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Problem Set 1 Elementary properties and examples

A semigroup (S, ◦) is a set S with an asso
iative binary operation ◦, whi
h
is often denoted by juxtaposition so that x(yz) = (xy)z for all x, y, z ∈ S. If

S has an identity element 1, then S is a monoid. For a semigroup S that is

not a monoid, the monoid S1 = S ∪ {1} is the semigroup S with 1 the adjoined

identity element ; if S is a monoid then we take S1 = S. The set of idempotents

of S (whi
h may be empty), is denoted by E(S). We write S ≤ T to denote

that S is a subsemigroup of the semigroup T .
For one-sided de�nitions, we often re
ord a one-sided version only, the alter-

nate notion being then impli
itly de�ned using left-right symmetry.

1. A semigroup is left 
an
ellative if ax = ay implies x = y (a, x, y ∈ S).
(a) Show that every idempotent in a left 
an
ellative semigroup is a left

identity element.

(b) Show that a 
an
ellative (i.e. left and right 
an
ellative) semigroup S

an have at most one idempotent e whi
h is then the identity element of S.

2. A semigroup S is left simple if Sa = S for all a ∈ S. Prove that a

semigroup S is a group if and only if S is both left and right simple.

3. A right ideal I 6= ∅ of a semigroup S is a subset of S su
h that IS ⊆ S;
we say that I is an ideal of S if I is both a left and a right ideal of S.

(a) Show that the smallest right ideal I 
ontaining a non-empty subset A of

S is I = AS1
.

(b) Similarly the ideal of I of S generated by A is I = S1AS1
.

Comment If A = {a} we speak of the prin
ipal right ideal aS1
and prin
ipal

ideal S1aS1
.

4. Let X be a set and de�ne TX as the semigroup of all mappings on X
under fun
tion 
omposition (
omposed from left to right).

(a) Show that TX is a monoid that 
ontains the symmetri
 group SX .

(b) Show that the set C of 
onstant mappings in TX form a right zero

semigroup, meaning that ef = f for all e, f ∈ C.
(
) Show that α ∈ E(TX), the set of idempotents of TX if and only if α|Xα

is the identity mapping on Xα.
(d) The rank of an element α ∈ TX is |Xα|. Let Y be a 
ardinal number.

Show that I is an ideal of TX where

I = {α ∈ TX : |Xα| ≤ Y }.

5. For a non-empty subset A ⊆ S the subsemigroup of S generated by A,
denoted by 〈A〉, is the smallest subsemigroup of S that 
ontains A.

(a) Show that 〈A〉 exists and 
omprises the set of all produ
ts of members

of A of �nite length.

(b) Let A = {a}. If 〈a〉 is �nite show that there exists positive integers r and
m su
h that 〈a〉 = {a, a2, · · · , ar+m−1} with Ka = {ar, ar+1, · · · , ar+m−1} an
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abelian group of orderm. We 
all r and m the index and the period respe
tively

of the monogeni
 semigroup 〈a〉.
(
) Express the (unique) idempotent power at of 〈a〉 in terms of r and m.

(d) Hen
e show that Ka is indeed a 
y
li
 group generated by at+1
.

6. Let X = {0, 1, · · · , r + m − 1} and 
onsider the monogeni
 semigroup

Sr,m = 〈a〉 of TX where a is the map a = (1, 2, · · · , r +m− 1, r) (meaning that

0a = 1, 1a = 2, 2a = 3, · · · , (r +m− 1)a = r).
(a) Show that 〈a〉 has index r and period m.

(b) Find all monogeni
 semigroups of order 11 generated by a symbol a su
h
that a8 is an idempotent.

(
) Determine the subsemigroup of T12 generated by the mapping a =
(3, 3, 4, 5, 6, 7, 8, 6, 10, 11, 12, 12) by �nding its order and period. What are its

idempotents and subgroups?

7. Let S be the set of non-zero 
omplex numbers with produ
t a ◦ b = |a|b.
(a) Show that S is a semigroup.

(b) Find the idempotents of S.
(
) Show that S is right simple and left 
an
ellative.

8(a) Prove that a �nite subsemigroup U of a group is a group.

(b) Show that the previous result does not hold if we delete the word `�nite'.

9. Let X be a 
ountably in�nite set and let S be the set of one-to-one

mappings α : X → X with the property that |X \Xα| = ∞.

(a) Show that S is a subsemigroup of TX (known as the Baer-Levi semigroup

on X).

(b) Show that S is idempotent-free.

(
) Hen
e prove that S is right simple and right 
an
ellative, but is not left

simple nor left 
an
ellative.

10. (a) Let S and T be two semigroups. Show that S × T is a semigroup if

we de�ne the produ
t in the obvious way: (s1, t1)(s2, t2) = (s1s2, t1t2).
(b) Let L and R be a left zero semigroup and R a right zero semigroup (see

Question 4(b)). Show that the semigroup L×R 
onsists entirely of idempotents

(su
h a semigroup is 
alled a band) in whi
h every pair of elements 
omprises a

mutually inverse pair.
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Problem Set 2 Homomorphisms and 
ongruen
es

A semigroup homomorphism α : S → T is a mapping for whi
h (ab)α =
aαbα. The de�nition of monomorphism and isomorphism are also de�ned just

as for groups. We write S ∼= T if S and T are isomorphi
.

