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Solutions and Comments for the Problems

Problem Set 1

1. Let x denote the length of the shorter side. The given information is
captured by the equation:

22+ (32—1)? = (3z+1)? = 2?2 = (324+1)*~(32—1)? = (32+1+32—1)(3z+1—(32—1))

= 2 = 62(32+1-32+1) = (62)(2) = 122 = 2°—122 = 2(z—12) =0 = 2 = 12.

Therefore the length of the hypotenuse is 3z + 1 = 37 inches; the other side
has length 3x — 1 = 35 inches.

2. Let y denote the unknown length. We calculate the area of the triangle
in two ways to give:

1

1 12-35
A:§~12~35:§-37y¢y:

T = 11 - 35inches.

3. We work in units of 106 for convenience. The question tells us that M
is the centre of a semicircle with AB as base. Since the angle in a semicircle
is a right angle, we have that ZACB = 90° and we may apply Pythagoras’s
Theorem. We get |[AB|? = 5% + 122 = 169. Hence |AB| = 13 x 10 which is to
say that |[AB| = 1.3 x 107km.

Comment That the angle in a semicircle is a right-angle is of course a special
case of the classical Euclidean Circle Theorem that the ‘angle at the centre of a
circle is twice that on the circumference’. This means that if A and B are two
points at either end of a chord of a circle with centre O, and C is any point on
the circumference then ZAOB = 2/ACB. The semicircle theorem is then just
the special case that arises when that chord is the diameter of the circle.

4. |OP]? = 32 +4% =9+ 16 = 25 = |OP| = 5. Since a tangent touches
the circle at right angles to the radius at that point it follows that APQO has
ZPQO = 90° and we may apply Pythagoras and the fact that |OQ| = 1 to
infer that |QP|? = 52 — 12 = 25 — 1 = 24. Therefore |QP| = /24 = /4 x 6 =
V4 x /6 = 21/6.

Comment Note that there are two (symmetric) possibilities for the line L.

5. Let OA be the radius of the circle that passes through A. Now

1,2 22 1 4 9+16 25 5
OA? = (= —s) =+ -=—F——=—=|04]=<.
OAl (2) +( 3) 4+9 36 36 04 6
The required length is [AB] =1 -3 = 1.



Comment We are saying implicitly that for any point C on the circle, |AC| >
|AB|, which is true because the lengths of two sides of any triangle exceed
the length of the third side and so |OA| + |AC| > |OC| = 1 whence |AC| >
1—|0OA| =|AB.

6. Let r be the radius of the planet. The initial length of the cable is 27r.
The extended cable has length 27 (r + 1), so that in both cases the increase is

27(r 4+ 1) — 27r = 27 metres.

Comment People are often surprised that the outcome is independent of the
radius of the circle. Even more surprising perhaps is that we get the same result
for any smooth closed curve C: at each point of C' imagine we erect a normal
line segment of length 1 unit and let C” be the curve that is traced out be the
end of the normal as ths base traverses the curve C. The curve C” is then an
enlarged version of C' and it may be shown that the increase in length as we pass
from C to C’ is always 2. This is a classic problem in arc lengths of curves.

7. Opposite angles in a concyclic quadrilateral sum to 180°. Hence /BCD =
180° — 110° = 70° and LCDA = 180° — 40° = 140°.

Comment Any three corners of a quadrilateral will lie on the radius of a
circle (whose centre is the intersection of the perpendicular bisectors of the
corresponding sides). In general there is no reason why the fourth corner should
also lie on that circle but if it does we have a concyclic quadrilateral and a
simple geometric argument using the circle and isosceles triangles shows that
the opposite angles are supplementary, that is each such pair sum to 180°.

8. Let O be the centre of the circumscribing circle of the regular polygon.
_ 2r _ 1 _ 1. 27 _
9. Let 0 be the required angle. Partitioning the n-gon into n triangles with
the centre as common vertex and summing their interior angles yields:

-2
TL7T:TL9+27T:>9:(TL )7T.
n

(The nr term arises as the sum of the angles of each of the n triangles is 7™
and the 27 term represents the sum of all the angles of those triangles at the
common vertex that is the centre.)

