
Mathemati
s 104 Numbers & Dis
rete

Mathemati
s Solutions

Professor Peter M. Higgins

November 9, 2019

1



Solutions and Comments for the Problems

Problem Set 1

1. We take the hint and write a = 0 · 6̇3̇. Then 100a−a = 63 · 6̇3̇−0 · 6̇3̇ = 63.
Hen
e

a =
63

99
=

7

11
.

Comment We shall see this kind of tri
k later on as well to simplify other in�nite

repeating pro
esses. A more prosai
 point is that students should not forget to


an
el down a fra
tion if possible.

2. 110101102 = 21 + 22 + 24 + 26 + 27 = 2 + 4 + 16 + 64 + 128 = 214.

3. 100 = 64 + 32 + 4 = 26 + 25 + 22 so that 100 = 11001002.

4. Following the method of Question 1 for base 3, we write a = (0 · 20)3, so
that 1003a− a = 20 · 203 − 0 · 203 = 203. Hen
e

a =
(20

22

)

3
=

(10

11

)

3
=

3

4
.

5. Following the hint we 
ompute:

9

20
− 1

3
=

27− 20

60
=

7

60
,

7

60
− 1

10
=

7− 6

60
=

1

60
,

so that

9

20
=

1

3
+

1

10
+

1

60
.

Comment This te
hnique of subtra
ting the largest reipro
al possible will

always yield an Egyptian de
omposition as it 
an be shown that the numerator of

the fra
tion remaining after ea
h subtra
tion is less than before. The number k
that is the denominator of the largest re
ipro
al less than the given fra
tion

m
n
is

given by k = ⌈ n
m
⌉. Another te
hnique however for �nding these de
ompositions

is that of the Akhmim papyrus (6th 
entury AD), whi
h is based on applying

the identity:

m

pq
=

m

p(p+ q)
+

m

q(p+ q)
.

Applying this approa
h to the fra
tion

9
20 yields the two-fra
tion de
omposition

1
4 + 1

5 .

6.

1729 = 13 + 123 = 93 + 103.
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Comment This example is always talked about be
ause, as Ramanujan pointed

out to Hardy in a 
onversation about a taxi 
ab number, 1729 is the smallest

number that is the sum of two 
ubes in two di�erent ways.

7. Let a be the number that agree with the proposal and let b be the sample

size. Then we are told that

100a

b
= 76.8 ⇒ a

b
=

76.8

100
=

768

1, 000
.

The smallest the numbers in this ratio 
an be, given that a and b are positive
integers, is found by 
an
elling this fra
tion to its redu
ed form, whi
h gives

96
125 . Hen
e the smallest the sample size 
ould be is 125 (of whi
h, 96 agreed

with the proposal and 125− 96 = 29 did not).

8. The �rst three primes are 2, 3 and 5. We �nd in ea
h 
ase that 2p− 1 is a
prime as we get 3, 7 and 31 respe
tively. Hen
e applying the formula of Eu
lid

we get the three perfe
t numbers 2p−1(2p − 1) as being for

p = 2 : 21(22−1) = 2×3 = 6, p = 3 : 22(23−1) = 4×7 = 28, p = 5 : 24(25−1) = 16×31 = 496.

9. The prime fa
torization of 220 is 22× 5× 11 and so the sum of its fa
tors

is

1+ (2+ 5+ 11)+ (4+ 10+ 22+ 55)+ (20+ 44+ 110) = 1+ 18+ 91+ 64 = 284.

On the other hand the prime fa
torization of 284 is 22 × 71 and so the sum of

its fa
tors is

1 + (2 + 71) + (4 + 142) = 1 + 73 + 146 = 220.

Therefore (220, 284) is indeed an ami
able pair.

Comment Indeed this is the smallest ami
able pair. Another small ami
able

pair is (1184, 1210) found by 16-year-old Ni
olo Paganini in 1866.

10. FRED, EATS < 10, 000, ADDER > 10, 000 ⇒ A = 1.
If T = 0 then there is no 
arry from 
olumn 1 and no 
arry from 
olumn

3. Then either R + 1 = D or R = 9, D = 0. If R + 1 = D then R < D, but

R = D + S! (
ontradi
tion). If R = 9, D = 0 then 0 + S = R ⇒ S = R! Hen
e
T 6= 0, so T = 9, and there is a 
arry from 
olumn 1.

Thus R < D, there is 
arry to 
olumn 3, so R+ 2 = D. D + S = 10 +R ⇒
R + 2 + S = 10 + R ⇒ S = 8. If R = 0 then D = 2. E + F = 12, E 6= F ;
E 6= 0, 1, 2, 3 (for otherwise F = 9!) or 4(otherwise F = 8!). If E = 5 then

F = 7. If E = 6 ⇒ E = F ! If E = 7 then F = 5; E 6= 8, 9.
Now R 6= 1 (as A = 1). If R ≥ 2 ⇒ D ≥ 4 ⇒ E + F ≥ 14. Hen
e

E 6= 0, 1, 2, 3, 4; E 6= 5 (as F 6= 9) E 6= 6 (as F 6= 8, 9), E 6= 7 (as E 6= F and

F 6= 8, 9); E 6= 8, 9. Therefore there are just the two solutions:

7, 052 + 5, 198 = 12, 250; 5, 072 + 7, 198 = 12, 270.
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Problem Set 2

1. ln(106) = 6 ln 10 ≈ 19.8 and so 20 is the least positive integer k su
h that

2k ≥ 106. Hen
e, in binary, 106 has 20 digits.

2.

1
4 = 2−2

so that as a binary 'de
imal',

1
4 = 0 · 01.

3. Any integer 
an be written uniquely in binary, whi
h is to say as a sum of

powers of 2. Hen
e B = {1, 2, 4, 8, 16, 32, 64} is a set of order 7 and any number

up to the sum of its elements, whi
h is 27 − 1 = 127, 
an be written as a sum

of some subset of B.

4. We require

a2 + (p2 − q2)2 = (p2 + q2)2 ⇒ a2 = 4p2q2 ⇒ a = 2pq.

5. We put p2 + q2 = 17, so we take p = 4 and q = 1. Then p2 − q2 =
16− 1 = 15 and 2pq = 8. The trio of sides for the required right-angled triangle

is (8, 15, 17).

6.