1(a) Let α : S → T be a surje
tive semigroup homomorphism. Let A denote

the set of all subsemigroups of S and let B denote the set of all subsemigroups

of T . The mapping φ : A 7→ Aφ (A ∈ A) is an in
lusion-preserving map from

A onto B.
(b) Repeat (a), but let A and B represent the set of all ideals of S and T

respe
tively. Draw the 
orresponding 
on
lusion.

(
) Show that 
omposition of two homomorphisms α : S → T and β : T → V ,
αβ : S → V , is also a homomorphism.

An equivalen
e relation σ on a semigroup S is a left 
ongruen
e on a semi-

group S if aσb implies that caσcb for all c ∈ S. The 
on
ept of right 
ongruen
e
is de�ned dually. We say that σ is a 
ongruen
e on S of aσb and cσd then acσbd
for all a, b, c, d ∈ S.

2. Prove that σ is a 
ongruen
e on S if and only if σ is both a left and a

right 
ongruen
e on S.

For any fun
tion α : S → T de�ne the kernel of α as ker(α) = {(x, y) ∈
S × S : xα = yα} and let Ker(α) denote the 
orresponding partition of S into

equivalen
e 
lasses. For a 
ongruen
e ρ on S, we denote the set of ρ-
lasses of
S by S/ρ; the ρ-
lass of a ∈ S is written as aρ.

3(a) Prove that the kernel of a homomorphism φ : S → T is a 
ongruen
e of

S.
(b) Show that S/ρ is a semigroup if we de�ne multipli
ation by representa-

tives of 
lasses, in that aρbρ = (ab)ρ.
(
) Show that if ρ is a 
ongruen
e then the natural map ρ♮ : S → S/ρ for

whi
h a 7→ aρ is a homomorphism and ker(ρ♮) = ρ.

4. First Isomorphism Theorem Let α : S → T be a surje
tive homomorphism

of semigroups. Then ρ = ker(α) is a 
ongruen
e and there exists a unique

isomorphism ψ : S/ρ→ T su
h that ρ♮ψ = α. Conversely, if ρ is any 
ongruen
e
on S then ρ♮ : S → T is a surje
tive homomorphism of semigroups with kernel

ρ.

5. Se
ond Isomorphism Theorem Let σ, ρ be 
ongruen
es on a semigroup S
su
h that σ ⊆ ρ. Then

ρ/σ = {(xσ, yσ) ∈ S/σ × S/σ : (x, y) ∈ ρ}

is a 
ongruen
e on S/σ and (S/σ)/(ρ/σ) ∼= S/ρ.

6. Let G be a group.

(a) Prove that if ρ is a 
ongruen
e on G with identity e, then N = eρ is a

normal subgroup of G and aρb if and only if ab−1 ∈ N .
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(b) Conversely show that if N is a normal subgroup of G then the relation

(a, b) ∈ ρ if and only if ab−1 ∈ N is a 
ongruen
e on G su
h that eρ = N .

7(a) Show that any interse
tion of 
ongruen
es on a semigroup S is a 
on-

gruen
e.

(b) Hen
e show that given any relation R ⊆ S × S, there is a smallest


ongruen
e R∗
on S that 
ontains R. We 
all R∗

the 
ongruen
e generated by

R.

For any relation R ⊆ S × S, let RS = R ∪ R−1 ∪ ι where ι is the equality

relation on S. Let a, b ∈ S and suppose that a = xcy, b = xdy, and cRSd for

some c, d ∈ S and x, y ∈ S1
. The passage from a to b, in either dire
tion, is an

elementary R-transition.

8. Prove that aR∗b (a, b ∈ S) if and only b 
an be obtained from a by some

�nite sequen
e of elementary R-transitions.

9. Let E be an equivalen
e relation on a semigroup S. Prove that the

following relation is the largest 
ongruen
e on S that is 
ontained in E;

E♭ = {(a, b) ∈ S × S : (∀x, y ∈ S1) (xay, xby) ∈ E}.

10. An element e ∈ S is a right identity (resp. right zero) if ae = a (resp.

ae = e) for all a ∈ S.
(a) Show that if S has a right identity e and a left identity f then e = f is

the unique identity of S.
(b) Repeat part (a) to prove the 
orresponding result for right and left zero

elements.

(
) On any non-empty set S with may de�ne a null semigroup also know as a

zero semigroup by 
hoosing e ∈ S and putting ab = e for all a, b ∈ S. Show that

any equivalen
e ρ on S is a 
ongruen
e and that S/ρ is also a null semigroup.
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Problem Set 3 Regularity and idempotents

1. The natural partial order on E(S), the set of all idempotents of a semi-

group S: de�ne e ≤ f i� ef = fe = e (e, f ∈ E(S)).
(a) Verify that ≤ de�nes a partial order on E(S).
(b) Show that e ≤ f if and only if e = efe.

A (lower) semilatti
e S is a poset (a partially ordered set) in whi
h ea
h pair

of elements a, b ∈ S has a greatest lower bound c = a ∧ b.

2. Show that any semilatti
e (S,∧) is a 
ommutative band (of idempotents)

with respe
t to the meet operation and that natural partial order on S equals

the partial order of the semilatti
e.

3. Show the 
onverse to the result of Question 2 by proving that any 
ommu-

tative band B is a semilatti
e in whi
h ab = a∧ b, where the meet is respe
t to

the natural partial order on B. We thus may identify the 
lasses of semilatti
es

and 
ommutative bands.

