-20 _ 4

45 45"

=24 =0 (£, £) = & Hence

8 _ 4 _ =
15,9

Ol
\
Sl

Problem Set 5

1. 323 =17 x 19.

2. The first failure occurs for n = 20: 6 x 20 — 1 = 119 = 7 x 17 and
6 x 20+ 1 =121 =112, so neither of 6n % 1 is prime for n = 20.

3. Every integer has exactly one of the six forms 6n — 2,6n — 1,6n,6n +
1,6n 4+ 2,6n + 3. We note that 6n £+ 2 is even while 6n and 6n + 3 are divisible
by 3. Hence, with the exceptions of 2 and 3, every prime number has the form
6n + 1 for some n.

4. The next pair of consecutive twin primes is (101, 103) and (107, 109).

5. Put n = a and we get a + ad = a(1 4+ d) and since both factors are at
least 2, it follows that this number is not prime.

10



6. This time put n = d+ 2 we get 1 +d(d +2) = d*> +2d + 1 = (d + 1)?,
which is composite.

7. Smallest example is the obvious one of 2 = 41 for then we get 412 — 41 +
41 = 412

8. Following the hint, consider the 100 consecutive integers (101)!4-2, (101)!+
3,---,(101)! + 101. Each of these numbers is composite since for 2 < k < 101
we have k|(101)! + k.

9. We only need that p = 2n + 1 is odd as then
pP—1=02n+1)?—1=4n*+4n =4n(n +1);

since exactly one of the factors n and n + 1 is even, we see that p?> — 1 has a
factor of 4 x 2 =8.

10. Now p* —1=(p> = 1)(p> +1) = (p—1)(p+ 1)(p? + 1). Since p > 5 and
p is prime it follows that p is not divisible by either 2, 3 nor 5. Since p is odd,
each of p—1, p+1 and p? + 1 is even. Indeed exactly one of p—1 and p+1is a
multiple of 4 so that 2 x4 x 2 = 16[p*—1. Similarly if p = 1 (mod 3) then 3|p—1,
while if p = —1 (mod 3) then 3|p + 1 so that 3|p* — 1 also. Finally p = 2or —2
(mod 5) so p?+1 = 0 (mod 5) whence 5|p* — 1. Putting these products together
we infer that 16 x 3 x 5 = 240 is a factor of p* — 1. To see that 240 is the
greatest common factor of our set we note that 74 — 1 = 2400 = 240 x 10 while
11% — 1 = 14640 = 240 x 61 and so in the case of the primes p = 7 and ¢ = 11
the greatest common factor of the number pair p* — 1 and ¢* — 1 is indeed 240.

Problem Set 6

1. Alexander must be innocent for if he were lying Barbara would not accuse
Caroline. Tt follows that Alexander is telling the truth and Barbara broke the
window. (That accounts for her lie and is consistent with both Caroline and
David not knowing what happened.)

Comment Logic puzzles are quite fun and lead to a lot of interesting ques-
tions in analysis of mathematical trees. Look up The Land of Knights and
Knaves to learn more.

2. At each snap, the number of pieces increases by 1. Since we begin with
one block and end with n squares, the number of snaps is therefore n — 1.

Comment This shows that the outcome is independent of the way we go
about it so that n — 1 is not only the minimum but the maximum number of
snaps to complete the task.

11



3. Since the claim of each octopus contradicts all of the others, there must be
at least 3 liars. If all 4 were liars, they would each have 7 legs, giving 4 x 7= 28
legs in all but then the golden octopus would be telling the truth, which is
inconsistent. Hence there are 3 lying octopi and one truthful octopus. The 3
liars then have 3 x 7 = 21 legs between them. The truthful octopus then has
6 or 8 legs. If he had 8 legs then there would be 21 + 8 = 29 legs overall, and
all would be lying, which is inconsistent. Hence the truthful octopus has 6 legs
and there are 21 + 6 = 27 legs overall, which is the claim of the green octopus.
Therefore the blue, red and golden octopi each have 7 legs while the green one
has 6.

4. There are two solutions but both involve seven crossings in all. He takes
the Goose across, goes back and picks up either the Bag or the Dog, takes that
across, picks up Goose and takes her back, then picks up the item he left behind
and takes that across, and then goes back to pick up the Goose. The key thing
is to keep the Goose away from the other two.

5. Let use write (a,b,c) to denote the amount of wine in each of pitchers
from smallest to largest, so they start with the triple (0,0,8). All they can do
is pour wine from one container to a second until either the first is empty or the
second is full. They can then reach the desired state of (0,4,4) in seven steps
beginning with (0,0,8) — --- as follows:

(0,5,3) = (3,2,3) = (0,2,6) — (2,0,6) = (2,5,1) = (3,4,1) — (0,4, 4).

