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Problem Set 1 Elementary properties and examples

A semigroup (S,0) is a set S with an associative binary operation o, which
is often denoted by juxtaposition so that z(yz) = (ay)z for all z,y,z € S. If
S has an identity element 1, then S is a monoid. For a semigroup S that is
not a monoid, the monoid S* = S U {1} is the semigroup S with 1 the adjoined
identity element; if S is a monoid then we take S' = S. The set of idempotents
of S (which may be empty), is denoted by E(S). We write S < T to denote
that S is a subsemigroup of the semigroup 7'.

For one-sided definitions, we often record a one-sided version only, the alter-
nate notion being then implicitly defined using left-right symmetry.

1. A semigroup is left cancellative if ax = ay implies x = y (a,x,y € 5).

(a) Show that every idempotent in a left cancellative semigroup is a left
identity element.

(b) Show that a cancellative (i.e. left and right cancellative) semigroup S
can have at most one idempotent e which is then the identity element of S.

2. A semigroup S is left simple if Sa = S for all @ € S. Prove that a
semigroup S is a group if and only if S is both left and right simple.

3. A right ideal I # () of a semigroup S is a subset of S such that IS C S;
we say that I is an ideal of S if I is both a left and a right ideal of S.

(a) Show that the smallest right ideal I containing a non-empty subset A of
Sis I =AS!.

(b) Similarly the ideal of I of S generated by A is [ = STAS?!.

Comment If A = {a} we speak of the principal right ideal a.S* and principal
ideal S'aS?!.

4. Let X be a set and define Tx as the semigroup of all mappings on X
under function composition (composed from left to right).

(a) Show that Tx is a monoid that contains the symmetric group Sx.

(b) Show that the set C' of constant mappings in Tx form a right zero
semigroup, meaning that ef = f for all e, f € C.

(c) Show that oo € E(Tx), the set of idempotents of Tx if and only if o x4
is the identity mapping on X a.

(d) The rank of an element o € Tx is | Xa|. Let Y be a cardinal number.
Show that I is an ideal of Tx where

I={a€eTx: |Xal <Y}

5. For a non-empty subset A C S the subsemigroup of S generated by A,
denoted by (A), is the smallest subsemigroup of S that contains A.

(a) Show that (A) exists and comprises the set of all products of members
of A of finite length.

(b) Let A = {a}. If {(a) is finite show that there exists positive integers r and
m such that (a) = {a,a?, - ,a" ™ 1} with K, = {a",a" "1, [a"T™~ 1} an



abelian group of order m. We call » and m the index and the period respectively
of the monogenic semigroup (a).
(c) Express the (unique) idempotent power a® of (a) in terms of r and m.
(d) Hence show that K, is indeed a cyclic group generated by a’*!.

6. Let X = {0,1,---,7 + m — 1} and consider the monogenic semigroup
Sym = (a) of Tx where a is the map a = (1,2,--- ,7+m — 1,r) (meaning that
0a=1,1a=2,2a=3,---,(r+m—1)a=r).

(a) Show that (a) has index r and period m.

(b) Find all monogenic semigroups of order 11 generated by a symbol a such
that a® is an idempotent.

(c) Determine the subsemigroup of 712 generated by the mapping a =
(3,3,4,5,6,7,8,6,10,11,12,12) by finding its order and period. What are its
idempotents and subgroups?

7. Let S be the set of non-zero complex numbers with product a o b = |alb.
(a) Show that S is a semigroup.

(b) Find the idempotents of S.

(c) Show that S is right simple and left cancellative.

8(a) Prove that a finite subsemigroup U of a group is a group.
(b) Show that the previous result does not hold if we delete the word ‘finite’.

9. Let X be a countably infinite set and let S be the set of one-to-one
mappings « : X — X with the property that | X \ Xa| = co.

(a) Show that S is a subsemigroup of Tx (known as the Baer-Levi semigroup
on X).

(b) Show that S is idempotent-free.

(c) Hence prove that S is right simple and right cancellative, but is not left
simple nor left cancellative.

10. (a) Let S and T be two semigroups. Show that S x T is a semigroup if
we define the product in the obvious way: (s1,t1)(s2,t2) = (8152, t1t2).

(b) Let L and R be a left zero semigroup and R a right zero semigroup (see
Question 4(b)). Show that the semigroup L X R consists entirely of idempotents
(such a semigroup is called a band) in which every pair of elements comprises a
mutually inverse pair.



Problem Set 2 Homomorphisms and congruences

A semigroup homomorphism « : S — T is a mapping for which (ab)a =
aaba. The definition of monomorphism and isomorphism are also defined just
as for groups. We write S & T if S and T are isomorphic.