4. A member a ∈ S is 
alled regular if a has an inverse x ∈ S meaning that

a = axa and x = xax. The set of inverses of a is denoted by V (a). A semigroup

is 
alled regular if all of its members are regular.

(a) Show that every group G is a regular semigroup.

(b) Show that if axa = a then xax (a, x ∈ S) is an inverse of a, and so a is

regular.

(
) Show that TX is a regular semigroup.

(d) Show that a homomorphi
 image of a regular semigroup is regular.

(e) Show that an arbitrary dire
t produ
t S = Πi∈ISi of regular semigroups

is regular.

5(a) A semigroup S is a group if and only if S is regular and has a unique

idempotent.

(b) A �nite semigroup S is a group if and only if S is 
an
ellative.

(
) Give an example of a semigroup that is 
an
ellative but is not a group.

6. Any 
an
ellative 
ommutative semigroup S 
an be embedded in an abelian

group as follows. Let F = S1 ×S1
and de�ne ρ on F by (a, b)ρ(c, d) if and only

if ad = bc (a, b, c, d ∈ S1).
(a) Show that ρ is 
ongruen
e and that F/ρ is an abelian group.

(b) Show that S1
is embedded in F/ρ by the mapping whereby a 7→ (a, 1)ρ

(a ∈ S1).
(
) Carry out this pro
ess on the positive integers under addition, and on

the positive integers under multipli
ation.

7(a) Show that if G is a group and E is a right zero semigroup (meaning

that ef = f for all e, f ∈ E) that G×E is a right group, whi
h is a right simple

and left 
an
ellative semigroup.
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We establish the 
onverse of (a), whi
h is a stru
ture theorem for right

groups, as follows.

(b) Show that E = E(S) 6= ∅;

(
) E(S) is a right zero semigroup;

(d) Show that eb = b for every b ∈ S and e ∈ E(S);
(e) Se is a subgroup of S for every idempotent e;
(f) let f ∈ E(S) be �xed and let G be the group Sf . Prove that S ∼= G×E.

8. Dedu
e that S being a right group is equivalent to ea
h of the following


onditions:

(a) S is right simple and 
ontains at least one idempotent;

(b) the equation ax = b has a unique solution in S (a, b ∈ S);
(
) S is regular and left 
an
ellative.

9. Let I be an ideal of S and de�ne ρ by aρb if and only if a = b or a, b ∈ I.
Show that ρ is a 
ongruen
e on S. Su
h a 
ongruen
e is 
alled a Rees 
ongruen
e

on S and is denoted by S/I. The 
lass I is then the zero element of S/I.

10(a) Cayley theorem for semigroups Let S be a semigroup and de�ne a

mapping Φ : S → TS by aΦ = ρa where ρa is the right translation by a de�ned

by xρa = xa. Show that Φ is a homomorphism of S into TS .
(b) By taking S to be a null semigroup, show that Φ is not ne
essarily a

monomorphism.

(
) Show that by repla
ing S by S1
so that Φ : S → TS1

, Φ be
omes one-to-

one and so SΦ is an isomorphi
 
opy of S in TS1
.
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Problem Set 4 Inverse semigroups

The partial transformation semigroup S= PT X . The members of S are the

fun
tions α : domα→ ranα, where domα, ranα ⊆ X . The semigroup operation

is relational 
omposition, whi
h in this instan
e is fun
tion 
omposition 
arried

out to the extent possible.

1(a) Show that for α, β ∈ PT X we have domαβ = (ranα ∩ domβ)α−1
and

ranαβ = (ranα∩domα)β.
(b) Let 0 be a new symbol not in X and 
onsider TX∪{0}. Prove that PT X

is isomorphi
 to the subsemigroup of all mappings in TX∪{0} that �x the point

0.
(
) If |X | = n, show that |TX | = nn| and |PT X | = (n+ 1)n.
(d) PT X is regular.

A regular semigroup S is an inverse semigroup if S is regular and the inverse

of every member of S is unique. We then denote the inverse of a by a−1
.

2. Let IX denote the subset of all one-to-one members of PT X . Show that

IX is an inverse monoid and identify its latti
e of idempotents.

3. Prove that the following are equivalent for a regular semigroup S:
(i) E(S) is a semilatti
e;

(ii) every prin
ipal right ideal and every prin
ipal left ideal has a unique

idempotent generator;

(iii) S is an inverse semigroup.

4. Let S be an inverse semigroup. Show that the usual laws of inverses hold

in that for a, b ∈ S we have:

(a) a = (a−1)−1
and (ab)−1 = b−1a−1

.

(b) Also, for e, f ∈ E(S), Se∩ Sf = Sef , and Sa = Sa−1a, Sa−1 = Saa−1
.

The Cayley-style theorem for inverse semigroups is the Preston-Wagner the-

orem, whi
h states that any inverse semigroup S may be embedded in IS and

is proved as follows.

5. De�ne Φ : S → IS by aΦ = ρa (a ∈ S) where we de�ne ρa : Sa−1 →
Sa−1a by the rule that x 7→ xa (x ∈ Sa−1). Verify that that ρa and ρa−1

are

mutually inverse mappings of Saa−1
and Sa−1a onto ea
h other and 
on
lude

that ρa ∈ IS and ρa−1 = ρ−1
a .

6. Prove that if ρa = ρb then a = b, so that Φ is one-to-one.

7. Show that Φ is a homomorphism and hen
e 
on
lude the Preston-Wagner

theorem.