10. The (equilateral) triangle, the square, and the hexagon. No others are
possible, for if k n-gons meet at a vertex then

k(n_2)227r:>k: ezt

n n—2

But2<%<3Vn27;andf0rn:5,%=%¢Z-



Comment Indeed any triangle tessellates (by parallelograms made up of of
pairs of the given triangle) and, much less obviously, so does any quadrilateral.
(See Mathematics for the Imagination).



Problem Set 2

1. The dodecahedron has 12 pentagonal faces, with each edge meeting 2

faces and therefore:
#edges = $(12 x 5) = 30.
2. The regular solid will have 6 vertices, with each face an equilateral trian-

gle, giving an octahedron.

3. The regular solid will have 8 vertices, with each face a square, giving a
cube.

Comment: the cube and octahedron are duals of one another in that the
operation of forming a solid by taking a vertex at the centre of each face, trans-

forms one into the other.

4. CD || AB so the equation of C'D is 4x + 3y = k for some k. Substituting
the co-ordinates of the point C' =(—1, —1) into this equation gives:

A1) 4+3(-1)=k=k=——-4-3=T,

Wi~

Therefore the required equation of the line is 4z +3y +7=0o0r y = —gx —

5. Joining the centres of the circles gives an equilateral triangle T' of side
length 2 and so area % -2 - tan60° = /3. Each circle meets T in a sector S of
angle 60° so the required area is represented by 7' — 3.5
60 m

=V3-3-— - 1=v3——=-=0-1613.
VB-3r g m=V3-g
6. The radius of the maximum circle is given by tan 30° so the required area
of the circle is
By T
m(—)" = —.
3 3
7. ANAC,C, is equilateral, all sides being radii of unit circles. We first find
the area of the segment ACy B, which equals
(Area of sector ABC5) - (Area of AABCS)

g—QAreaAACQD: 3 —2-%511&%(:05% =
T 1 . 7 \/g
— —=sin— = -—
3 2 3 4

s
3

Therefore the total required area is:
or V3 _Am— 3v3

3 2 6

3 2



8. We see that the action of the pair of mappings is described by (x,y) —
(z,—y) — (—z, —y), which corresponds to a rotation of 180° about the origin.

9. The interior angle is given by (2=2)7 (see Set 1, Question 9) and so the

exterior angle is
n—2 n—n-+2 2
T — 7w =7( )= —.
n n n

10. It follows that the sum of all the exterior angles is n - 27” = 27, one

complete turning.

Problem Set 3

3
y =34+ 3sin3zxcos3x =3 + Esin6:c,

hence the period of y is 2% = % and the maximum value of y is 3 + % = %.

2. Since arctanl = 7 we turn to the remaining two terms. We use the
identity
tan A + tan B
tan(A+ B) = ———
n(A+ B) 1—tan Atan B

2+3 5
tan(arctan 2 + arctan 3) = _cts 0 -1

1-(2)(3) -5
taking the arctan of both sides gives arctan 2+ arctan3 = arctan(—1) = 3 and

therefore:
T 37
arctan 1 4 arctan 2 + arctan 3 = 1 + il .
Comment We need to be mindful that we may only say immediately that
arctan2 4 arctan3d = %T’T + mm, but we observe that 0 < arctan2 + arctan3 < ,
so that m = 0 here.

OR
1+2
tan(arctanl + arctan2) = ————— = —3

1-(1)(2)

-3+3
1-(=3)3)
which then allows the conclusion that the three arctans sum to .

OR If you are familiar with complex numbers we multiply together 1+4,1+ 24,
and 1 + 3i (as their respective arguments are arctan 1, arctan2, and arctan3)
and we get:

and so

tan((arctan 1 + arctan 2) 4+ arctan 3) = =0,

(1+4)(1+2i)(1 +3i) = (=14 3d)(1 + 3i) = (3))* — 12 = -9 — 1 = —10.



The argument of a product is the sum of the arguments, and since —10 is on
the negative real line, its argument is 7, and so we again have the result.