1(a) Let « : S — T be a surjective semigroup homomorphism. Let A denote
the set of all subsemigroups of S and let 5 denote the set of all subsemigroups
of T. The mapping ¢ : A — A¢ (A € A) is an inclusion-preserving map from
A onto B.

(b) Repeat (a), but let A and B represent the set of all ideals of S and T
respectively. Draw the corresponding conclusion.

(c) Show that composition of two homomorphismsa : S — T and §: T — V,
af : S — V ,is also a homomorphism.

An equivalence relation o on a semigroup S is a left congruence on a semi-
group S if acb implies that caocd for all ¢ € S. The concept, of right congruence
is defined dually. We say that o is a congruence on S of acb and cod then acobd
for all a,b,c,d € S.

2. Prove that o is a congruence on S if and only if ¢ is both a left and a
right congruence on S.

For any function « : S — T define the kernel of a as ker(a) = {(z,y) €
S x S: za =ya} and let Ker(a) denote the corresponding partition of S into
equivalence classes. For a congruence p on S, we denote the set of p-classes of
S by S/p; the p-class of a € S is written as ap.

3(a) Prove that the kernel of a homomorphism ¢ : S — T is a congruence of
S.

(b) Show that S/p is a semigroup if we define multiplication by representa-
tives of classes, in that apbp = (ab)p.

(c) Show that if p is a congruence then the natural map p* : S — S/p for
which a + ap is a homomorphism and ker(p?) = p.

4. First Isomorphism Theorem Let o : S — T be a surjective homomorphism
of semigroups. Then p = ker(a) is a congruence and there exists a unique
isomorphism 1 : S/p — T such that p%y) = . Conversely, if p is any congruence
on S then p’ : § — T is a surjective homomorphism of semigroups with kernel
p-

5. Second Isomorphism Theorem Let o, p be congruences on a semigroup S
such that o C p. Then

p/o ={(zo,yo) € S/o x S/o: (x,y) € p}
is a congruence on S/o and (S/0)/(p/o) = S/p.

6. Let G be a group.
(a) Prove that if p is a congruence on G with identity e, then N = ep is a
normal subgroup of G and apb if and only if ab™! € N.



(b) Conversely show that if N is a normal subgroup of G then the relation
(a,b) € p if and only if ab~! € N is a congruence on G such that ep = N.

7(a) Show that any intersection of congruences on a semigroup S is a con-
gruence.

(b) Hence show that given any relation R C S x S, there is a smallest
congruence R* on S that contains R. We call R* the congruence generated by
R.

For any relation R C S x S, let R® = RU R~! U where ¢ is the equality
relation on S. Let a,b € S and suppose that a = zcy, b = zdy, and cR%d for
some ¢,d € S and z,y € S'. The passage from a to b, in either direction, is an
elementary R-transition.

8. Prove that aR*b (a,b € S) if and only b can be obtained from a by some
finite sequence of elementary R-transitions.

9. Let E be an equivalence relation on a semigroup S. Prove that the
following relation is the largest congruence on S that is contained in F;

E’ ={(a,b) € Sx S: (Va,y € S') (zay, zby) € E}.

10. An element e € S is a right identity (resp. right zero) if ae = a (resp.
ae=c¢) forall a € S.

(a) Show that if S has a right identity e and a left identity f then e = f is
the unique identity of S.

(b) Repeat part (a) to prove the corresponding result for right and left zero
elements.

(c) On any non-empty set S with may define a null semigroup also know as a
zero semigroup by choosing e € S and putting ab = e for all a,b € S. Show that
any equivalence p on S is a congruence and that S/p is also a null semigroup.



Problem Set 3 Regularity and idempotents

1. The natural partial order on E(S), the set of all idempotents of a semi-
group S: define e < fiff ef = fe =¢ (e, f € E(S)).

(a) Verify that < defines a partial order on E(S).

(b) Show that e < f if and only if e = efe.

A (lower) semilattice S is a poset (a partially ordered set) in which each pair
of elements a,b € S has a greatest lower bound ¢ = a A b.

2. Show that any semilattice (S, A) is a commutative band (of idempotents)
with respect to the meet operation and that natural partial order on S equals
the partial order of the semilattice.

3. Show the converse to the result of Question 2 by proving that any commu-
tative band B is a semilattice in which ab = a A b, where the meet is respect to
the natural partial order on B. We thus may identify the classes of semilattices
and commutative bands.

4. A member a € S is called regular if a has an inverse x € S meaning that
a = axa and z = zax. The set of inverses of @ is denoted by V(a). A semigroup
is called regular if all of its members are regular.