⌈13
6
⌉ = 3,

6

13
− 1

3
=

18− 13

39
=

5

39
;

⌈39
5
⌉ = 8,

5

39
− 1

8
=

40− 39

312
=

1

312
;

∴

6

13
=

1

3
+

1

8
+

1

312
.

7. { 1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5}.

8 & 9. Sin
e $1 = 100 
ents and all 
oins ex
ept the penny are multiples of

5, the number of pennies must be a multiple of 5. If that number were 35, the
remaining 
oins would total at least (50−35)×5 = 15×5 = 75 and 35+75 = 110,
ex
eeding the target total. Clearly if the number of pennies were less than 35
the target would drift further out of rea
h. On the other hand 50 pennies won't
work and therefore the number of pennies in any solution is 40 or 45.

If we try 40 pennies then the remaining 10 
oins sum to 100 − 40 = 60
.
By the same argument as in the previous paragraph we see that the number

of ni
kels (5
 
oins) must be at least 8, but 9 or 10 ni
kels do not provide a

solution. With 8 ni
kels there is 60− (8 × 5) = 60− 40 = 20
 remaining to be

made up of two 
oins, whi
h then must be 2 dimes (10
 
oins). This gives the
�rst solution:

(40× 1) + (8× 5) + (2× 10) = 100.
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Next, let us examine the alternative possibility that the number of pennies is

45, whi
h requires us to make up 100 − 45 = 55
 from 50 − 45 = 5 
oins. If

the number of ni
kels is even, we require 1 quarter to give 55 (as 55 is an odd

multiple of 5). Hen
e we need to make up (55− 25) = 30
 from the 4 remaining


oins. Clearly this is only possible with 2 ni
kels and 2 dimes, giving a se
ond

solution:

(45× 1) + (2× 5) + (2× 10) + (1× 25) = 100.

If on the other hand the number of ni
kels were odd, then we 
annot use any

quarters and we would have to 
ompile 55
 from 5 
oins, ea
h of whi
h is a

ni
kel or a dime. However, if there were just a single ni
kel, we would need 5
dimes to make 55
, while if we try 3 ni
kels we need 4 dimes, while 5 (or more)

ni
kels are 
learly impossible. Hen
e there is no other solution to this problem

apart from the two that we have identi�ed.

10. Ea
h man has

8
3 = 2 2

3 loaves, 
osting the hunter 8 piasters, that is

8 ÷ 8
3 = 3 piasters/loaf. The shepherd with 3 loaves gave away

1
3 of a loaf so

is owed

1
3 · 3 = 1 piaster. The other gets 8 − 1 = 7 piasters (having given the

hunter 2 1
3 = 7

3 loaves worth

7
3 · 3 = 7 piasters).

Problem Set 3

1. 146 = 34 + 2 · 33 + 32 + 0 · 31 + 2 · 30 = (12102)3.

2. The sum of the verti
es is 1 + 2 + · · · + 8 = 1
2 · 8 · 9 = 36. Ea
h vertex


ontributes to 3 fa
es of the 
ube so the total sum of the fa
es is 3 × 36. Sin
e
ea
h fa
e has the same sum, that 
ommon sum is

3×36
6 = 18.

3. The sum of the edges is 1 + 2 + · · · + 12 = 1
2 · 12 · 13 = 78. Ea
h edge


ontributes to 2 fa
es and so the 
ommon edge sum of the fa
es is

2×78
6 = 78

3 =
26.

Comment And it is possible to �nd a number of solutions to the problems

of Question 2 and 3.

4. We see that φ must satisfy

φ = 1 +
1

φ
⇒ φ2 − φ− 1 = 0 ⇒ φ =

1±
√
1 + 4

2
,

and sin
e it is also evident that φ > 0 we 
on
lude that φ = 1+
√
5

2 , the golden

ratio.

5. Up to and in
luding 1000 there are 1000
2 = 500 even numbers, ⌊ 1000

3 ⌋ = 333
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multiples of 3, and ⌊ 1000
6 ⌋ = 166 multiples of 6. Hen
e the total of all numbers

not divisible by either 2 or 3 in this range is

1000− (500 + 333− 166) = 1000− 667 = 333.

6. 74 = 2401 ≡ 1 (mod 100). Now 355 = (88× 4) + 3 so we get

7355 = (74)88 · 73 ≡ 188 · 343 ≡ 43 (mod 100).

Hen
e the �nal two digits of 7355 are 43.

7. All fa
torials n! where n ≥ 10 
ontain the fa
tors 2, 5 and 10 and thus

are divisible by 2× 5× 10 = 100 and so their �nal two digits are 00. Hen
e

0! + 5! + 10! + · · ·+ 100! ≡ 1 + 120 + 0 (mod 100) ≡ 21 (mod 100).

Hen
e the �nal two digits of this sum are 21.

8. The highest prime powers up to 10 are 23 = 8, 32 = 9, 5, and 7. Hen
e
the smallest number divisible by all integers from 1 to 10 is their produ
t 8 ×
9× 5× 7 = 2520.

9. Let L = {50, 4×20, 1×5, 4×2}. The sum of L is ¿1.43. It is not possible

to get ¿1 from L, for suppose this were possible. We must in
lude the 50p (as

the remainder only make 93p). Sin
e 50 + 5 + 8 = 63 we must have at least 2

x 20p, and not more than 2 x 20p as we must in
lude 50p. We then have 50 +

2 x 20 = 90p and the remaining 10p 
annot be made up from the smaller 
oins.

Hen
e L is a solution.

Now let C be a maximal 
olle
tion that 
an't make ¿1. Suppose that C
sums to at least ¿1.43. We show that in this 
ase C = L, whi
h 
ompletes the

proof.

Clearly C has no more than 1 x 50p and no more than 4 x 20p.

If C has more than 1 x 10p, we 
an take one 10p and pair o� the remaining

10p pie
es, repla
ing ea
h pair by 20p to give a new 
olle
tion that has the same

total value and also 
annot make ¿1. (For if we 
ould make ¿1 with the new


olle
tion, by repla
ing 20p 
oins by pairs of 10p's, we 
ould make ¿1 from the

original C, whi
h we 
annot.) The same argument applies to multiple 5p pie
es,

(repla
ing pairs by 10p pie
es) so we may assume that C has at most 1 x 10p

and at most 1 x 5p. By the same token, we may assume that there are no more

than 4 x 2p pie
es (as we 
ould repla
e 5 x 2 by a 10) and at most 1 x 1p pie
e

(as pairs of 1p's 
ould be repla
ed by 2p's).