8. Lallement's lemma Let S be a regular semigroup and ρ a 
ongruen
e on

S. If a ∈ E(S/ρ) then aρe for some e ∈ E(S). Prove this by taking e = axa
where x ∈ V (a2).
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9. Use Lallement's lemma to prove that the homomorphi
 image of an inverse

semigroup is an inverse semigroup.

10. Orthodox semigroups A regular semigroup S is orthodox if E(S) is

a subsemigroup of S. In parti
ular all bands and all inverse semigroups are

orthodox. Prove that for a regular semigroup S the following are equivalent:

(i) S is orthodox;

(ii) if a, b ∈ S, a′ ∈ V (a), b′ ∈ V (b) then b′a′ ∈ V (ab);
(iii) every inverse x of an idempotent e is itself idempotent.

Furthermore, in any orthodox semigroup aea′, a′ea ∈ E(S) whenever a′ ∈
V (a) and e ∈ E(S).
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Problem Set 5 Green's relations I

Green's relations are �ve equivalan
es on a semigroup based on the notion

of mutual divisibility of elements. They play no role in group theory sin
e there

they all 
oin
ide with the universal equivalen
e but they are important tools in

the des
ription and de
omposition of semigroups.

Let S be any semigroup. We de�ne aRb if aS1 = bS1
and aLb if S1a = S1b

(a, b ∈ S). The equivalen
e H = L ∩R while the equivalen
e D =L∨R, where
the join is in the latti
e of all equivalen
es of S; that is D is the least equivalen
e


ontaining both L and R. Finally, aJ b if S1aS1 = S1bS1
. Note that aRb if

and only if there exist x, y ∈ S1
su
h that ax = b and by = a with similar

remarks applying to L and J . The L-
lass of a ∈ S will be denoted by La,

and similarly we have Ra, Ha, Da and Ja for the four other Green's relations.

We write La ≤ Lb if S1a ⊆ S1b and similarly Ra ≤ Rb if aS1 ⊆ bS1
and

S1aS1 ⊆ S1bS1

an be denoted by Ja ≤ Jb.

1. Show that L is a right 
ongruen
e and R is a left 
ongruen
e on S.

2. Prove that every left 
ongruen
e ρ ⊆ R 
ommutes with every right


ongruen
e λ ⊆ L, whi
h is to say that ρ ◦ λ = λ ◦ ρ, where ◦ denotes relational


omposition.

3(a) D ⊆ J .

(b) D = R ◦ L = L ◦ R.

(
) Con
lude that aDb if and only if there exists c, d ∈ S su
h that aLcRb
and aRdLb.

Comment It follows that any D-
lass D of S 
an be represented by an

`egg-box' diagram: a re
tangular array of squares in whi
h the rows represent

R-
lasses, the 
olumns L-
lasses, and the square forming the interse
tion of a

row and a 
olumn an H-
lass. Indeed we shall show that all H-
lasses within

the one D-
lass have the same (non-zero) 
ardinality.

4. The set produ
t LR of an L-
lass L and an R-
lass R is 
ontained in a

single D-
lass.

5. Show that Green's relations on TX are as follows:

(i) αLβ if and only if Xα = Xβ;
(ii) αRβ if and only if kerα = kerβ;
(iii)αHβ if and only if Xα = Xβ and kerα = kerβ;
(iv) αDβ if and only if rankα = rankβ;
(v) D = J .

6. Green's Lemma (right hand version) Let aRb (a, b ∈ S) and take s, s′ ∈
S1

su
h that as = b and bs′ = a. Then the mappings ρs|La and ρs′ |Lb are

mutually inverse, R-
lass preserving bije
tions of La onto Lb and of Lb onto La

respe
tively.
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7. State the dual (left hand version) of Green's Lemma and hen
e dedu
e

that any two H-
lasses within the same D-
lass are equi
ardinal.

8. Miller and Cli�ord lo
ation theorem For any two elements a, b ∈ S,
ab ∈ Ra ∩Lb if and only Ra ∩Lb 
ontains an idempotent. Prove this as follows.

(a) Use Green's Lemma to show that if ab ∈ Ra ∩ Lb then there exists

c ∈ Rb ∩ La su
h that cb = b and that c = c2.
(b) Conversely take e ∈ E(S) ∩Rb ∩ La and show that eb = b and ae = a.
(
) Hen
e use the fa
t that R and L are left and right 
ongruen
es respe
-

tively to prove that aRabLb.

9. Use Miller and Cli�ord to prove that the following are equivalent for an

H-
lass H of S.
(i) H 
ontain an idempotent;

(ii) there exist a, b ∈ H su
h that ab ∈ H ;

(iii) H is a maximal subgroup of S.

10. Prove that any two group H-
lasses He, Hf (e, f ∈ E) within the same

D-
lass of a semigroup S are isomorphi
.
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Problem Set 6 Green's relations II

1. Regular D-
lasses If one element a of a D-
lass D of a semigroup S is

regular then all members of D are regular, in whi
h 
ase D is 
alled a regular

D-
lass. Prove this as follows.
(a) Show that if an R- or an L-
lass 
ontains a regular element, then that


lass 
ontains an idempotent.

(b) Hen
e prove the theorem stated above. [Hint: �rst prove the 
laim is

true for Ra and for La.℄

(
) Show that for any a ∈ S, the set of inverses V (a) ⊆ Da.