(a) Show that every group G is a regular semigroup.

(b) Show that if aza = a then zax (a,z € S) is an inverse of a, and so a is
regular.

(c) Show that Tx is a regular semigroup.

(d) Show that a homomorphic image of a regular semigroup is regular.

(e) Show that an arbitrary direct product S = II;¢;S; of regular semigroups
is regular.

5(a) A semigroup S is a group if and only if S is regular and has a unique
idempotent.

(b) A finite semigroup S is a group if and only if S is cancellative.

(c) Give an example of a semigroup that is cancellative but is not a group.

6. Any cancellative commutative semigroup S can be embedded in an abelian
group as follows. Let F' = S! x S and define p on F by (a,b)p(c,d) if and only
if ad = be (a,b,c,d € S1).

(a) Show that p is congruence and that F/p is an abelian group.

(b) Show that S! is embedded in F/p by the mapping whereby a + (a,1)p
(a € SY).

(c) Carry out this process on the positive integers under addition, and on
the positive integers under multiplication.

7(a) Show that if G is a group and E is a right zero semigroup (meaning
that ef = f for all e, f € E) that G x E is a right group, which is a right simple
and left cancellative semigroup.



We establish the converse of (a), which is a structure theorem for right
groups, as follows.

(b) Show that F = E(S) # &;

(c) E(S) is a right zero semigroup;

(d) Show that eb = b for every b € S and e € E(S);

(e) Se is a subgroup of S for every idempotent e;

(f) let f € E(S) be fixed and let G be the group Sf. Prove that S =2 G x E.

8. Deduce that S being a right group is equivalent to each of the following
conditions:

(a) S is right simple and contains at least one idempotent;

(b) the equation ax = b has a unique solution in S (a,b € S);

(c) S is regular and left cancellative.

9. Let I be an ideal of S and define p by apb if and only if a = b or a,b € I.
Show that p is a congruence on S. Such a congruence is called a Rees congruence
on S and is denoted by S/I. The class I is then the zero element of S/I.

10(a) Cayley theorem for semigroups Let S be a semigroup and define a
mapping ¢ : S — Tg by a® = p, where p, is the right translation by a defined
by xp, = za. Show that ® is a homomorphism of S into Tg.

(b) By taking S to be a null semigroup, show that ® is not necessarily a
monomorphism.

(c) Show that by replacing S by S! so that ® : S — Tg1, ® becomes one-to-
one and so S® is an isomorphic copy of S in Tg1.



Problem Set 4 Inverse semigroups

The partial transformation semigroup S= PT x. The members of S are the
functions a : doma — rana, where doma, rance € X. The semigroup operation
is relational composition, which in this instance is function composition carried
out to the extent possible.

1(a) Show that for a, 3 € PT x we have domaf = (rana N domfB)a~! and
ranaf = (ranaNdoma) 3.

(b) Let 0 be a new symbol not in X and consider Txyoy. Prove that P7 x
is isomorphic to the subsemigroup of all mappings in Tx o} that fix the point
0.

(c) If | X| = n, show that |Tx| = n"| and |PT x| = (n+ 1)".

(d) PT x is regular.

A regular semigroup S is an inverse semigroup if S is regular and the inverse
of every member of S is unique. We then denote the inverse of a by a=!.

2. Let Zx denote the subset of all one-to-one members of PT x. Show that
Zx is an inverse monoid and identify its lattice of idempotents.

3. Prove that the following are equivalent for a regular semigroup S:

(i) E(S) is a semilattice;

(ii) every principal right ideal and every principal left ideal has a unique
idempotent generator;

(iii) S is an inverse semigroup.

4. Let S be an inverse semigroup. Show that the usual laws of inverses hold
in that for a,b € S we have:

(a) a= (a=1)"! and (ab)~t =b"ta 1.

(b) Also, for e, f € E(S), SenSf = Sef, and Sa = Sa"'a, Sa=! = Saa™".

The Cayley-style theorem for inverse semigroups is the Preston- Wagner the-
orem, which states that any inverse semigroup S may be embedded in Zg and
is proved as follows.

5. Define ® : S — Zg by a® = p, (a € S) where we define p, : Sa=t —
Sa~'a by the rule that x — za (r € Sa~!). Verify that that p, and p,-1 are
mutually inverse mappings of Saa~! and Sa~'a onto each other and conclude
that p, € Zs and p,-1 = p; L.