3. Put sinf + cosf = rcos(d — ) = r(cosfcosa + sinfsina); equating
coefficients gives rcosa = rsina = 1, whereupon squaring gives

r?cos? a +r?sin?a = r?(cos? a +sin’a) = r? =12 +12 = r = V/2;

. 1 N o
sina = cosa = ——= o= —;
V2 4
\/5008(97g):ﬁécos(ﬁfg):l(ogﬂg%r)
T T
0——=0=0=—.
ORI

Comment The conversion of a sum of sines and cosines to a single cosine
function is very useful as it allows you to see many important aspects of the
function at once. For example the amplitude r gives the maximum and minimum
values of the function and the lag « allows you to see where these turning points
occur, without the need for any calculus. Students often solve this equation by
first squaring both sides. Squaring is not a one-to-one operation so will generally
drag in extraneous solutions: in this case it leads to the equation sin26 = 1,
which in the specified range 0 < 6 < 27, has two solutions. These are 6 = 7
and 6 = %’r but only the former is a valid solution of the original equation.

4. Since sec? x = 1+tan? x the equation can be rewritten as tan® z+5 tan z+
3 = 0. Solving for tan x yields:

-5+ 1
tanx = % = —-0-6972, —4.3028.
Taking the inverse tan function of each of these values then yields the approxi-

mate second quadrant solutions as 2.53 and 1.80 respectively.

5.

sec(@—i—%)=2©cos(9+%):%©9+%:2nﬂ'ig

9:2n7r+%, or 2nm — . (n € 7).

6. Let 0 = arccos(%). Then take the right triangle with hypotenuse of 41

and one side of length 9 so that the included angle is #. Marking the other side

as y we get y? = 412 — 92 = 1600 = y = 40. Hence sin§ = sin(arccos()) = 2.

7. Applying the Cosine Rule yields the equation: (x +y)? = 2% + (z — y)? —
2z(z — y) cos A = 4oy — 22 = —2x(x + y) cos A
x — 4y

= cos A= —".
2(z —y)



8. The Sine Rule here gives: S04 — sinB _ sinC lonce

z+y x =y

sinAfQSinBJrsinC’:sinB(szy — 24 :c—y) =0.
T T

9. We require the angle at the vertex B and since we have all three sides of
the triangle we re-arrange the Cosine Rule to make cos B the subject and then
insert the given values:

a?+c2—b2  (5-2)24(7-1)2—(3-7)?
2ac N 2(5-2)(7-1)

cos B = ~ 0-8635.

Therefore B = 30.29°, which, to the nearest degree gives, B = 30°.

Comment It is always easier to do the necessary algebraic manipulation first,
thereby giving yourself a formula for the required value, and then to substitute
the numbers at the very end of the exercise to gain the answer. Students often
feel on safer ground when the calculator takes over and so insert numbers at the

earliest possible opportunity but then struggle to deal with the messy number
manipulations that follow.

10. Let AB = 10, BC =9, and ZCAB = 60°. We have from the Cosine
rule:
BC? = AB? + AC? — 2(AB)(AC) cos ZCAB

= 92 =102 + AC? — 2(10)(AC) cos 60°
= AC* —10AC +19=0

10+ 100 -76 _ 10+2V6 51 VG
2 2
Comment This case where we are given two sides and an angle that does not
lie between these sides is called the ambiguous case as the given information in
general leads to two distinct possibilities for the third side.

= AC =

Problem Set 4

1. sin(z + §) = sinzcos § + coszsin § = %(sinx + cosz). Now since the

sine function is odd, fit sinz dr = 0, giving:

1 fitcosxdx 1

Efjtcosxd:c V2

Comments Remember that a function f(z) is even if f(—z) = f(z) for all z,
(examples are any even power of z and the cosine function) and f(z) is odd
if f(—x) = —f(x) for all  (examples being all odd powers of = and the sine



function). You should be able to discover for yourself simple rules concerning
the sums, differences, products and quotients of even and odd functions: for
example, the quotient of an even by an odd is odd, so tanx is an odd function.
For any odd function we have by symmetry that ff , f(x)dr = 0 while for an

even function we get [(*,f(z)dz = 2f0t f(z)dx. Both the facts are ‘obvious’
from the picture of the corresponding graph although it is a good exercise to
verify them algebraically. In any event, they are symmetries that often simplify
definite integrals considerably, as in this case where, in the end, no integration
at all was needed.