This means that C is 
ontained in the set {50, 4×20, 10, 5, 4×2, 1]. However,
50 + 4 x 20 + 10 = 100, so at least one of these 
oins must be deleted from

C. If we delete 50p then C sums to only ¿1.04, so 50 is in
luded. If we have

no more than 3 x 20, then C sums to only ¿1.34, so that C also 
ontains 4 x

20, and so not 10p. Hen
e either C = L or C = L + 1p, but the latter is not
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possible as it gives 50 + (2 x 20) + 5 + (2 x 2) + 1 = ¿1.00. Hen
e C = L, as
required.

10. From 
olumn 5, M = 1 sin
e it is the only 
arry-over possible from the

sum of two single-digit numbers in 
olumn 4. Sin
e there is a 
arry in 
olumn

5, O must be less than or equal to M (from 
olumn 4). But O 
annot be equal

to M, so O is less than M. Therefore O = 0. Sin
e O is 1 less than M, S is

either 8 or 9 depending on whether there is a 
arry in 
olumn 4. But if there

were a 
arry in 
olumn 4, N would be less than or equal to O (from 
olumn 3).

This is impossible sin
e O = 0. Therefore there is no 
arry in 
olumn 4 and

S = 9. If there were no 
arry in 
olumn 3 then E = N, whi
h is impossible.

Therefore there is a 
arry and N = E + 1. If there were no 
arry in 
olumn

2, then (N + R) (mod10) = E, and N = E + 1, so (E + 1 + R) (mod 10) = E
whi
h means (1 + R) (mod 10) = 0, so R = 9. But S = 9, so there must be a


arry in 
olumn 2, and so R = 8. To produ
e a 
arry in 
olumn 2, we must have

D+E = 10+Y. Now Y is at least 2 so D+E is at least 12. The only two pairs

of available numbers that sum to at least 12 are (5,7) and (6,7) so either E = 7
or D = 7. Sin
e N = E + 1, E 
an't be 7 be
ause then N = 8 = R so D = 7.
Finally E 
an't be 6 be
ause then N = 7 = D so E = 5 and D + E = 12 so

Y = 2. Our �nal sum is therefore 9, 567 + 1, 085 = 10, 652.
Comment This puzzle type goes under the heading of verbal puzzles or al-

phameti
s.

Problem Set 4

1.

(3675, 2058) 7→ (2058, 1617) 7→ (1617, 441) 7→ (1176, 441)

7→ (735, 441) 7→ (441, 294) 7→ (294, 147) 7→ (147, 147).

Hen
e the h
f of 3675 and 2058 is 147.

2.

516 = 1× 432 + 84

432 = 5× 84 + 12

84 = 7× 12;

Hen
e the h
f of 516 and 432 is 12.

3. Starting from the penultimate line of the 
al
ulation:

12 = 432− (5 × 84) ⇒

84 = 516− 432 ⇒
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12 = 432− 5(516− 432) = 432− (5× 516) + (5× 432) ⇒
12 = 6× 432− 5× 516.

Hen
e m = −5 and n = 6.
Comment This pro
ess of reversing the algorithm, beginning with the penul-

timate equation and working ea
h equations in reverse, eliminating the interme-

diate remainders at ea
h stage, will always yield the g
d expressed as a linear


ombination of the original number pair. In this way the h
f of a pair of numbers


an be expressed as a linear 
ombination of the two numbers in question and

this is very important for both pra
ti
al and theoreti
al reasons. It forms the

basis for the general method of solving linear 
ongruen
es, that is equations of

the form ax ≡ b (mod m)(meaning �nd x su
h that m is a fa
tor of ax− b) and
more generally for solving systems of su
h 
ongruen
es using what is known as

the Chinese Remainder Theorem, that name arising be
ause this problem type

was popular in an
ient Chinese problem sets. Moreover, if two numbers a and

b are 
oprime , meaning that their h
f is 1, then the algorithm 
an be reversed

to �nd integers (of opposite signs) x and y su
h that ax + by = 1. This fa
t

is often exploited in number theory in
luding in the proof of Eu
lid's Lemma,

whi
h says that if p is a prime fa
tor of a produ
t ab, then p divides at least one
of the numbers a and b. The modern theory of internet 
ryptography is very

�rmly based on a body results whi
h all stem from the eu
lidean algorithm.

4.

35 = 22 + 13

22 = 13 + 9

13 = 9 + 4

9 = 2× 4 + 1.

Working these equations ba
kwards then gives

1 = 9− 2(4) = 9− 2(13− 9) = −2(13) + 3(9)

= −2(13) + 3(22− 13) = 3(22)− 5(13) = 3(22)− 5(35− 22)

= 8(22)− 5(35)

and so m = 8 and n = −5.

5. We have the l
m of 9 and 15 is 45 so we want (2045 ,
24
45 ) =

(20,24)
45 = 4

45 .

6. We want the least integers m and n su
h that

4m
9 = 8n

15 , whi
h gives

m
n
=

8×9
15×4 = 72

60 = 6
5 . Hen
e the least 
ommon multiple is

4
9 × 6 = 8

15 × 5 = 24
9 = 8

3 .
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7. Let us begin by denoting

(a,c)
[b,d] by h, where [b, d] denotes the l
m of b and

d. Write r = a
b
and s =

c

d
. Then

r

h
=

a

b
· [b, d]
(a, c)

=
a

(a, c)
· [b, d]

b

and by de�nition of highest 
ommon fa
tor and least 
ommon multiple, both

numbers in the pre
eding produ
t are positive integers, and so h|r (meaing h is

a fa
tor of r). By the same argument, h|s also and hen
e h is a 
ommon fa
tor

of r and s.
Conversely, let y = e

f
be any 
ommon fa
tor of r and s so that

a

b
= k

e

f
,
c

d
= l

e

f
say with k, l ∈ Z

+.

Without loss we may now take (a, b) = (c, d) = (e, f) = 1. Sin
e (a, b) = 1 there
exists t ∈ Z

+
su
h that ke = ta and f = tb. It follows that f is a multiple of

b and, by the same token, a multiple of d and so f = u[b, d] for some u ∈ Z
+
.