6. Prove that if p, = py then a = b, so that ® is one-to-one.

7. Show that ® is a homomorphism and hence conclude the Preston-Wagner
theorem.

8. Lallement’s lemma Let S be a regular semigroup and p a congruence on
S. If a € E(S/p) then ape for some e € E(S). Prove this by taking e = aza
where z € V (a?).



9. Use Lallement’s lemma to prove that the homomorphic image of an inverse
semigroup is an inverse semigroup.

10.  Orthodoz semigroups A regular semigroup S is orthodoz if E(S) is
a subsemigroup of S. In particular all bands and all inverse semigroups are
orthodox. Prove that for a regular semigroup S the following are equivalent:

(i) S is orthodox;

(ii) f a,b € S, a’ € V(a), V' € V(b) then b'a’ € V(ab);

(iii) every inverse x of an idempotent e is itself idempotent.

Furthermore, in any orthodox semigroup aed’,a’ea € E(S) whenever o/ €
V(a) and e € E(S).



Problem Set 5 Green’s relations I

Green’s relations are five equivalances on a semigroup based on the notion
of mutual divisibility of elements. They play no role in group theory since there
they all coincide with the universal equivalence but they are important tools in
the description and decomposition of semigroups.

Let S be any semigroup. We define aRb if a.S! = bS' and alb if S'a = S'b
(a,b € S). The equivalence H = £ N'R while the equivalence D =L V R, where
the join is in the lattice of all equivalences of S; that is D is the least equivalence
containing both £ and R. Finally, a7b if S'aS' = S'bS!. Note that aRb if
and only if there exist z,y € S' such that az = b and by = a with similar
remarks applying to £ and J. The L-class of ¢ € S will be denoted by L,
and similarly we have R,, H,, D, and J, for the four other Green’s relations.
We write L, < Ly if S'a € S'b and similarly R, < Ry if aS' C bS! and
SlaSt C S1bS! can be denoted by J, < Jp.

1. Show that £ is a right congruence and R is a left congruence on S.

2. Prove that every left congruence p C R commutes with every right
congruence A C £, which is to say that po A = X o p, where o denotes relational
composition.

3(a) DC J.

(by D=RoL=LoR.

(c) Conclude that aDb if and only if there exists ¢,d € S such that aLcRb
and aRdLb.

Comment Tt follows that any D-class D of S can be represented by an
‘egg-box’ diagram: a rectangular array of squares in which the rows represent
R-classes, the columns L-classes, and the square forming the intersection of a
row and a column an #H-class. Indeed we shall show that all #-classes within
the one D-class have the same (non-zero) cardinality.

4. The set product LR of an L-class L and an R-class R is contained in a
single D-class.

5. Show that Green’s relations on Tx are as follows:
(i) aLp if and only if Xa = X;

ii) aRp if and only if keraw = kerf3;

iii)aH B if and only if Xa = X and kera = ker(;
iv) oDf if and only if ranka = rankp;

v) D=J.

—

(
(
(
(

6. Green’s Lemma (right hand version) Let aRb (a,b € S) and take s, s’ €
S1 such that as = b and bs’ = a. Then the mappings ps|L, and p|L, are

mutually inverse, R-class preserving bijections of L, onto L; and of L; onto L,
respectively.

10



7. State the dual (left hand version) of Green’s Lemma and hence deduce
that any two 7-classes within the same D-class are equicardinal.

8. Miller and Clifford location theorem For any two elements a,b € S,
ab € R,N Ly if and only R, N L, contains an idempotent. Prove this as follows.

(a) Use Green’s Lemma to show that if ab € R, N L then there exists
¢ € Ry N L, such that ¢b = b and that ¢ = 2.

(b) Conversely take e € E(S) N Ry N L, and show that eb = b and ae = a.

(c) Hence use the fact that R and £ are left and right congruences respec-
tively to prove that aRabLb.

9. Use Miller and Clifford to prove that the following are equivalent for an
‘H-class H of S.

(i) H contain an idempotent;

(ii) there exist a,b € H such that ab € H;

(iii) H is a maximal subgroup of S.

10. Prove that any two group H-classes He, Hy (e, f € E) within the same
D-class of a semigroup S are isomorphic.

11



Problem Set 6 Green’s relations I1

1. Regular D-classes If one element a of a D-class D of a semigroup S is
regular then all members of D are regular, in which case D is called a regular
D-class. Prove this as follows.

(a) Show that if an R- or an L-class contains a regular element, then that
class contains an idempotent.

(b) Hence prove the theorem stated above. [Hint: first prove the claim is
true for R, and for L,.|

(c) Show that for any a € S, the set of inverses V(a) C D,.

2. Inverse Location of inverses theorem The H-class H contains an inverse
x of a if and only if R, N L, and Ry N L, each contain an idempotent. In this
case, x is the only inverse of a in Hj.