6. Yes, for there are two possibilities. If Anne is married then, since Anne
is looking at the bachelor George, a married person is looking at an unmarried
one. Alternatively, Anne is unmarried and the married Jack is looking at the
unmarried Anne. One of these two possibilities must apply so we can conclude
that a married person is looking at an unmarried one.

7. On each turn, I drink twice as much as you so that the ratio of our shares
is 2 : 1. Hence I drink 52 = % of the pint of juice. Or setting up the infinite

2+1
GP shows my share to be:
1+1 1+1 1+ +1 1 n 1 114 2
2 2 4 2 16 2 4n-t 2 1-123 3

8. I was in the middle and below 15th place. If my position were 13th or
below, there would be at most 12 below and 12 above me, making at most 25
students in all, when we know there were at least 26. Therefore I must have
been between 13th and 15th place, which is to say I was 14th in line. I was
therefore standing next to the object of my dreams, with 13 class mates flanking
me on either side, making 27 of us in total.

9. At each point in the journey the best you can do is to choose the tangent
line to the circle with common centre to the main circle and whose radius is

12



the line from the centre to the point where you are standing. In this case, the
direction chosen by the tyrant will not affect your final distance from the centre
after you take your step. In you choose any other line, the tyrant can choose
a direction which will make you relatively worse off. Hence this is an optimum
strategy.

Given that you adopt this approach, we show by induction that your distance
from the centre after step k is vk, which is clearly true for your first step.
Assuming inductively that this holds after k steps, by Pythagoras, your distance
d from the centre after k + 1 steps will be given by d® = 12 4 (vVk)? =1 + k so
that your new distance is indeed d = vk + 1 and the induction continues. To
escape the circle will therefore take k steps where vk = n, which is to say that
k = n? steps will be needed.

10. The total number of games is (10+ 15+ 17)/2 = 21 of which, B plays C
21 — 10 = 11times. Since A and C' cannot play consecutive games against each
other, this is only possible if they play all the odd numbered games 1,3, --- , 21,
which means that A plays all the even numbered games and loses them all.
Hence A lost the second game.

Problem Set 7

(ANB)U(B'NA)=(ANB)U(ANDB) =
AN(BUB)=ANU = A,

where U denotes the universal set. The dual statement (which must also hold)
is
(AUB)N(B'UA) = A.

2. Using De Morgan’s Law
(AANB)N(AUB) = ((AYUB)N(AUB) =

(AUB')N(AUB)=AU(B'NnB)=AUD = A.

Comment Set Laws involving only the so called boolean set operations of
N, U,” come in dual pairs (with § and I/ interchanging), the pair known as De
Morgan Laws being (AUB) = A'N B’ and (ANB) = A" UB".

3. The number of subsets of a set of size n is 2. The number with no
more than 1 member is () + (). Applying these observations here gives as the
answer:

212 — (1 +12) = 4,096 — 13 = 4,083.

13



4. Writing F and G for the set of students taking French and German
respectively, we require the number |(F U L)'| =100 — |[F U L|. Now |FUL| =
|F|+|L| — |F N L| =50+ 40 — 20 = 70. Therefore the number of students not
taking either language is 100 — 70 = 30.

Comment This Counting Principle can be extended to three or more sets -
the rule that develops is sometimes called the Inclusion-Ezclusion Principle (see
MA202 Set 9) and it gives a sum, alternating in sign, which counts the number
of members of a finite union of finite sets. For three sets it has the form:

[AUBUC| =|A|+|B|+|C|—|ANnB|—|BNC|—|CNAl+|AnBNC|

and from here the general pattern of the result is not hard to see.

5. For n > 3, treat the union inside the brackets as that of two sets and
apply the n = 2 case:

AN((BiUByU---UBy_1)UB,)=AN(ByUB2U---UB,_1) U(ANBy,).

Next apply the inductive hypothesis to the first bracket to get the required
expression:
(ANB)U(ANB2)U(ANBp_1)U (AN B,).

Comment: There is of course a dual law to this one that comes from inter-
changing N and U throughout, which is equally true. It is a common feature
of mathematics texts that a formula of some kind is established for two objects
and then the comment is made that the formula immediately extends to n > 2
objects. Implicit in any such claim is that the case for n > 3 objects can be
reduced at once to the n = 2 case by this type of inductive argument.

6.

[(p[~p[pV(~p)]
T| F T
F| T T

Since the right hand column consists entirely of T’s, pV (~ p) is a tautology.
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Since the final two columns are identical, it follows that p A (¢ V r) = (p A
aQ)V(pAT).