2. Since the period of the tan function is 7 we get here I for the period of
y(z).

3. Put A =45°, B = 30° in the given identity to obtain:

tan45° + tan30° 1+ 75

_ o o 1 _ L
1 — tan45° tan 30 1 73

V31 (VBH1)P 4423
V-1 (VB-D(VB+D)  3-1
=243

tan 75° =

cos 15° = cos(45° — 30°) = cos45° cos 30° + sin 45° sin 30° =

2 6++v2
Or, applying the alternative formula gives

1
cos? 15° =

5(1 + c0s30°) and so cos® 15° =

1
whence cos15° = 5\/ 2+ /3.

Again the two different looking answers may be directly reconciled through
comparing their squares or by use of the formula

\/Ai\/EZ\/A;Ci\/AQC, where C = VA? — B,
1

5. If we differentiate the function y = arcsin z+arccos z we get y/ = T

\/11_7 = 0, so that y

arcsinQ + arccos0 = 0 +

(1+§) 2+ V3.

|~

¢, a constant. If we put x = 0 we see that ¢ =
s

PR

B I

. 7r
.arcsine + arccosx = 5



Alternatively, call the quantity A and consider

sin A = sin(arcsin z+arccos z) = sin(arcsin z) cos(arccos x)+cos(arcsin x) sin(arccos x)

=22+ (V1-22)(V1-22) =a® + (1 —a?) =1,
and so A = 7.

Comment If we denote arcsinz and arccosx by a and ( respectively, we see
that sina = & = cos 8. It follows that, in the first quadrant, which applies if
r >0, o and 8 are complementary angles so that o+ 3 = 5. For —1 <z <0
the same conclusion applies although « and $ lie in the 4th and 2nd quadrants
respectively. In this case we have 0 < —z and arcsinz = — arcsin(—z) and
arccosx = m — arccos(—x) so that

arcsin x+arccosx = — arcsin(—z)+(r—arccos(—z)) = m— (arcsin(—x)+arccos(—z))
T
=T0T— — = —.
2 2

6. First take > 0, put 0 = cos™! z so that (see diagram) sin§ = v/1 — 22,
If on the other hand z < 0, then

sin(cos™! z) = sin(r —cos ™! (—x)) = sin 7 cos(cos ™! (—z)) —cos 7 sin(cos ™! (—z))

:07(—\/17(—z2):\/1—z2.
sosin(cos™H2)) = V1 — a2V 2] < 1.

sin (sin_1 (%) +cos* (%))
sim(sinf1 (;)) - cos (cos*1 (%)) + cos (Sinil (%) - sin (Cosil (%)) -

= % -%—l—y/l—g- 1—%(&5 cos(sin ! (x)) = v/1 — 22 = sin(cos™ ! z))
_2, V5 V8 242V2.V5
9 3 3 9
~ 2(1+10)
—g

8. The quickest way to do this is first to multiply by sin20° and then keep

applying the double angle formula, sinx cosx = % sin 2.

With this in mind, put a = cos 20° cos 40° cos 80°. Then, following the advice
above, we obtain:

asin 20° = sin 20° cos 20° cos 40° cos 80° = % sin 40° cos 40° cos 80°
1 1 1
=1 sin 80° cos 80° = 3 sin 160° = 3 sin 20°,

10



where the final equality is justified by the general relationship, sin(180 — z)° =
sinz®. We no longer have need of the factor of sin 20°, and so we cancel it to
obtain:

1
c0s 20° cos 40° cos 80° = g

. 1w
Of course, since cos 60° é e also get

c0s 20° cos 40° cos 60° cos 80° = %

The problem is also approachable using complex numbers, which leads to a
set of more general identities that include this one as a particular case.

V3.

6 z = sin60° =

9. Referring to the diagram: tan30° = 2z = x = @

Hence
r V3 2 1

COSO[:;:F'%:g.

10. From the viewpoint of G, The Goblin, the patrol boat P, comes from the

SW, giving a triangle PIG, where P denotes the initial position of the Patrol

Boat, G the initial position of the Goblin and I the interception point. Let us

say that the interception comes after time ¢, so that |PI| = 25¢ and |GI| = 10t.
Let « = ZGPI. Then by the Sine Rule we have:

sina  sin 135° 10

= = si = —.
10t 25t S = o

gl
%
Sl-

We infer that

0 =45° —a = 45° — sin~! (?) = 28.57°;

The answer to the nearest degree East of North is then 29°.