Next we verify that e|a. If this were not so that there would exist a prime fa
tor

p of e su
h that p|t. But then p|t||f so that p is a 
ommon fa
tor of e and f ,

ontrary to the 
ondition that (e, f) = 1. Hen
e e|a and likewise we have that

e|c so that e|(a, c). Therefore we may write (a, c) = ve for some v ∈ Z
+
giving

us:

e

f
=

(a, c)

vu[b, d]
≤ (a, c)

[b, d]
= h,

whi
h shows that h is indeed the highest 
ommon fa
tor of r and s. Finally we

note that it follows from the previous equation that h is a multiple (vu) of any

ommon fa
tor

e
f
of r and s.

8. For positive rational numbers r = a
b
and s = c

d
the least 
ommon multiple

l exists and

l =
[a

b
,
c

d

]

=
[a, c]

(b, d)
.

For the given number l is a multiple of r as

l

r
=

[a, c]

(b, d)
· b
a
=

[a, c]

a
· b

(b, d)

and both terms in the produ
t in are integers. Similarly

l
s
∈ Z

+
and so l as

de�ned in is a multiple of both r and s.
Next suppose y is a multiple of r and s so that y = e

f
= ka

b
= mc

d
for some

k,m ∈ Z
+
. Without loss we may now take (a, b) = (c, d) == (e, f) = 1. Sin
e

(e, f) = 1 there exists t ∈ Z
+
su
h that te = ka and tf = b. Hen
e f |b and by

the same token f |d so that f |(b, d) and we may write (b, d) = uf say. Next we

show that a|e. If we suppose this is not the 
ase, it would follow from te = ka

9



that there exists a prime p su
h that p|a and p|t. It then follows from tf = b
that p|b also, 
ontradi
ting that (a, b) = 1. Hen
e a|e and likewise we may infer

that c|e also. Hen
e e is a multiple of both a and c and so e = v[a, c] for some

v ∈ Z
+
. From this analysis we 
on
lude that

e

f
= uv

[a, c}
(b, d)

= uvl

so that l is indeed the least 
ommon multiple of r and s and l|y as 
laimed.

9. Assume that (a, b) = (c, d) = 1. Let p be a prime fa
tor of (a, c) so that p|a
and p|c. If it were the 
ase that p|[b, d] then p|b or p|d. In the �rst 
ase it would

then follows that p|(a, b) and in the se
ond that p|(c, d), giving a 
ontradi
ting

at least one of the assumptions that (a, b) = 1 and (c, d) = 1. Therefore h as

given in will be in redu
ed form if the same is true of the representations of r
and s.

Next suppose that the given fra
tions are in redu
ed form and let p be a

prime fa
tor of (b, d) so that p|b and p|d. If p were also a fa
tor of [a, c] then p
would also be a fa
tor of at least one of a and c giving the 
ontradi
tion that

at least one of the pairs (a, b) and (c, d) were not 
oprime. Hen
e we 
on
lude

that there is no su
h 
ommon fa
tor p and that l as given is in redu
ed form.

10.

8
15 − 4

9 = 24−20
45 = 4

45 .
4
9 − 4

45 = 20−4
45 = 16

45 . (1645 ,
4
45 ) = 4

45 . Hen
e

(49 ,
8
15 ) =

4
45 .

Problem Set 5

1. 323 = 17× 19.

2. The �rst failure o

urs for n = 20: 6 × 20 − 1 = 119 = 7 × 17 and

6× 20 + 1 = 121 = 112 , so neither of 6n± 1 is prime for n = 20.

3. Every integer has exa
tly one of the six forms 6n − 2, 6n − 1, 6n, 6n +
1, 6n+ 2, 6n+ 3. We note that 6n± 2 is even while 6n and 6n+ 3 are divisible

by 3. Hen
e, with the ex
eptions of 2 and 3, every prime number has the form

6n± 1 for some n.

4. The next pair of 
onse
utive twin primes is (101, 103) and (107, 109).

5. Put n = a and we get a + ad = a(1 + d) and sin
e both fa
tors are at

least 2, it follows that this number is not prime.
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6. This time put n = d + 2 we get 1 + d(d + 2) = d2 + 2d + 1 = (d + 1)2,
whi
h is 
omposite.

7. Smallest example is the obvious one of x = 41 for then we get 412 − 41+
41 = 412.

8. Following the hint, 
onsider the 100 
onse
utive integers (101)!+2, (101)!+
3, · · · , (101)! + 101. Ea
h of these numbers is 
omposite sin
e for 2 ≤ k ≤ 101
we have k|(101)! + k.

9. We only need that p = 2n+ 1 is odd as then

p2 − 1 = (2n+ 1)2 − 1 = 4n2 + 4n = 4n(n+ 1);

sin
e exa
tly one of the fa
tors n and n + 1 is even, we see that p2 − 1 has a

fa
tor of 4× 2 = 8.

10. Now p4 − 1 = (p2 − 1)(p2 + 1) = (p− 1)(p+ 1)(p2 + 1). Sin
e p > 5 and

p is prime it follows that p is not divisible by either 2, 3 nor 5. Sin
e p is odd,

ea
h of p− 1, p+1 and p2+1 is even. Indeed exa
tly one of p− 1 and p+1 is a
multiple of 4 so that 2×4×2 = 16|p4−1. Similarly if p ≡ 1 (mod 3) then 3|p−1,
while if p ≡ −1 (mod 3) then 3|p+ 1 so that 3|p4 − 1 also. Finally p ≡ 2 or−2
(mod 5) so p2+1 ≡ 0 (mod 5) when
e 5|p4−1. Putting these produ
ts together
we infer that 16 × 3 × 5 = 240 is a fa
tor of p4 − 1. To see that 240 is the

greatest 
ommon fa
tor of our set we note that 74 − 1 = 2400 = 240× 10 while

114 − 1 = 14640 = 240× 61 and so in the 
ase of the primes p = 7 and q = 11
the greatest 
ommon fa
tor of the number pair p4 − 1 and q4 − 1 is indeed 240.

Problem Set 6

1. Alexander must be inno
ent for if he were lying Barbara would not a

use

Caroline. It follows that Alexander is telling the truth and Barbara broke the

window. (That a

ounts for her lie and is 
onsistent with both Caroline and

David not knowing what happened.)

Comment Logi
 puzzles are quite fun and lead to a lot of interesting ques-

tions in analysis of mathemati
al trees. Look up The Land of Knights and

Knaves to learn more.