3(a) Prove that if L is a left ideal and R is a right ideal of S then RL C RNL,
with equality if S is regular.

(b) If S is a right cancellative semigroup without idempotents, then every
L-class of S is trivial.

4. Let Y be a subset of X and II a partition of X such that |Y| = | X/II|. Let
H be the H-class of Tx determined by (II,Y), meaning that o € H iff keraw = II
and Xa =Y. Then H is a group if and only if Y is a transversal of I, in which
case H & Gy, the symmetric group on Y.

Partial order of Green’s classes We define <, =< on the L-classes of S by
L, < Ly if Sla - Slb; similarly we define <gp, <g and <yx=<, N <g. Let
Reg(.S) denote the set of regular elements of S. We also write a <, bif L, < Ly,
with a corresponding notation for the R, H and J partial orders on S.

5. Hall’s lemma Let a,b € Reg(S) with L, > Lp. Then for each e € E(L,,)
there exists f € E(Lp) such that e > f in the natural partial order. [Hint: put
f =eb'b where b’ € V(b).]

6(a) Let U be a subsemigroup of S. Denote the Green’s partial orders in
U and S by <, and <. etc. Let a,b € U with b € Reg(U). Then R, <r Rp
implies that R, < Rp.

(b) Let G denote any of £, R, H and let G’ denote Green’s relation on U < S.
Prove that G’ C GN (U x U) with equality if U is a regular subsemigroup of S.

7. If a regular D-class D of S forms a subsemigroup of S then D itself has
only one D-class.

8. Prove that if S is finite then D = 7.

9. Let S be a semigroup that is the union of its subgroups. Prove that each
D-class D of S is a regular subsemigroup of S and the semigroup D consists of
a single D-class (of D).

12



Let n denote the least semilattice congruence on a semigroup S, which is
evidently given by n = 13 where 1y = {(a,a?), (ab,ba) : a,b € S}.

10(a) Show that in any semigroup D* C J* C .

(b) Let e, f € E(S) for a regular semigroup S and let y € V(ef). Show that

fye e V(ef) N E(S).
(c) Use part (b) to prove that in a regular semigroup, D* = J* = n. [Hint:
show 1y C D*: in order to show that abD*ba first take a = e, b = f.]

13



Problem Set 7: Minimal ideals and completely [0-]simple semigroups

A semigroup S is simple if it has just one [J-class and is bisimple if S has
only one D-class. If S is O-simple if S has a zero 0, S% # {0} and the only ideals
of S are {0} and S. A 0-minimal ideal M of S contains no other ideals of S
apart from M and {0} with M # {0}.

1(a) Show that S is simple if and only if S has only one ideal (which is
necessarily S itself).

(b) Show that S is simple if and only if S = SaS for all a € S.

(c) Show the condition S? # {0} serves only to exclude the two-element null
semigroup from the class of 0-simple semigroups.

2. The semigroup S of part (b) below has a single J-class but D is the
equality relation.

(a) Show that if a semigroup S is cancellative without identity there is no
pair of elements e,a € S such that ea = a or ae = a. Deduce that in S, the
D-relation is trivial (i.e, equals the identity relation).

(b) Show that with respect to matrix multiplication:

_rle 9], +
S—{[b 1] ca,b e RT},
is cancellative without identity.
(c) Show that 7 is the universal relation on S.

3(a) Show that a semigroup S either has no minimal ideals or possesses a
unique minimal ideal K known as the kernel of S.

(b) If a semigroup S has a kernel K, then K is a simple semigroup.

(c) Show that any finite semigroup has a simple kernel.

(d) S is O-simple if and only ifSaS = S for every a € S\ {0}.

4. By a 0-minimal ideal M of S we mean that M is an ideal of S, M # {0},

and that M contains no ideals of S other than {0} and itself. Prove that if M
is a 0-minimal ideal of S then either M? = {0} or M is a O-simple semigroup.

5. If I,J are ideals of S such that I C J and there is no ideal of S lying
strictly between I and J, then J/I is either 0-simple or null.

6. Prove that if J, € S/J then either J, is the kernel of S or the set
I={x€S: J,<J}isan ideal of S (and hence of J(a) = S'aS') and hence
the factor J(a)/I is either 0-simple or null.

Comment: The semigroups K and J(a)/I(a) are called the principal factors
of S. A semigroup is called semisimple in none of its principal factors are null.
A principal factor J/I can be thought of as the J-class J together with 0 and
for any a,b € J, the product of a and b is ab if ab € J and is 0 otherwise.