Comment It is interesting to note that the answer is independent of the
initial separation of the two vessels as it is independent of the time taken for
the interception.

Problem Set 5

1. From the Euler formula e(*+v) = ¢%e¥ gives
cos(u + v) + isin(u + v) = (cosu + isinu)(cosv + i sinv)

= (cosucosv — sinwusinv) + (sinu cos v 4 cos usinv),

11



and equating real and imaginary parts gives
cos(u 4+ v) = cosucosv — sinusinv, sin(u 4+ v) = sinu cosv + cosusin v.
2. Myry = My M, gives

cos(u+wv) —sin(u+v)| [cosu —sinu| [cosv —sinv
sin(fu+v) cos(u+v) | |sinu cosu | |sinv  cosv

_ |cosucosv —sinusinv — cosuSinv — sinu cosv
sinu cosv + cosusinv —sinwusinv 4 cosu cosv

and equating entries of the matrices gives the identities of Question 1.
3.
cos(u — v) = cos(u + (—v)) = cosu cos(—v) — sinu sin(—v)

= cosu Ccosv + sinwusinv
sin(u — v) = sin(u + (—v)) = sinu cos(—v) + cosu sin(—v)
= sinu cosv — cosusinv
4. Put w = v in (1) we get in the first instance:

2u—1

cos 2u = cos® u — sin® u = 1 — 2sin® u = 2 cos
and from the second formula in (1):
sin 2u = sinwu cosu + cosusinu = 2sinu cosu
5. Add the first formula in (1) to that in (2). The result is:
cos(u + v) + cos(u — v) = 2 cos u cos v;

Adding the second formula in (1) to that of (3):

sin(u + v) + sin(u — v) = 2sinu cosv

6. Put u+ v =2 and u — v = y, which is to say that u = I—gy and v =
allowing us to re-write (6):
cosx + cosy = 2cos (:C_—;—y) (m ; y)
Subtracting (2) from the first formula in (1) gives:
cos(u + v) — cos(u — v) = —2sinusinv
= COSZT — COSY = —251n$+y sinx —y-

2
7. Applying this to (7):

x+yCOSx7y

sinx + siny = 2sin

12



Finally, replace y by —y in (8). We obtain:

sinx + sin(—y) = 2sin a ; Y cosZ —2(—y)
= sinz —siny = QSingj —~ cos :I:—2|—y
8. Applying (1) again we obtain:
sin(u +v)  sinwcosv + cosusinv tanu + tanv

tan(u 4+ v) = = - — = ;
cos(u+wv) cosucosv—sinusinv 1 —tanutanv

applying (2) and (3) we obtain:

tan( ) sin(u —v)  sinwcosv — cosusinv tanu — tanwv
an(u —v) = = — = .
cos(u —v) cosucosv+sinusinv 1+ tanutanv

sin 15° = sin(45° — 30°) = sin45° cos 30° — cos 45° sin 30°
BT BN
2 Y2 2 4 '
10. From (7) we obtain:

/sin Tx cos8x dr = / %(sin (7z + 8z) + sin (7:c — 8x)) dx

1/('15 inz)d 1( L cos150+ )+
== in — sin =—(—-——=
5 S T —sinx)dr > 15005 T + cosT c
1 1
:§cosx7%cosl5z+c.

Problem Set 6

1. Let z € domf. Replacing z by & — p in the definition of period we get

fle =p) = f((x —p) +p) = f(z) so that f(z) = f(z —p)Vz € domf. In
particular we may say that f(z) = f(x & p) holds in general and by a simple
induction that f(z) = f(z + kp) for all k € Z.

2. First we observe that for all z in the domain of our function we have
P P
|c] |c]
but from Question 1 we see that this also equals a+bf(cx+d) = g(x). Therefore
gz + %) = g(z) for all real z. Hence the period of g(x) exists and is bounded

glx+=)=a+bf(c(xr+ =) +d)=a+bf(cx+d+£p);

above by ‘—’;‘ .