2. At ea
h snap, the number of pie
es in
reases by 1. Sin
e we begin with

one blo
k and end with n squares, the number of snaps is therefore n− 1.
Comment This shows that the out
ome is independent of the way we go

about it so that n − 1 is not only the minimum but the maximum number of

snaps to 
omplete the task.

11



3. Sin
e the 
laim of ea
h o
topus 
ontradi
ts all of the others, there must be

at least 3 liars. If all 4 were liars, they would ea
h have 7 legs, giving 4× 7 = 28
legs in all but then the golden o
topus would be telling the truth, whi
h is

in
onsistent. Hen
e there are 3 lying o
topi and one truthful o
topus. The 3

liars then have 3 × 7 = 21 legs between them. The truthful o
topus then has

6 or 8 legs. If he had 8 legs then there would be 21 + 8 = 29 legs overall, and

all would be lying, whi
h is in
onsistent. Hen
e the truthful o
topus has 6 legs

and there are 21 + 6 = 27 legs overall, whi
h is the 
laim of the green o
topus.

Therefore the blue, red and golden o
topi ea
h have 7 legs while the green one

has 6.

4. There are two solutions but both involve seven 
rossings in all. He takes

the Goose a
ross, goes ba
k and pi
ks up either the Bag or the Dog, takes that

a
ross, pi
ks up Goose and takes her ba
k, then pi
ks up the item he left behind

and takes that a
ross, and then goes ba
k to pi
k up the Goose. The key thing

is to keep the Goose away from the other two.

5. Let use write (a, b, c) to denote the amount of wine in ea
h of pit
hers

from smallest to largest, so they start with the triple (0, 0, 8). All they 
an do

is pour wine from one 
ontainer to a se
ond until either the �rst is empty or the

se
ond is full. They 
an then rea
h the desired state of (0, 4, 4) in seven steps

beginning with (0, 0, 8) → · · · as follows:
(0, 5, 3) → (3, 2, 3) → (0, 2, 6) → (2, 0, 6) → (2, 5, 1) → (3, 4, 1) → (0, 4, 4).

6. Yes, for there are two possibilities. If Anne is married then, sin
e Anne

is looking at the ba
helor George, a married person is looking at an unmarried

one. Alternatively, Anne is unmarried and the married Ja
k is looking at the

unmarried Anne. One of these two possibilities must apply so we 
an 
on
lude

that a married person is looking at an unmarried one.

7. On ea
h turn, I drink twi
e as mu
h as you so that the ratio of our shares

is 2 : 1. Hen
e I drink 2
2+1 = 2

3 of the pint of jui
e. Or setting up the in�nite

GP shows my share to be:

1

2
+

1

2
· 1
4
+

1

2
· 1

16
+ · · ·+ 1

2
· 1

4n−1
+ · · · = 1

2
· 1

1− 1
4

=
1

2
· 4
3
=

2

3
.

8. I was in the middle and below 15th pla
e. If my position were 13th or

below, there would be at most 12 below and 12 above me, making at most 25

students in all, when we know there were at least 26. Therefore I must have

been between 13th and 15th pla
e, whi
h is to say I was 14th in line. I was

therefore standing next to the obje
t of my dreams, with 13 
lass mates �anking

me on either side, making 27 of us in total.

9. At ea
h point in the journey the best you 
an do is to 
hoose the tangent

line to the 
ir
le with 
ommon 
entre to the main 
ir
le and whose radius is

12



the line from the 
entre to the point where you are standing. In this 
ase, the

dire
tion 
hosen by the tyrant will not a�e
t your �nal distan
e from the 
entre

after you take your step. In you 
hoose any other line, the tyrant 
an 
hoose

a dire
tion whi
h will make you relatively worse o�. Hen
e this is an optimum

strategy.

Given that you adopt this approa
h, we show by indu
tion that your distan
e

from the 
entre after step k is

√
k, whi
h is 
learly true for your �rst step.

Assuming indu
tively that this holds after k steps, by Pythagoras, your distan
e

d from the 
entre after k + 1 steps will be given by d2 = 12 + (
√
k)2 = 1 + k so

that your new distan
e is indeed d =
√
k + 1 and the indu
tion 
ontinues. To

es
ape the 
ir
le will therefore take k steps where

√
k = n, whi
h is to say that

k = n2
steps will be needed.

10. The total number of games is (10+15+17)/2 = 21 of whi
h, B plays C
21− 10 = 11times. Sin
e A and C 
annot play 
onse
utive games against ea
h

other, this is only possible if they play all the odd numbered games 1, 3, · · · , 21,
whi
h means that A plays all the even numbered games and loses them all.

Hen
e A lost the se
ond game.

Problem Set 7

1.

(A ∩B) ∪ (B′ ∩ A) = (A ∩B) ∪ (A ∩B′) =

A ∩ (B ∪B′) = A ∩ U = A,

where U denotes the universal set. The dual statement (whi
h must also hold)

is

(A ∪B) ∩ (B′ ∪ A) = A.

2. Using De Morgan's Law

(A′ ∩B)′ ∩ (A ∪B) =
(

(A′)′ ∪B′
)

∩ (A ∪B) =

(A ∪B′) ∩ (A ∪B) = A ∪ (B′ ∩B) = A ∪ ∅ = A.

Comment Set Laws involving only the so 
alled boolean set operations of

∩, ∪,′ 
ome in dual pairs (with ∅ and U inter
hanging), the pair known as De

Morgan Laws being (A ∪B)′ = A′ ∩B′
and (A ∩B)′ = A′ ∪B′

.

3. The number of subsets of a set of size n is 2n. The number with no

more than 1 member is

(

n

0

)

+
(

n

1

)

. Applying these observations here gives as the

answer:

212 − (1 + 12) = 4, 096− 13 = 4, 083.

13



4. Writing F and G for the set of students taking Fren
h and German

respe
tively, we require the number |(F ∪ L)′| = 100− |F ∪ L|. Now |F ∪ L| =
|F |+ |L| − |F ∩ L| = 50 + 40− 20 = 70. Therefore the number of students not
taking either language is 100− 70 = 30.