2. Inverse Lo
ation of inverses theorem The H-
lass H 
ontains an inverse

x of a if and only if Ra ∩ Lb and Rb ∩ La ea
h 
ontain an idempotent. In this


ase, x is the only inverse of a in Hb.

3(a) Prove that if L is a left ideal and R is a right ideal of S then RL ⊆ R∩L,
with equality if S is regular.

(b) If S is a right 
an
ellative semigroup without idempotents, then every

L-
lass of S is trivial.

4. Let Y be a subset of X and Π a partition of X su
h that |Y | = |X/Π|. Let
H be the H-
lass of TX determined by (Π, Y ), meaning that α ∈ H i� kerα = Π
and Xα = Y . Then H is a group if and only if Y is a transversal of Π, in whi
h


ase H ∼= GY , the symmetri
 group on Y .

Partial order of Green's 
lasses We de�ne ≤L =≤ on the L-
lasses of S by

La ≤ Lb if S1a ⊆ S1b; similarly we de�ne ≤R, ≤J and ≤H=≤L ∩ ≤R. Let

Reg(S) denote the set of regular elements of S. We also write a ≤L b if La ≤ Lb,

with a 
orresponding notation for the R, H and J partial orders on S.

5. Hall's lemma Let a, b ∈ Reg(S) with La ≥ Lb. Then for ea
h e ∈ E(La)
there exists f ∈ E(Lb) su
h that e ≥ f in the natural partial order. [Hint: put

f = eb′b where b′ ∈ V (b).℄

6(a) Let U be a subsemigroup of S. Denote the Green's partial orders in

U and S by ≤L′
and ≤L et
. Let a, b ∈ U with b ∈ Reg(U). Then Ra ≤R Rb

implies that Ra ≤R′ Rb.

(b) Let G denote any of L,R,H and let G′
denote Green's relation on U ≤ S.

Prove that G′ ⊆ G ∩ (U × U) with equality if U is a regular subsemigroup of S.

7. If a regular D-
lass D of S forms a subsemigroup of S then D itself has

only one D-
lass.

8. Prove that if S is �nite then D = J .

9. Let S be a semigroup that is the union of its subgroups. Prove that ea
h

D-
lass D of S is a regular subsemigroup of S and the semigroup D 
onsists of

a single D-
lass (of D).

12



Let η denote the least semilatti
e 
ongruen
e on a semigroup S, whi
h is

evidently given by η = η∗0 where η0 = {(a, a2), (ab, ba) : a, b ∈ S}.

10(a) Show that in any semigroup D∗ ⊆ J ∗ ⊆ η.
(b) Let e, f ∈ E(S) for a regular semigroup S and let y ∈ V (ef). Show that

fye ∈ V (ef) ∩ E(S).
(
) Use part (b) to prove that in a regular semigroup, D∗ = J ∗ = η. [Hint:

show η0 ⊆ D∗
: in order to show that abD∗ba �rst take a = e, b = f .℄
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Problem Set 7: Minimal ideals and 
ompletely [0-℄simple semigroups

A semigroup S is simple if it has just one J -
lass and is bisimple if S has

only one D-
lass. If S is 0-simple if S has a zero 0, S2 6= {0} and the only ideals

of S are {0} and S. A 0-minimal ideal M of S 
ontains no other ideals of S
apart from M and {0} with M 6= {0}.

1(a) Show that S is simple if and only if S has only one ideal (whi
h is

ne
essarily S itself).

(b) Show that S is simple if and only if S = SaS for all a ∈ S.
(
) Show the 
ondition S2 6= {0} serves only to ex
lude the two-element null

semigroup from the 
lass of 0-simple semigroups.

2. The semigroup S of part (b) below has a single J -
lass but D is the

equality relation.

(a) Show that if a semigroup S is 
an
ellative without identity there is no

pair of elements e, a ∈ S su
h that ea = a or ae = a. Dedu
e that in S, the
D-relation is trivial (i.e, equals the identity relation).

(b) Show that with respe
t to matrix multipli
ation:

S = {

[

a 0
b 1

]

: a, b ∈ R
+},

is 
an
ellative without identity.

(
) Show that J is the universal relation on S.

3(a) Show that a semigroup S either has no minimal ideals or possesses a

unique minimal ideal K known as the kernel of S.
(b) If a semigroup S has a kernel K, then K is a simple semigroup.

(
) Show that any �nite semigroup has a simple kernel.

(d) S is 0-simple if and only ifSaS = S for every a ∈ S \ {0}.

4. By a 0-minimal ideal M of S we mean that M is an ideal of S, M 6= {0},
and that M 
ontains no ideals of S other than {0} and itself. Prove that if M
is a 0-minimal ideal of S then either M2 = {0} or M is a 0-simple semigroup.

5. If I, J are ideals of S su
h that I ⊆ J and there is no ideal of S lying

stri
tly between I and J , then J/I is either 0-simple or null.

6. Prove that if Ja ∈ S/J then either Ja is the kernel of S or the set

I = {x ∈ S : Jx < J} is an ideal of S (and hen
e of J(a) = S1aS1) and hen
e

the fa
tor J(a)/I is either 0-simple or null.

Comment : The semigroups K and J(a)/I(a) are 
alled the prin
ipal fa
tors

of S. A semigroup is 
alled semisimple in none of its prin
ipal fa
tors are null.