13



On the other hand, suppose that g(z) = g(z + ¢q) for all real x, where
0 < ¢ < &. Then for all z € R we have

Ic]
a+bf(cx+d)=a+bf(c(x+q)+d)

= flez +d) = f(c(x +q) +d) = f(z) = f(x +cq)

as b, c # 0 and we may then replace x by ””—;d throughout. Thus we obtain

f(z) = f(z + |c|q) by applying Question 1.

It now follows by the defintiion of period that |c|¢ > p so that ¢ > ‘ﬂ and

c
therefore we conclude that g = ‘—f:", as required.

3. Suppose that ¢ is not an integer multiple of p. Certainly p < ¢ so we may
write ¢ = np + r for some remainder r with 0 < r < p. But then for all x € R
we have

fltr)=fl@+q—np)=flz+np) = f(z),
which, since 0 < r < p, contradicts that p is the period of f(x).

4. Since cos x = sin(z—7) it follows from Question 2 (witha = 0,0 =1,c =1

and d = —7) that the period of cosx is the same of that of sinz, which is 27.
Next observe that tan(z+7) = i’oz((ii:)) = =sine _ SnZ — tan g for all « for

which tan x is defined. On the other hand, if tanx = tan(z +p) with 0 <p <7
then in particular we have

sinp

cosp

0 =tan(0 =tanp =
so that sinp = 0 and so p = w. Therefore the period of tanz is .

5. By Question 2 we have the period p of 1+ 2sec(3z — ) is % of the period
of secx. Since secx = (cosz)~! and the inversion function is injective it follows
that the period is the same as that of cosx, whence it follows from Question 3
that p = 2.

6. First note that sin®(z+7) = (—sinz)? = sin z so that sin®  has a period
of p where 0 < p < 7. Next suppose that sin®(z + ¢) = sin® z for all real = and
for some ¢ with 0 < ¢ < 7. Then in particular 0 = sin0 = sin ¢, whence 7 < ¢
and we conclude that the period of sin? z is indeed .

Since the period of tanzx is, by Question 4, equal to 7 it follows that the
period p of tan? z exists and 0 < p < 7. Then 0 = tan? 0 = tan? p which implies
that sinp = 0 so that p > w. Therefore the period of tan? z is w. Alternatively
we may argue that tan? z = 1 4+ ——— and since the function g(z) = 1+
is one-to-one, it follows that the period of tan? z is the same as that of sin® z.

14



7. Write 3sinx + 4cosz = Rcos(x — ). We get R? = 3% 4+ 42 = 5%s0
that R = 5 and tana = %. By Questions 2 and 3 we see that the period of
5cos(xz — a) is 27.

8. sin12z cos 30z = 5 sin42z — 1 sin18z. Now these terms have respective
us

periods of 22 = T and 2% = Z. The required period p is therefore the least

common multiple of these two periods. We require m and n with (m,n) =1

such that 2+ =% = 2 = 2L = T and hence p = 2% = .

21 3

9 — 3
9. Let p be the period of f(z). Then

h—0 h h—0

so that f/'(x + p) = f'(«) for all x and therefore f’(z) is also periodic.
Comment Note that this does not prove the period of f/(z) is p as there
could conceivably be a smaller positive number ¢ such that f/'(z + ¢q) = f'(x).

10. Suppose that p > 0 and that f(z) = sinz? = sin(z + p)®. Putting
r = 0 we get 0 = sinp? so that p?> = kn say (k € ZT) and p = Vkr. Now
f'(z) = 2w cos x? and, by Question 9, f’(z) = f'(x + p) also. Hence
0= f(0) = f'(p) = f'(Vkr) = 2pcos(km) = +2p,

which contradicts that p > 0. Hence sin 22 is not a periodic function.
Problem Set 7

1. From Problem 9 on Set 4, the height of the tetrahedron h is such that

h . N 1 /8 2V2
\/_T/2:s1n(cos (g))f 15\/;7

Hence h = 22 . @ VG

The area of the base is +sin T = 1 . ¥3 — ¥3  Therefore the volume of the

1
2 3 272 4
tetrahedron is

W VI
= = —— un

= = ts 3.
32.4 12 S

V3
=

<5

1 1
V = - x base x height =—
5 % base x heig 3
2. (a) Substitute y = mz + ¢ in the equation of the unit circle and we find:

22 +y* = 1 becomes 22 + (mx +¢)* — 1 = 2> + m?2® + 2mex + > —1=0

15



< (14+m?*)2? + (2me)z + (2 — 1) = 0.