Comment This Counting Prin
iple 
an be extended to three or more sets -

the rule that develops is sometimes 
alled the In
lusion-Ex
lusion Prin
iple (see

MA202 Set 9) and it gives a sum, alternating in sign, whi
h 
ounts the number

of members of a �nite union of �nite sets. For three sets it has the form:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |C ∩ A|+ |A ∩B ∩C|

and from here the general pattern of the result is not hard to see.

5. For n ≥ 3, treat the union inside the bra
kets as that of two sets and

apply the n = 2 
ase:

A ∩ ((B1 ∪B2 ∪ · · · ∪Bn−1) ∪Bn) = A ∩ (B1 ∪B2 ∪ · · · ∪Bn−1) ∪ (A ∩Bn).

Next apply the indu
tive hypothesis to the �rst bra
ket to get the required

expression:

(A ∩B1) ∪ (A ∩B2) ∪ (A ∩Bn−1) ∪ (A ∩Bn).

Comment : There is of 
ourse a dual law to this one that 
omes from inter-


hanging ∩ and ∪ throughout, whi
h is equally true. It is a 
ommon feature

of mathemati
s texts that a formula of some kind is established for two obje
ts

and then the 
omment is made that the formula immediately extends to n ≥ 2
obje
ts. Impli
it in any su
h 
laim is that the 
ase for n ≥ 3 obje
ts 
an be

redu
ed at on
e to the n = 2 
ase by this type of indu
tive argument.

6.

p ∼ p p ∨ (∼ p)

T F T

F T T

Sin
e the right hand 
olumn 
onsists entirely of T's, p∨ (∼ p) is a tautology.

7.

14



p q r q ∨ r p ∧ q p ∧ r p ∧ (q ∨ r) (p ∧ q) ∨ (p ∧ r)

T T T T T T T T

T T F T T F T T

T F T T F T T T

F T T T F F F F

T F F F F F F F

F T F T F F F F

F F T T F F F F

F F F F F F F F

Sin
e the �nal two 
olumns are identi
al, it follows that p ∧ (q ∨ r) ≡ (p ∧
q) ∨ (p ∧ r).

8.

p q ∼ p ∼ q p → q (∼ q) → (∼ p) ∼ (p ∧ (∼ q))

T T F F T T T

T F F T F F F

F T T F T T T

F F T T T T T

Sin
e the �nal three 
olumns agree, we infer that p → q ≡ (∼ q) → (∼
p) ≡∼ (p ∧ (∼ q)).

9.

p q p → q q → p (p → q) ≡ (q → p)

T T T T T

T F F T T

F T T F F

F F T T T

Sin
e there is an F in the �nal 
olumn, the statement at the top of that


olumn is not true.

15



10.

p q r p ∨ q p → r q → r r

T T T T T T T*

T T F T F F F

T F T T T T T*

F T T T T T T*

T F F T F T F

F T F T T F F

F F T F T T T

F F F F T T F

The 
on
lusion 
olumn (far right) has T entries in ea
h of the three 
riti
al

rows (rows in whi
h all the premises have the value T) and so p∨ q, p → r, q →
r, ∴ r is a valid argument.

Problem Set 8

1. For n = 1 both sides of the expression return the value 2, thereby ground-
ing the indu
tion. Suppose that n ≥ 2. By the indu
tive hypothesis the LHS of

the expression take the form:

n−1
∑

k=1

k(k + 1) + n(n+ 1) =
(n− 1)n(n+ 1)

3
+ n(n+ 1)

=
n2(n+ 1)− n(n+ 1) + 3n(n+ 1)

3
=

n(n+ 1)(n+ 2)

3
,

thus 
ompleting the indu
tive veri�
ation of the identity.

2. For the se
ond equality note that:

1

4
n2(n+ 1)2 =

(1

2
n(n+ 1)

)2

= (1 + 2 + · · ·+ n)2.

As for the �rst equality, for n = 1 both sides output the number 1, thus an-

horing the indu
tion. Now we suppose that n ≥ 2 and apply the indu
tive

hypothesis to the RHS to get:

13 + 23 + · · ·+ (n− 1)3 + n3 =
1

4
(n− 1)2n2 + n3

16



=
1

4
n2

((

n2 − 2n+ 1) + 4n
)

=
1

4
n2(n2 + 2n+ 1) =

1

4
n2(n+ 1)2.

Comment : note again that the proof was easy but we did need the formula

beforehand. A general approa
h to establishing these formulae re
ursively was

outlined in Set 9 of MA101, Problems 7 & 8. A general formula for sum of powers

that expresses the sum of kth powers as a polynomial of degree k+1 dates ba
k to
the German mathemati
ian Johann Faulhaber (1580-1635). These polynomials

involve so 
alled Bernoulli numbers in the 
oe�
ients, whi
h arise in many

problems of 
ombinatori
s and repeated di�erentiation of 
ommon fun
tions,

su
h as tan and se
.

3. For n = 1 we get n(n2 + 5) = 6 is a mutliple of 6. Suppose the result

holds for k = n and 
onsder the next 
ase:

(n+1)((n+1)2+5) = (n+1)(n2+2n+6) = n(n2+5)+n(2n+1)+n2+2n+6

= n(n2 + 5) + (3n2 + 3n+ 6) = n(n2 + 5) + 3(n(n+ 1) + 2);

now the �rst term is a multiple of 6 by the indu
tive hypothesis, and sin
e

n(n+1) is even (as exa
tly one of the fa
tors is even) it follows that 3(n(n+1)+2)
is also a multiple of 6. Therefore (n+1)((n+1)2 +5) is a multiple of 6 and the

indu
tion 
ontinues.

Comment Aternatively, we might 
he
ked that the di�eren
e d = (n+1)((n+
1)2+5)−n(n2+5) is divisible by 6, whereupon the result follows by indu
tion.

4. Both sides of the formula agree for n = 1 so let us take n ≥ 2, when
e,
using the indu
tive hypothesis the LHS be
omes:

a · 1− rn−1

1− r
+ arn−1 = a

( (1− rn−1) + rn−1(1− r)

1− r

)

= a · 1− rn−1 + rn−1 − rn

1− r
= a · 1− rn

1− r
,

and the indu
tion 
ontinues, thus establishing the result.