A prin
ipal fa
tor J/I 
an be thought of as the J -
lass J together with 0 and

for any a, b ∈ J , the produ
t of a and b is ab if ab ∈ J and is 0 otherwise.

A 0-simple semigroup S is 
alled 
ompletely 0-simple if S 
ontains a primi-

tive idempotent e, whi
h means e 6= 0 and f ≤ e (e, f ∈ E(S)) then f ∈ {0, e}.

14



A simple semigroup is 
ompletely simple if S0
is 
ompletely 0-simple. A semi-

group S is 
ompletely regular if every element a has an inverse x with whi
h it


ommutes.

7(a) Prove that S is 
ompletely regular if and only if S is a union of its

subgroups.

(b) Prove that ea
hD-
lass of a 
ompletely regular semigroup is a 
ompletely

simple semigroup and a union of isomorphi
 groups.

8. Let S be a 
ompletely regular semigroup.

(a) Show that J is a 
ongruen
e on S and that S/J is a semilatti
e;

(b) Hen
e dedu
e that J = η, the least semilatti
e 
ongruen
e on S.

9. Show that any simple 
ompletely regular semigroup is 
ompletely simple.

A semigroup S is 
alled a semilatti
e of semigroups of type T if there is

a 
ongruen
e ρ on S su
h that S/ρ is a semilatti
e and ea
h 
lass aρ is a

subsemigroup of S of type T. (Sin
e S/ρ is a band, it follows that all ρ 
lasses

aρ are subsemigroups of S as (aρ)2 = a2ρ = aρ.)

10. Prove that D = J in any 
ompletely regular semigroup S and that S is

a semilatti
e of 
ompletely simple semigroups.

15



Problem Set 8

Let Y be a semilatti
e and let {Sα : α ∈ Y } be a 
olle
tion of disjoint

semigroups of the same type T , indexed by Y . Suppose that for ea
h α, β ∈ Y
su
h that α ≥ β there is a homomorphism φα,β : Sα → Sβ su
h that:

(i) φα,α is the identity mapping of Sα;
(ii) φα,βφβ,γ = φα,γ for every α, β, γ ∈ Y with α ≥ β ≥ γ. We then de�ne

an asso
iative produ
t on S = {Sα : α ∈ Y } by

aα ◦ bβ = (aαφα,αβ)(bβφβ,αβ); aα ∈ Sα, bβ ∈ Sβ .

1. Show that the following are equivalent:

(i) S is regular and every idempotent is 
entral (meaning that ea = ae for

all e ∈ E(S), a ∈ S);
(ii) every D-
lass of S has a unique idempotent;

(iii) S is a semilatti
e of groups;

(iv) S is a strong semilatti
e of groups.

2. Show that a semigroup S is a semilatti
e of groups if and only if

(∀a, b ∈ S)(∃x, y ∈ S) : (a = axa) ∧ (ab = bya).

3. Prove that a 
ommutative semigroup S is regular if and only if S is a

strong semilatti
e of abelian groups.

4. A semigroup S is 
alled a re
tangular band if it satis�es a = aba (∀a, b ∈
S). Show this 
ondition is equivalent to be nowhere 
ommutative, meaning that

ab = ba implies a = b.

5(a) Let L,R be non-empty sets and de�ne a produ
t on L×R by (a, b)(c, d) =
(a, d). Verify that this produ
t is that of a re
tangular band.

(b) Conversely show that any re
tangular band is isomorphi
 to a re
tangular

band of the type des
ribed in (a).

6. Prove that any band is a semilatti
e of re
tangular bands.

7. We say that 〈X,R〉 is a presentation for semigroup S if X is a generating

set of S and S = FX/ρR where ρR is the 
ongruen
e on the free semigroup FX

generated by the set of pairs R ⊆ X × X . We write x = 1 (resp. x = 0) to
denote the fa
t that xa = ax = a (resp. xa = ax = x) ∀ a ∈ S.

Show that the semigroup de�ned by the presentation 〈x, y|xyx = 1〉 is a

group isomorphi
 to the integers under addition.

8. The bi
y
li
 monoid Let M = 〈a, b|ab = 1〉.
(a) Let S = 〈α, β〉, where α, β ∈ TN0

are the mappings de�ned by nα =
n+ 1, nβ = max{n− 1, 0} for all n ∈ N

0
. Show that αβ = 1 but that βα 6= 1.

Dedu
e that S is a homomorphi
 image of M .
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(b) Show that any member of S, and hen
e ofM , 
an be uniquely expressed

in the form bman. Dedu
e that S is a faithful representation of M .

9(a) For M as in Question 8, show that

bkal · bman = biaj , where i = k +m−min{l,m}, j = l + n−min(l,m).

(b) bman ∈ E(M) if and only if m = n.

10 (a) Show that the R-and L-
lasses of M are respe
tively the sets of the

form Rbi = {biaj : 0 ≤ j} i ≥ 0}, Laj = {biaj : 0 ≤ i} j ≥ 0 and that H-
lasses

are all singletons. Con
lude that M is a bisimple monoid.

(b) Show that M is an inverse semigroup and that the semilatti
e of idem-

potents of M is an in�nite des
ending 
hain.

17



Problem Set 9 Completely 0-simple semigroups

Let S be a semigroup with zero 0. Then e ∈ E(S) is primitive if e is 0-
minimal meaning that if f ∈ E(S) with f ≤ e then f = 0 or f = e. A

semigroup S is 
ompletely 0-simple if S is 0-simple with a primitive idempotent.