8.

lplal~p][~a]p=a](~a=(~p) [ ~WA(~0q) ]
T|T| F | F T T T
TIF| F | T F F F
F|T| T | F T T T
F|F| T | T T T T

Since the final three columns agree, we infer that p — ¢ = (~ ¢) — (~
p) =~ (p A (~q))

9.
[plalp=a]a—=p[ =20 =(—p)]
TIT] T T T

TIF| F T T

F|T| T F F

F|F| T T T

Since there is an F in the final column, the statement at the top of that
column is not true.
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10.

lplalr[pvalparfgar] r]
T| T | T T T T T*
T|T|F T F F F
T|F|T T T T T*
F|T|T T T T T*
T|F|F T F T F
F|T|F T T F F
F|F|T F T T T
F|F|F F T T F

The conclusion column (far right) has T entries in each of the three critical
rows (rows in which all the premises have the value T) and so pVgq, p — 7, ¢ —
r, ... r is a valid argument.

Problem Set 8

1. For n = 1 both sides of the expression return the value 2, thereby ground-
ing the induction. Suppose that n > 2. By the inductive hypothesis the LHS of
the expression take the form:

k(k+1)+n(n+1) =

n

(n—=1)n(n+1)

3 +n(n+1)

=~
Il

n?(n+1)—n(n+1)+3n(n+1) _ n(n+1)(n+ 2)

3 3 ’
thus completing the inductive verification of the identity.

2. For the second equality note that:
Ly 2 1 2 2
1" (n+1)° = (§n(n+1)) =(142+4+---4+n)".
As for the first equality, for n = 1 both sides output the number 1, thus an-

choring the induction. Now we suppose that n > 2 and apply the inductive
hypothesis to the RHS to get:

B2+ v+ (n-134n%=-(n-1*%+n?

.

16



1 1 1
= ZnQ((n2 —2n+41)+4n) = Z?’LQ(n2 +2n+1) = ZnQ(n +1)2.

Comment: note again that the proof was easy but we did need the formula
beforehand. A general approach to establishing these formulae recursively was
outlined in Set 9 of MA101, Problems 7 & 8. A general formula for sum of powers
that expresses the sum of kth powers as a polynomial of degree k+1 dates back to
the German mathematician Johann Faulhaber (1580-1635). These polynomials
involve so called Bernoulli numbers in the coefficients, which arise in many
problems of combinatorics and repeated differentiation of common functions,
such as tan and sec.

3. For n = 1 we get n(n? 4+ 5) = 6 is a mutliple of 6. Suppose the result
holds for kK = n and consder the next case:

(n+1)((n+1)?+5) = (n+1)(n*+2n+6) = n(n*+5)+n2n+1)+n*+2n+6

=n(n?+5)+ (3n® +3n+6) = n(n®+5) +3(n(n+1) +2);

now the first term is a multiple of 6 by the inductive hypothesis, and since
n(n+1) is even (as exactly one of the factors is even) it follows that 3(n(n+1)+2)
is also a multiple of 6. Therefore (n+1)((n+ 1)+ 5) is a multiple of 6 and the
induction continues.

Comment Aternatively, we might checked that the difference d = (n+1)((n+
1)2+45) —n(n?+5) is divisible by 6, whereupon the result follows by induction.

4. Both sides of the formula agree for n = 1 so let us take n > 2, whence,
using the inductive hypothesis the LHS becomes:

1—pnt " (1—r"= 1)y (1 —7)
a.ilfr +ar —a( T—r )
177,7171 +7,n71 77"” 177,71
:a' :a. y
1—r 1—1r

and the induction continues, thus establishing the result.

Comment A more natural way perhaps to prove the summation formula for
a geometric progression is to multiply both sides by 1 — r and note that when
we expand the LHS, which now has the form:

al—r) (1 +r+ri 4 4" h,

the expression ‘telescopes’ (meaning that all but a fixed number of terms cancel)
to give a(1l — ™), in agreement with the RHS. The disadvantage in proving a
formula by induction is that the formula first needs to be identified - guessed
if you like - before it can be proved. It is therefore good if we can discover
a way that we may travel from one side of the formula to the other by some
general algebraic method. Nonetheless many, many results in mathematics are
established by inductive argument.

17



5. From the recursion we obtain the Fibonacci series as far as Fjg as
0,1,1,2,3,5,8,13,21,34, - - -.

6. For n = 0 the assertion says that Fy = F> — 1, which is to say 0 =
1 —1,which is true. Now let n > 1. Using induction and the Fibonacci recursion

gives:
n—1

S F=) F+F,=(Fo1—1)+F, =
k=0 =0

(Fn+Fn+1)_1:Fn+2_1a

as required for the induction to continue and so establish the result.