A 0-simple semigroup S is called completely 0-simple if S contains a primi-
tive idempotent e, which means e # 0 and f < e (e, f € E(S)) then f € {0,e}.

14



A simple semigroup is completely simple if S° is completely 0-simple. A semi-
group S is completely regular if every element a has an inverse z with which it
commutes.

7(a) Prove that S is completely regular if and only if S is a union of its
subgroups.

(b) Prove that each D-class of a completely regular semigroup is a completely
simple semigroup and a union of isomorphic groups.

8. Let S be a completely regular semigroup.
(a) Show that J is a congruence on S and that S/J is a semilattice;
(b) Hence deduce that J = n, the least semilattice congruence on S.

9. Show that any simple completely regular semigroup is completely simple.

A semigroup S is called a semilattice of semigroups of type T if there is
a congruence p on S such that S/p is a semilattice and each class ap is a
subsemigroup of S of type T. (Since S/p is a band, it follows that all p classes
ap are subsemigroups of S as (ap)? = a%p = ap.)

10. Prove that D = J in any completely regular semigroup S and that S is
a semilattice of completely simple semigroups.

15



Problem Set 8

Let Y be a semilattice and let {S, : @ € Y} be a collection of disjoint
semigroups of the same type T', indexed by Y. Suppose that for each o, 5 € Y
such that o > (3 there is a homomorphism ¢, g : So — Sg such that:

(i) ¢a,« is the identity mapping of Su;

(ii) ¢a,pPs,y = Pa,y for every o, 8,7 € Y with a > 3 > . We then define
an associative product on S = {S, : @ € Y} by

o ©bg = (@aPa,08)(DsPs,08); G € Sa; b € Sp.

1. Show that the following are equivalent:

(i) S is regular and every idempotent is central (meaning that ea = ae for
all e € E(S), a € S);

(i) every D-class of S has a unique idempotent;

(iii) S is a semilattice of groups;

(iv) S is a strong semilattice of groups.

2. Show that a semigroup S is a semilattice of groups if and only if

(Va,b € S)(3z,y € S) : (a =axa) A (ab = bya).

3. Prove that a commutative semigroup S is regular if and only if S is a
strong semilattice of abelian groups.

4. A semigroup S is called a rectangular band if it satisfies a = aba (Va,b €
S). Show this condition is equivalent to be nowhere commutative, meaning that
ab = ba implies a = b.

5(a) Let L, R be non-empty sets and define a product on Lx R by (a, b)(c,d) =
(a,d). Verify that this product is that of a rectangular band.

(b) Conversely show that any rectangular band is isomorphic to a rectangular
band of the type described in (a).

6. Prove that any band is a semilattice of rectangular bands.

7. We say that (X, R) is a presentation for semigroup S if X is a generating
set of S and S = Fx /pr where pp is the congruence on the free semigroup Fx
generated by the set of pairs R C X x X. We write z = 1 (resp. « = 0) to
denote the fact that za = ax = a (resp. xza =ax =1xz) Va € S.

Show that the semigroup defined by the presentation (z,y|zyxr = 1) is a
group isomorphic to the integers under addition.

8. The bicyclic monoid Let M = (a,blab = 1).
(a) Let S = (o, B), where o, 8 € Tyo are the mappings defined by na =

n+1, nB = max{n — 1,0} for all n € N°. Show that a8 = 1 but that Ba # 1.
Deduce that S is a homomorphic image of M.
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(b) Show that any member of S, and hence of M, can be uniquely expressed
in the form b™a™. Deduce that S is a faithful representation of M.

9(a) For M as in Question 8, show that

bal - bma™ = bia?, where i = k +m —min{l,m}, j =1 +n — min(l,m).

(b) b™a™ € E(M) if and only if m = n.

10 (a) Show that the R-and L-classes of M are respectively the sets of the
form Ry = {b%a? : 0 < j}i >0}, Ly = {b'a’ : 0 <i} j > 0 and that H-classes
are all singletons. Conclude that M is a bisimple monoid.

(b) Show that M is an inverse semigroup and that the semilattice of idem-
potents of M is an infinite descending chain.
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Problem Set 9 Completely 0-simple semigroups

Let S be a semigroup with zero 0. Then e € E(S) is primitive if e is 0-
minimal meaning that if f € E(S) with f < ethen f = 0or f =€ A
semigroup S is completely 0-simple if S is 0-simple with a primitive idempotent.
A semigroup is completely simple if it simple with a primitive idempotent.