A semigroup is 
ompletely simple if it simple with a primitive idempotent.

1. Let S be a �nite 0-simple semigroup.

(a) Show that S is 
ompletely simple.

(a) Show that S is regular.

2. Continue with the �nite 0-simple semigroup of Question 1, with non-zero

D-
lass D.

(a) Use the extended right regular representation of S in TS1
to prove that

if a, b ∈ D then either ab = 0 or aRabLb in S.
(b) Dedu
e that if ab 6= 0 then La ∩Rb is a group.

Index the rows and 
olumns of D by I and Λ respe
tively and without loss

of generality assume that (1, 1) ∈ I × Λ with H1,1 a group. For ea
h i ∈ I and

λ ∈ Λ 
hoose a �xed ri ∈ Hi,1 and qλ ∈ H1,λ.

3(a) Prove that the mapping whereby a 7→ riaqλ de�nes a bije
tion φi,λ :
H1,1 7→ Hi,λ.

(b) Dedu
e from part (a) that ea
h x ∈ Hi,λ 
an be represented by a triple

(a; i, λ) where a ∈ H1,1 and x = riaqλ.
(
) Let y ∈ Hj,µ say, with representation (b; j, µ). By identifying ea
h of

x and y with their representation triple as in part (b), show that, for some

c ∈ H1,1,

xy = (a; i, λ)(b; j, µ) = (c; i, λ).

Note If xy = 0, whi
h o

urs if and only if Hj,µ is not a group, we take c = 0
and agree that (0; i, λ) represents the zero of S for all (i, λ) ∈ I × Λ.

Rees matrix semigroups Let I,Λ be index sets and let G0
be a group with

adjoined zero 0. (We 
all G0
a group with zero). Let P = (pλ,i) be a Λ × I

matrix with entries from G0
. The Rees matrix semigroup with sandwi
h matrix

P is the set S =M0[G; I,Λ, P ] where:

S = {(a; i, λ) : a ∈ G0, i ∈ I, λ ∈ Λ} ∪ {0},

with produ
t

(a; i, λ)(b; j, µ) = (apλjb; i, µ)

with the understanding that (0; i, λ) = 0 for all i ∈ I, λ ∈ Λ and that any

produ
t involving 0 is itself 0.

4(a) Prove that a Rees matrix semigroup S is indeed a semigroup.

(b) Show that S is regular if and only if P is regular in the sense that every

row and 
olumn of P 
ontains a non-zero entry.
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(
) Con
lude that every �nite 0-simple semigroup is isomorphi
 to a regular

Rees matrix semigroup M0[H1,1; I,Λ, P ].

5. Let R = Re denote the R-
lass of a primitive idempotent of an arbitrary


ompletely 0-simple semigroup S.
(a) Let b ∈ eS and write e = xby (why is that justi�ed?). Show that

f = byexe ∈ E(S) with f ≤ e.
(b) Show that xfby = e and hen
e dedu
e that f = e, using the fa
t that e

is a primitive idempotent.

(
) Hen
e prove that R ∪ {0} is the right ideal eS of S.
(d) Furthermore, dedu
e that R ∪ {0} is a 0-minimal right ideal of S.

6. Continue under the hypotheses of Question 5.

(a) Prove that for any x ∈ S, Rx ∪ {0} = c(R ∪ {0}) = ceS for some c ∈ S.
(b) Prove that Rx ∪ {0} is a minimal right ideal for every x ∈ S

7(a) Show that any 
ompletely 0-simple semigroup S is regular and 0-
bisimple (with a non-zero D-
lass D).

(b) Moreover, for a, b ∈ D, either aRabLb or ab = 0.
(
) Con
lude that a semigroup S is 
ompletely 0-simple if and only if S is

ismorphi
 to some regular Rees matrix semigroup.

8. It is always possible to represent a 
ompletely 0-simple semigroup S =
M0[G; I,Λ, P ] so that a given row λ and 
olumn i of P 
onsists entirely of 0
and e, the identity element of the group G.

9. Verify that any 
ompletely 0-simple semigroup S has the following prop-

erties:

(i) every non-zero idempotent is primitive;

(ii) H is a 
ongruen
e on S;
(iii) any non-trivial homomorphi
 image of S is 
ompletely 0-simple.

10. A 
ompletely 0-simple inverse semigroup is 
alled a Brandt semigroup.

A semigroup is Brandt if and only if S is isomorphi
 to a Rees semigroup of the

form M0[G; I, I,∆] where ∆ is the I × I identity matrix.
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Problem Set 10 Properties of 
ompletely 0-simple semigroups

1. Prove that a regular semigroup S has all non-zero idempotents primitive

if and only if S is a 0-dire
t union of 
ompletely 0-simple semigroups.

[Hint: Suppose that {0} 6= Jf ≤ Je (e, f ∈ E). Then f = xey say; put

g = eyfxe and show that g = e.℄

2. Show that the following are equivalent for a regular semigroup S:
(i) S is 
ompletely simple;

(ii) aba = a implies bab = b for all a, b ∈ S;
(iii) S is weakly 
an
ellative, meaning that ax = bx and ya = yb for some

x, y ∈ S implies that a = b.

3. A 
ompletely simple semigroup S is orthodox if and only if S is a re
tan-

gular group, meaning a dire
t produ
t of a group and a re
tangular band.