Comment A more natural way perhaps to prove the summation formula for

a geometri
 progression is to multiply both sides by 1 − r and note that when

we expand the LHS, whi
h now has the form:

a(1− r)(1 + r + r2 + · · ·+ rn−1),

the expression `teles
opes' (meaning that all but a �xed number of terms 
an
el)

to give a(1 − rn), in agreement with the RHS. The disadvantage in proving a

formula by indu
tion is that the formula �rst needs to be identi�ed - guessed

if you like - before it 
an be proved. It is therefore good if we 
an dis
over

a way that we may travel from one side of the formula to the other by some

general algebrai
 method. Nonetheless many, many results in mathemati
s are

established by indu
tive argument.
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5. From the re
ursion we obtain the Fibona

i series as far as F10 as

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, · · · .

6. For n = 0 the assertion says that F0 = F2 − 1, whi
h is to say 0 =
1−1,whi
h is true. Now let n ≥ 1. Using indu
tion and the Fibona

i re
ursion

gives:

n
∑

k=0

Fk =

n−1
∑

k=0

Fk + Fn = (Fn+1 − 1) + Fn =

(Fn + Fn+1)− 1 = Fn+2 − 1,

as required for the indu
tion to 
ontinue and so establish the result.

7.

0, 1,−1, 2,−3, 5,−8, 13,−21, 34, · · · .
8. It would seem that fn = (−1)nFn, n = 0, 1, 2, · · · , where fn denotes our

sequen
e and the Fn the normal Fibona

i numbers. By Question 5, we see that

the formula works for n = 0 and n = 1 so let us assume that it is valid for all

values up to some n ≥ 1 and 
onsider fn+1. By de�nition of the sequen
e we

have

fn−1 = fn + fn+1 ⇒ fn+1 = fn−1 − fn

⇒ fn+1 = (−1)n−1Fn−1 − (−1)nFn = (−1)n+1Fn−1 + (−1)n+1Fn

= (−1)n+1(Fn−1 + Fn) = (−1)n+1Fn+1, as required.

9.

a0 = 0, a1 = 1, a2 =
0 + 1

2
=

1

2
, a3 =

1

2

(

1 +
1

2

)

=
3

4
,

a4 =
1

2

(1

2
+

3

4

)

=
5

8
, a5 =

1

2

(3

4
+

5

8

)

=
11

16
,

a6 =
1

2

(5

8
+

11

16

)

=
21

32
, a7 =

1

2

(11

16
+

21

32

)

=
43

64
, a8 =

1

2

(21

32
+

43

64

)

=
85

128
.

10. The 
hara
teristi
 equation here is 2x2 − x − 1 = (2x + 1)(x − 1) = 0,
whi
h has roots 1 and − 1

2 . The general solution is then an = A+ (−1)nB/2n.
Applying the initial 
onditions that a0 = 0 and a1 = 1 gives the equations

A+B = 0 and A− 1
2B = 1. Hen
e A = 2

3 and B = − 2
3 . The solution is then

an =
2

3

(

1 +
(−1)n+1

2n

)

, n = 0, 1, 2, · · · .

Letting n in
rease without bound then gives limn→∞ an = 2
3 .
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Problem Set 9

1.

17!18!

2
= (17!)2 · 18

2
= (17!)2 · 9 = (3× 17!)2.

2. The number of boys 
urrently is

3
3+5 · 48 = 3

8 · 48 = 18 and so there are

(48− 18) = 30 girls. In the enlarged 
lass of x pupils theration of girls to boys

is 3 : 5 so we have

3
8 · x = 30 and hen
e x = 8

3 · 30 = 80. The number of boys
in the bigger 
lass is thus 80 − 30 = 50 and so we would need 50 − 18 = 32
additional boys to a
hieve this.

3. Let a =

√

3

√

2
√

3
√
2 · · · . Then by squaring and squaring again we get

(a2)2 = 32 · 2

√

3

√

2

√

3
√
2 · · · ⇒ a4 = 18a ⇒ a3 = 18;

or if you prefer a is the 
ube root of 18.

4. Calling the number in question x we see that

(x2 − 4)2 = 4− x ⇒ x4 − 8x2 + x+ 12 = 0

⇒ (x2 − x− 3)(x2 + x− 4) = 0;


learly x > 2 so the roots of the se
ond fa
tor are not relevant. We take the

postive root of the �rst fa
tor, whi
h is

x =
1 +

√
13

2
≈ 2 · 3028.

5. We have, working modulo 4 throughtout that 02 ≡ 0, 12 ≡ 1, 22 ≡ 0 and

32 ≡ 0. Hen
e the sum of two squares takes on one of the values 0 + 0 ≡ 0,
0 + 1 ≡ 1, 1 + 1 ≡ 2, so a2 + b2 ≡ 3 (modulo 4) never arises.

6. Working modulo 8 a square may take on the values 02 ≡ 0,12 ≡ 1, 22 ≡ 4,
32 ≡ 1, 42 ≡ 0, (−3)2 ≡ 1, (−2)2 ≡ 4, or (−1)2 ≡ 1. Hen
e the sum of three

squares is equal to the sum of three numbers, with repeats allowed, from the set

{0, 1, 4}. Clearly a sum of 7 is not possible (although all other values do arise).

Therefore the sum of three squares 
annot equal 7 modulo 8, whi
h is to say


annot have the form 8k + 7.

7. In general a2 ≡ 0 or 1 (mod 4). If we had a solution to the equation in

whi
h x2 ≡ 0 (mod 4) then, working modulo 4,

19y2 − 15 ≡ 3y2 − 1 ≡ 0 ⇒ 3y2 ≡ 9 ⇒ y2 ≡ 3 (mod 4)
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and so this is a 
ontradi
tion. The alternative is that x2 ≡ 1 in whi
h 
ase

19y2 − 15 ≡ 3y2 − 1 ≡ 1 ⇒ 3y2 ≡ 6 ⇒ y2 ≡ 2 (mod 4),

whi
h is also a 
ontradi
tion. Hen
e there are no latti
e points on the 
urve

de�ned by x2 − 19y2 = 15.

8. {1, 2, 4, 7, 8, 11, 13, 14}, so that φ(15) = 8; or by the formula, sin
e the

prime divisors of 15 and 3 and 5:

φ(15) = 15(1− 1

3
)(1 − 1

5
) = 15(

2

3
)(
4

5
) = 8.

For 323 = 17× 19 we get

φ(323) = 323(1− 1

17
)(1 − 1

19
) = 323 · 16

17
· 18
19

= 16 · 18 = 288.