1. Let S be a finite 0-simple semigroup.
(a) Show that S is completely simple.
(a) Show that S is regular.

2. Continue with the finite 0-simple semigroup of Question 1, with non-zero
D-class D.

(a) Use the extended right regular representation of S in Tg: to prove that
if a,b € D then either ab =0 or aRabLb in S.

(b) Deduce that if ab # 0 then L, N Ry, is a group.

Index the rows and columns of D by I and A respectively and without loss
of generality assume that (1,1) € I x A with Hy 1 a group. For each ¢ € I and
A € A choose a fixed r; € H; 1 and ¢\ € Hy .

3(a) Prove that the mapping whereby a — r;aqy defines a bijection ¢; x :
Hyqw— H; .

(b) Deduce from part (a) that each z € H; » can be represented by a triple
(a;i,\) where a € Hy 1 and = = r;aq).

(c) Let y € Hj, say, with representation (b;j,x). By identifying each of
x and y with their representation triple as in part (b), show that, for some
cE Hl,la

zy = (a;i, A\)(b; 4, 1) = (¢34, A).

Note If zy = 0, which occurs if and only if Hj ,, is not a group, we take ¢ = 0
and agree that (0;¢, ) represents the zero of S for all (i,\) € I x A.

Rees matriz semigroups Let I, A be index sets and let G° be a group with
adjoined zero 0. (We call G° a group with zero). Let P = (pr,;) be a A x [
matrix with entries from G°. The Rees matriz semigroup with sandwich matriz
P is the set S = M°[G; I, A, P] where:

S ={(a;i,\):a€G%ieclI \eA}u{o},
with product
(@33, A)(b: j, ) = (apx;bs i, p)

with the understanding that (0;i,A) = 0 for all ¢ € I, A € A and that any
product involving 0 is itself 0.

4(a) Prove that a Rees matrix semigroup S is indeed a semigroup.
(b) Show that S is regular if and only if P is regular in the sense that every
row and column of P contains a non-zero entry.
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(c) Conclude that every finite 0-simple semigroup is isomorphic to a regular
Rees matrix semigroup M°[H; 151, A, P].

5. Let R = R, denote the R-class of a primitive idempotent of an arbitrary
completely 0-simple semigroup S.

(a) Let b € eS and write e = zby (why is that justified?). Show that
f =byexe € E(S) with f <e.

(b) Show that = fby = e and hence deduce that f = e, using the fact that e
is a primitive idempotent.

(c) Hence prove that R U {0} is the right ideal eS of S.

(d) Furthermore, deduce that R U {0} is a 0-minimal right ideal of S.

6. Continue under the hypotheses of Question 5.
(a) Prove that for any x € S, R, U {0} = ¢(RU {0}) = ceS for some c € S.
(b) Prove that R, U {0} is a minimal right ideal for every x € S

7(a) Show that any completely O-simple semigroup S is regular and 0-
bisimple (with a non-zero D-class D).

(b) Moreover, for a,b € D, either aRabLb or ab = 0.

(c) Conclude that a semigroup S is completely 0-simple if and only if S is
ismorphic to some regular Rees matrix semigroup.

8. It is always possible to represent a completely 0-simple semigroup S =
MP[G; 1, A, P] so that a given row X and column i of P consists entirely of 0
and e, the identity element of the group G.

9. Verify that any completely 0-simple semigroup S has the following prop-
erties:

(i) every non-zero idempotent is primitive;

(ii) H is a congruence on S

(iii) any non-trivial homomorphic image of S is completely 0-simple.

10. A completely O-simple inverse semigroup is called a Brandt semigroup.
A semigroup is Brandt if and only if S is isomorphic to a Rees semigroup of the
form M°[G;I,I,A] where A is the I x I identity matrix.
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Problem Set 10 Properties of completely 0-simple semigroups

1. Prove that a regular semigroup S has all non-zero idempotents primitive
if and only if S is a 0-direct union of completely 0-simple semigroups.

[Hint: Suppose that {0} # Jy < J. (e, f € E). Then f = zey say; put
g = eyfxe and show that g = e.]

2. Show that the following are equivalent for a regular semigroup S:

(i) S is completely simple;

(ii) aba = a implies bab = b for all a,b € S;

(iii) S is weakly cancellative, meaning that ax = br and ya = yb for some
x,y € S implies that a = .

3. A completely simple semigroup S is orthodox if and only if S is a rectan-
gular group, meaning a direct product of a group and a rectangular band.

4. A completely 0-semigroup with trivial maximal subgroups is called a 0-
rectangular band. Show that S is a O-rectangular band if and only if S has a
zero 0 and satisfies the two conditions:

(i) zyz = x or zyx =0 for all z,y € S;

(ii) Sy = {0} implies z =0 or y = 0.