0,1,-1,2,—3,5,—8,13, —21,34, - - .

8. It would seem that f, = (—=1)"F,, n =0,1,2,---, where f,, denotes our
sequence and the F), the normal Fibonacci numbers. By Question 5, we see that
the formula works for n = 0 and n = 1 so let us assume that it is valid for all
values up to some n > 1 and consider f,,;1. By definition of the sequence we
have

fnfl = fn + fn+1 = fnJrl = fnfl - fn
= for1=(D)""E — (-1D)"F, = (-=1)"" E,_y + (-1)"T'E,
= (-1)""YF,_1 + F,) = (=1)""F,4, as required.

9.
00:0,(11:1702:%:%,a3:%(1+%):%,
1,1 3 ) 1.3 5 11
“=3G Y=g =G Y=
1,5 11 21 1,11 21 43 1,21 43 85
I T A A AT o i T A TR T

10. The characteristic equation here is 222 —x — 1 = (22 + 1)(z — 1) = 0,
which has roots 1 and —1. The general solution is then a, = A+ (—1)"B/2".
Applying the initial conditions that ag = 0 and a; = 1 gives the equations
A+B=0and A—iB=1. Hence A= % and B = —%. The solution is then

—2(1+(71)n+1) —0,1,2
a/n_3 2n ’n_ b b b .

Letting n increase without bound then gives lim,,_, o a, = %

18



Problem Set 9

17!18! 1
778 =(17)%. 78 =(17)%-9= (3 x 172

2. The number of boys currently is % <48 = % -48 = 18 and so there are
(48 — 18) = 30 girls. In the enlarged class of = pupils theration of girls to boys

is 3: 5 s0 we have 2 -z = 30 and hence z = $ - 30 = 80. The number of boys

in the bigger class is thus 80 — 30 = 50 and so we would need 50 — 18 = 32
additional boys to achieve this.

3. Let a =1/34/2v3v/2--- . Then by squaring and squaring again we get

(a2)2:32.2 3 2,/3,/2...¢a4:18aéa3:18;

or if you prefer a is the cube root of 18.

4. Calling the number in question = we see that
(2 -4 =4—z=2" -8 +2x+12=0

= (@2 —z-3)(z? +2—4)=0;
clearly = > 2 so the roots of the second factor are not relevant. We take the
postive root of the first factor, which is

xz%m%i}(ﬂ&

5. We have, working modulo 4 throughtout that 02 =0, 12 =1, 22 =0 and
32 = 0. Hence the sum of two squares takes on one of the values 0 +0 = 0,
0+1=1,14+1=2,s0a?+b?> =3 (modulo 4) never arises.

6. Working modulo 8 a square may take on the values 02 = 0,12 =1, 22 = 4,
32=1,42=0,(-3)2=1, (-2)2 =4, or (—1)2 = 1. Hence the sum of three
squares is equal to the sum of three numbers, with repeats allowed, from the set
{0,1,4}. Clearly a sum of 7 is not possible (although all other values do arise).
Therefore the sum of three squares cannot equal 7 modulo 8, which is to say
cannot have the form 8k 4 7.

7. In general a®> = 0 or 1 (mod 4). If we had a solution to the equation in
which 22 = 0 (mod 4) then, working modulo 4,

1992 —15=3y> —1=0=3y> =9 = y> = 3 (mod 4)
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and so this is a contradiction. The alternative is that z2 = 1 in which case
1992 —15=3y>  —1=1=3y> =6 = y* =2 (mod 4),

which is also a contradiction. Hence there are no lattice points on the curve
defined by 2% — 19y? = 15.

8. {1,2,4,7,8,11,13,14}, so that ¢(15) = 8; or by the formula, since the
prime divisors of 15 and 3 and 5:

1 1 2. 4
15) =15(1— =)(1 — =) =15(=)(=) = 8.
B(15) = 15(1 = 3)(1 - £) = 15(5)(5) =8
For 323 = 17 x 19 we get
1 1 16 18
$(323) = 323(1 — 1—7)(1 — 1—9) =323 AT 16 - 18 = 288.

9. Observe that the terms in the sum are the difference between successive
kth roots of unity. Hence, for a given n, the sum represents the length of the
boundary of the regular n-gon inside the unit circle, the limit of which is the
circumference of that circle, which is 27.

10. No, because in general if ¢ > 2 and n has an odd factor m so that
n = mt then we have the following factorization:

an+1:amt+1:(at+1)(a(m71)t7a(m72)t+a(m73)t7.“+1).