9. Observe that the terms in the sum are the di�eren
e between su

essive

kth roots of unity. Hen
e, for a given n, the sum represents the length of the

boundary of the regular n-gon inside the unit 
ir
le, the limit of whi
h is the


ir
umferen
e of that 
ir
le, whi
h is 2π.

10. No, be
ause in general if a ≥ 2 and n has an odd fa
tor m so that

n = mt then we have the following fa
torization:

an + 1 = amt + 1 = (at + 1)(a(m−1)t − a(m−2)t + a(m−3)t − · · ·+ 1).

In this instan
e a = 2 and n = 50 = 5 × 10 so that we may take m = 5 and

t = 10. The pre
eding fa
torization yields:

250 + 1 = (210 + 1)(240 − 230 + 220 − 210 + 1).

Comment Clearly if a is odd then an+1 is even and so not prime. It follows

that the only numbers of the form an + 1 that 
an be prime have the form

22
n

+ 1. These are 
alled the Fermat numbers, some of whi
h are primes, and

primes with very spe
ial properties.

Problem Set 10

1. Following the rules we get 7 7→ 22 7→ 11 7→ 34 7→ 17 7→ 52 7→ 26 7→ 13 7→
40 7→ 20 7→ 10 7→ 5 7→ 16 7→ 8 7→ 4 7→ 2 7→ 1.

Comment A long standing 
onje
ture is that, beginning with any number,

this pro
ess always ends in 1. The term `hailstone numbers' 
omes about be
ause

of the pattern of the number sequen
es so generated, whi
h generally show a
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number of errati
 rises and falls yet eventually always hit the ground. Or so it

seems!

2. 276 = 22 × 3× 23. Hen
e

a(276) =
23 − 1

2− 1
· 3

2 − 1

3− 1
· 23

2 − 1

23− 1
= 7× 8

2
× 528

22
= 672.

Comment We see that 276 is an abundant number: a number that is less than the
sum of its fa
tors that are less than the number itself. Curiously the sequen
e

a(276), a2(276), a3(276), · · · is unknown in that it may be, as far as anyone

knows, an in�nite non-repeating sequen
e!

3. By de�nition we have S(n, 1) = 1. The number of ways of partitioning

the n-set into two blo
ks, listed in a spe
i�
 order, is 2n as there are two 
hoi
es

of box in whi
h to pla
e ea
h member of the set. Sin
e the sets are not in any

parti
ular order, the number of su
h pairs of sets is

2n

2 = 2n−1
. Finally the 
ase

where one of the sets is empty must be ex
luded, and so S(n, 2) = 2n−1 − 1.

4. Again by de�nition we have S(n, n) = 1. Next, a partition of an n-set
into n−1 non-empty blo
k is determined by the 
hoi
e of the unique blo
k with

2 members, (the remaining blo
ks being singleton sets). Hen
e S(n, n − 1) =
(

n

2

)

= 1
2n(n− 1).

Comment Note that, in 
ontrast to the binomial 
oe�
ients, we do not

have row symmetry for these Stirling numbers in that S(n, r) 6= S(n, n − r).
However it follows from the de�nition that the S(n, r) satisfy the re
urren
e

S(n, r) = S(n − 1, r − 1) + rS(n − 1, r), whi
h is the same as that for the

binomial 
oe�
ients ex
ept for the introdu
tion of the multiplier of r in the

se
ond term. Stirling Numbers of the First Kind are related but 
ount something

quite di�erent, that being the number of ways we 
an permute n obje
ts into r

y
les.

5.

7!!

7!
= (7!− 1)! = x!

and so x = 7!− 1 = 5040− 1 = 5039.

6.

45

16
= 2 +

13

16
= 2 +

1

1 + 3
13

= 2 +
1

1 + 1
4+ 1

13

so that

45
16 = [2; 1.4.13].

7.

16

45
=

1

2 + 13
16

=
1

2 + 1
1+ 3

13

=
1

2 + 1
1+ 1

4+ 1
13
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so that

16
45 = [0; 2, 1, 4, 13].

Comment : Quite generally, a positive rational number

p
q
< 1 has the same

expansion as that as

q

p
, just shifted one pla
e to the right.

8.

√
2 = 1 + (

√
2− 1) so that a0 = 1. Then

r1 =
1

r0 − a0
=

1√
2− 1

=
1 +

√
2

(
√
2− 1)(

√
2 + 1)

= 1 +
√
2 ⇒ a1 = ⌊1 +

√
2⌋ = 2;

r2 =
1

r1 − a1
=

1

(1 +
√
2)− 2

=
1√
2− 1

= r1.

Hen
e r1 = r2 = · · · , a1 = a2 = · · · = 2 and so

√
2 = [1; 2, 2, 2, · · · ], whi
h is

written in re
urring notation as [1; 2].

9.

√
7 = 2 + (

√
7− 2) so that a0 = 2. Then

r1 =
1√
7− 2

=

√
7 + 2

7− 4
=

1

3
(2 +

√
7) ⇒ a1 = ⌊r1⌋ = 1;

r2 =
1

r1 − a1
=

3√
7− 1

=
3
√
7 + 3

6
=

√
7 + 1

2
⇒ a2 = ⌊r2⌋ = 1

r3 =
1

r2 − a2
=

2√
7− 1

=
2
√
7 + 2

6
=

√
7 + 1

3
⇒ a3 = ⌊r3⌋ = 1

r4 =
1

r3 − a3
=

3√
7− 2

·
√
7 + 2√
7 + 2

=
3
√
7 + 6

3
=

√
7 + 2 ⇒ a4 = ⌊r4⌋ = 4

r5 =
1

r4 − a4
=

1√
7− 2

= r2.

Hen
e

√
7 = [2; 1, 1, 1, 4].

10. ⌊φ⌋ = 1 so that a0 = 1. Then

r1 =
1

φ− 1
=

2√
5− 1

=
2
√
5 + 2

4
=

1 +
√
5

2
= φ = r0.

Hen
e φ = [1, 1].
Comment Trun
ation of 
ontinued fra
tion expansions generally give the

best rational approximations to irrational numbers for a given size of denom-

inator. Sin
e the expansion of the Golden ratio 
onsists entirely of 1's this


onvergen
e is as slow as possible, so that φ is among the most di�
ult of num-

bers to approximate a

urately by rational numbers. This solution 
an be found

by reversing the expansion, as you have already seen is Set 3 Question 4.
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