Miscellaneous exercises

5. Show that each of the following binary operations are associative on R>?,
the set of positive real numbers.

(i) xoy = /22 + y>.

(ii) zoy = L.

(iii) z oy = In(e” + e¥ — 2).

6. Let S be a semigroup and f : S — S any permutation of S. We denote

the binary operation of S by + without assuming that S is commutative. Define
a binary operation o on S by

zoy=f1(f(z) + f(y)).

(a) Prove that (S, 0) is a semigroup.
(b) Show that f : (S,0) — (S,+) is an isomorphism.
(c) Show that each of the three operations of Question 5 is of this type.

The free semigroup Fx on a set X is the set of all words or strings x1xs - - -z,
(n > 1) where z; € X.

7(a) Show that Fx is free on X in the algebraic sense that if S is any
semigroup and « : X — S is any function then there is a unique homomorphism
¢ : Fx — S such that t¢p : X — S is equal to a, where ¢ : X — Fx is an
embedding of X into Fx.

(b) Prove that any semigroup is a homomorphic image of some free semi-

group.
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(c) Show that Fx is unique in that if G is another semigroup with the
defining property of part (a), then F'x and G are isomorphic.

8. Let ¢ : S — T be a surjective homomorphism from a finite semigroup
and let G be a subgroup of T". Let U be a subsemigroup of S of least cardinal
such that U¢ = G. Prove that U is a subgroup of S.

9. Generalization of Lallement’s Lemma due to T.E. Hall (Set 4 Question
8) Let ¢ : S — T be a surjective homomorphism from a regular semigroup S.
Suppose that (c,d) € V(T). Then there exists (a,b) € V(S) such that a¢p = ¢
and b¢ = d. Prove this as follows.

(a) Take z,y € S such that 2¢ = ¢ and y¢ = d and (zyzy)’ € V(zyzyz).
Put a = ay(zyzy) yz, b = y(ayay) zy. Show that b € V(a).

(b) Show that (zyzy)d € V((cd)?) = V(ed) and that a and b are the required
elements of S that satisfy our claim.

(c) Prove that this result implies Lallement’s lemma.

10. Let o, : (Z,+) — T be two semigroup homomorphisms such that
na = nf for all n > 1. Prove that o = .
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Hints for Problems

Problem Set 1

2. For the converse, first use left and right simplicity to show that S is a
monoid.

5(c) Show you are after the least integer p > r such that m|p.

(d) a'*! is a generator of K.

Problem Set 2

1(a) For U < T, show that Ua™! < S and (Ua~!)a = U.

Problem Set 3

3. (iii) implies (i) (iii) implies (i). Let e, f € F(S) and z = (ef)~! then ze
and fz are both inverse to ef. Now show z = z2? and then z = ef . Deduce
ef, fe € E(S) and finally that ef = fe.

7(f) Show that each a € S has a unique right identity element e and then
use the mapping whereby a — (af,e).

10. (ii) implies (iii). Since ze,ex € E(S) it follows from the given property
that ex?e € V(ze?x). But x = zex, which is inverse to ex?e, and thus

r = z(ex?e)r = (vex)(wex) = x°.

(iii) implies (i). Let e, f € E(S) and take x € V(ef). Show that ef € V(fxe)
and fze € E(S).

Problem Set 5

4. Use the fact that £ and R are right and left congruences respectively.
10. A required isomorphism is z — a’xa where a’a = f.
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Problem Set 6

2. In the reverse direction, show and then use that p, defines a bijection of
Ly onto L.

7. Apply Question 6(b) to the subsemigroup D.

8. If aJb we may write ¢ and b in the forms a = (uz)"a(yv)” and b =
(zu)"b(vy)™ and n may be chosen so that a(yv)” = a; and a = (uz)"a, b =
(zu)™b = b(vy)™. Put ¢ = za show that aLcRb.

Problem Set 7

9. Suppose that e, f € E(S) with f < e. Take z,t € S such that e = zft.
Put x = ezf and y = fte. Show zfy = e and ex = zf = x, fy = ye = y. Take
x € Hy (g € E(S)). Tthere exists xx € Hy such that zazx = 2«2 = ¢g. Show

g=gf=fandsoe=f.
10. Make use of Questions 6 and 9.

Problem Set 8

Problem Set 9

7. Show first that a.Sb # 0 for all a,b € S. The use Question 6 to show that
aReLbd.
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Answers to the Problems

Problem Set 1

{ 46.5(b()3 S814} and Sys. (c) (a) = Si3. The idempotent of (a) is a®. K, =
a*,a°,a® = e} = Zs.
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