In this instance ¢ = 2 and n = 50 = 5 x 10 so that we may take m = 5 and
t = 10. The preceding factorization yields:

250 41 = (2104 1)(2%0 — 230 4220 — 210 1 1),

Comment Clearly if a is odd then a™ 41 is even and so not prime. It follows
that the only numbers of the form a™ + 1 that can be prime have the form
22" 4+ 1. These are called the Fermat numbers, some of which are primes, and
primes with very special properties.

Problem Set 10

1. Following the rules we get 7 +— 22— 11 +— 34 — 17 +— 52— 26 — 13 —
40—20—10—5—16—8—4+— 2 — 1.

Comment A long standing conjecture is that, beginning with any number,
this process always ends in 1. The term ‘hailstone numbers’ comes about because
of the pattern of the number sequences so generated, which generally show a

20



number of erratic rises and falls yet eventually always hit the ground. Or so it
seems!

2. 276 = 22 x 3 x 23. Hence

221 32-1 232—-1 8 528
276) = : : —Tx 2 x 222 _ 672
a210) =S 3Ty gy XXy =7

Comment We see that 276 is an abundant number: a number that is less than the
sum of its factors that are less than the number itself. Curiously the sequence
a(276),a%(276),a®(276),--- is unknown in that it may be, as far as anyone
knows, an infinite non-repeating sequence!

3. By definition we have S(n,1) = 1. The number of ways of partitioning
the n-set into two blocks, listed in a specific order, is 2™ as there are two choices
of box in which to place each member of the set. Since the sets are not in any
particular order, the number of such pairs of sets is % = 27~L, Finally the case
where one of the sets is empty must be excluded, and so S(n,2) =271 — 1.

4. Again by definition we have S(n,n) = 1. Next, a partition of an n-set
into n — 1 non-empty block is determined by the choice of the unique block with
2 members, (the remaining blocks being singleton sets). Hence S(n,n —1) =
(2) = dnln - 1).

Comment Note that, in contrast to the binomial coefficients, we do not
have row symmetry for these Stirling numbers in that S(n,r) # S(n,n — r).
However it follows from the definition that the S(n,r) satisfy the recurrence
S(n,r) = S(n — 1,7 — 1) + rS(n — 1,7), which is the same as that for the
binomial coefficients except for the introduction of the multiplier of r in the
second term. Stirling Numbers of the First Kind are related but count something
quite different, that being the number of ways we can permute n objects into r
cycles.

77—!!!:(7!—1)!295!

and so x = 7! — 1 = 5040 — 1 = 5039.

45—2+13—2+ 1 =2+ !
16 16 1+ 2 1+

1
4+15
so that 12 = [2;1.4.13].
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so that 1 =[0;2,1,4,13].
Comment: Quite generally, a positive rational number % < 1 has the same
expansion as that as %, just shifted one place to the right.

842 =1+ (v2—1) so that ag = 1. Then

1 1 1++2

ro= = = =14+V2=0a; = |14+V2] =2
"Tro—a V2-1 (V2-1)(vV2+1) 1=1 J
1 1 1
ro = = = =r].
? T —ag (1+\/§)72 V2 -1 !
Hence r{ =7y = ---,a; = ay = --- = 2 and so /2 = [1;2,2,2,---], which is
written in recurring notation as [1;2].
9.\/7:2+(\/?72)sothata0:2. Then
1 VT+2 1
1 N 71 3( +VT) = a1 = |1 ;

ro = 1 __ 3 —3\/7+3—\/7+1:a =|ry) =1

2T e Vi1 6 2 2T

ry = 1 _ 2 *2ﬁ+2*ﬁ+1éa =|rs] =1

3 ro — a9 ﬁ—l 6 3 3 3

1 3 Vi+2 3V7+6
Ty = = . = =VT+2=a,=|r| =4
YT s —as Vi—2 Vi+2 3 4= [ra
1 1
s = = =T2.

T4 —aq \/772
Hence /7 = [2;1,1, 1, 4].

10. [¢| =1 so that ap = 1. Then

. 1 2 2/5+2 1++5
L= — — —

61 V-1 4 g —¢=ro

Hence ¢ = [1,1].

Comment Truncation of continued fraction expansions generally give the
best, rational approximations to irrational numbers for a given size of denom-
inator. Since the expansion of the Golden ratio consists entirely of 1’s this
convergence is as slow as possible, so that ¢ is among the most difficult of num-
bers to approximate accurately by rational numbers. This solution can be found
by reversing the expansion, as you have already seen is Set 3 Question 4.
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