4. A 
ompletely 0-semigroup with trivial maximal subgroups is 
alled a 0-
re
tangular band. Show that S is a 0-re
tangular band if and only if S has a

zero 0 and satis�es the two 
onditions:

(i) xyx = x or xyx = 0 for all x, y ∈ S;
(ii) xSy = {0} implies x = 0 or y = 0.

Mis
ellaneous exer
ises

5. Show that ea
h of the following binary operations are asso
iative on R
>0
,

the set of positive real numbers.

(i) x ◦ y =
√

x2 + y2.
(ii) x ◦ y = xy

x+y .

(iii) x ◦ y = ln(ex + ey − 2).

6. Let S be a semigroup and f : S → S any permutation of S. We denote

the binary operation of S by + without assuming that S is 
ommutative. De�ne

a binary operation ◦ on S by

x ◦ y = f−1(f(x) + f(y)).

(a) Prove that (S, ◦) is a semigroup.

(b) Show that f : (S, ◦) → (S,+) is an isomorphism.

(
) Show that ea
h of the three operations of Question 5 is of this type.

The free semigroup FX on a setX is the set of all words or strings x1x2 · · ·xn
(n ≥ 1) where xi ∈ X .

7(a) Show that FX is free on X in the algebrai
 sense that if S is any

semigroup and α : X → S is any fun
tion then there is a unique homomorphism

φ : FX → S su
h that ιφ : X → S is equal to α, where ι : X → FX is an

embedding of X into FX .

(b) Prove that any semigroup is a homomorphi
 image of some free semi-

group.
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(
) Show that FX is unique in that if G is another semigroup with the

de�ning property of part (a), then FX and G are isomorphi
.

8. Let φ : S → T be a surje
tive homomorphism from a �nite semigroup

and let G be a subgroup of T. Let U be a subsemigroup of S of least 
ardinal

su
h that Uφ = G. Prove that U is a subgroup of S.

9. Generalization of Lallement's Lemma due to T.E. Hall (Set 4 Question

8) Let φ : S → T be a surje
tive homomorphism from a regular semigroup S.
Suppose that (c, d) ∈ V (T ). Then there exists (a, b) ∈ V (S) su
h that aφ = c
and bφ = d. Prove this as follows.

(a) Take x, y ∈ S su
h that xφ = c and yφ = d and (xyxy)′ ∈ V (xyxyx).
Put a = xy(xyxy)′yx, b = y(xyxy)′xy. Show that b ∈ V (a).

(b) Show that (xyxy)φ ∈ V ((cd)2) = V (cd) and that a and b are the required
elements of S that satisfy our 
laim.

(
) Prove that this result implies Lallement's lemma.

10. Let α, β : (Z,+) → T be two semigroup homomorphisms su
h that

nα = nβ for all n ≥ 1. Prove that α = β.
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Hints for Problems

Problem Set 1

2. For the 
onverse, �rst use left and right simpli
ity to show that S is a

monoid.

5(
) Show you are after the least integer p ≥ r su
h that m|p.
(d) at+1

is a generator of Ka.

Problem Set 2

1(a) For U ≤ T , show that Uα−1 ≤ S and (Uα−1)α = U .

Problem Set 3

3. (iii) implies (i) (iii) implies (i). Let e, f ∈ E(S) and x = (ef)−1
then xe

and fx are both inverse to ef . Now show x = x2 and then x = ef . Dedu
e

ef, fe ∈ E(S) and �nally that ef = fe.
7(f) Show that ea
h a ∈ S has a unique right identity element e and then

use the mapping whereby a 7→ (af, e).
10. (ii) implies (iii). Sin
e xe, ex ∈ E(S) it follows from the given property

that ex2e ∈ V (xe2x). But x = xe2x, whi
h is inverse to ex2e, and thus

x = x(ex2e)x = (xex)(xex) = x2.

(iii) implies (i). Let e, f ∈ E(S) and take x ∈ V (ef). Show that ef ∈ V (fxe)
and fxe ∈ E(S).

Problem Set 5

4. Use the fa
t that L and R are right and left 
ongruen
es respe
tively.

10. A required isomorphism is x 7→ a′xa where a′a = f .
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Problem Set 6

2. In the reverse dire
tion, show and then use that ρa de�nes a bije
tion of

Lb onto La.

7. Apply Question 6(b) to the subsemigroup D.

8. If aJ b we may write a and b in the forms a = (ux)na(yv)n and b =
(xu)nb(vy)n and n may be 
hosen so that a(yv)n = a; and a = (ux)na, b =
(xu)nb = b(vy)n. Put c = xa show that aLcRb.

Problem Set 7

9. Suppose that e, f ∈ E(S) with f ≤ e. Take z, t ∈ S su
h that e = zft.
Put x = ezf and y = fte. Show xfy = e and ex = xf = x, fy = ye = y. Take
x ∈ Hg (g ∈ E(S)). Tthere exists x∗ ∈ Hg su
h that xx∗ = x ∗ x = g. Show

g = gf = f and so e = f .
10. Make use of Questions 6 and 9.

Problem Set 8

Problem Set 9

7. Show �rst that aSb 6= 0 for all a, b ∈ S. The use Question 6 to show that

aRcLb.
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Answers to the Problems

Problem Set 1

6. (b) S8,4 and S4,8. (
) 〈a〉 = S4,3. The idempotent of 〈a〉 is a6. Ka =
{a4, a5, a6 = e} ∼= Z3.
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