Now y = ma + ¢ is a tangent to the circle if and only if it meets the circle
exactly once, which in turn is equivalent to saying that the preceding quadratic
equation has a unique solution. This occurs if and only if the discriminant is
zero, which is to say:

4m?*c® —4m* +1)(* - 1) =0 & m*E =m?*c? —m* + 2 - 1

em?l=c-1lam=+yc-1.

(b) Alternatively, let us find the slope m = m; of the line AC. By noting
the equality of the angles as marked on the diagram we obtain that the right
triangles AABO and AAOC' are similar. By Pythagoras,

BC?+1%2=0C? and so BC =2 — 1.

Therefore
oC BC ¢ -1
= s =
OA BO " a 1
Since m = ¢/a we may conclude that m = v/¢? — 1.

3. The minimum mirror height required to see your whole body in a mirror
is half your own height. To achieve this, the top edge of the mirror should be
half in-between the level of your eyes and the top of your head, and the bottom
edge of the mirror should be at a level half way between your eyes and your
feet. The reflecting surface must cover this much of the plane to be able to view
the extremities of your body.

Surprisingly perhaps, this is independent of your distance to the mirror as
can be seen by drawing a diagram that shows straight lines from your eyes going
to the top of the head and to the bottom of the feet of your mirror image.

4. Locate the centre C of the cake as the intersection of the diagonals. Any
line through C' cuts the cakes into two (equal) halves. Next find the centre O
of your circle (by finding the point of intersection of any two of its chords).
The line of the cut OC' cuts both the circle and the overall cake into two equal
portions, as required.

5. By the Circle Theorem of Euclid, the angle ZACB standing on a chord
AB of a circle is half the angle ZAOB at the centre. In this case AAOB is
equilateral as all of its sides are equal to the circle’s radius. Hence that acute
angle ZAOB = 60° so that ZACB = 30° for any point C on the circle in the
larger segment of the circle with side AB. On the other hand if C'is in the smaller
segement then ZACB is half of the obtuse angle ZAOB = (360 — 60)" = 300°
so that ZAC'B = 150°.
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6. Let O,C and P denote the origin, the centre of the smaller circle and let
P denote the point where the circles touch. Let D be the point on the z-axis
that the smaller circle touches. Since the common tangent to the circles is at
right angles to the radius of each circle through P, it follows that O, C' and P
are collinear and |OP| = 1. Let r denote the radius of the smaller circle. Then
by Pythagoras for the triangle ODC we obtain:

Pt =01-7r)?=1-2r+7r?

whence 72 4+ 2r — 1 = 0. Solving and taking the positive root then gives r =

V2 —1.

7. Here is just one of several possible arguments, including the use of
trigonometry. Let the diagonal length be d and note that AADB is similar to AABC
so that

1
1= 73 (9)

Hence )
d2—2ad—a:0:>d2—2—3:Oby(16).

Hence d* —2d —1=0= (d+1)(d* —d—1) =0.

Since d is positive, it equals the positive root of d?> —d — 1 = 0, which therefore

gives
C1+VI+4 1445
N 2 2

Comments: The pentagon is replete with symmetries: for example ABCF is
a rhombus (square parallelogram) of unit side length, (as can now be checked).
The diagonals of the pentagon meet each other in segments in the ratio ¢ : 1
leading to an inverted copy of the pentagon appearing the vertices of which are
the diagonal intersections of the parent pentagon. This kind of self-similarity
behaviour is typical in mathematical objects involving ¢.

As an interesting bonus, we can find the exact values of cos 36° and sin 36°.
Using the fact that the angles of a triangle sum to 180° and the angle at each
corner of the pentagon is 2%° = 108° we may deduce that the angle a« = ZBAC
satisfies 2a: + 108° = 180° and so o = 36°. Let M be the midpoint of AC and
consider the right triangle AABM. We then obtain

d

, the Golden Ratio, ¢.

cos36°—§—?—1+\/g
T2 2 4 7
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Next using sin? v = 1 — cos? o gives

6425 10-2V5
6 16

1
sin 36° = Z\/10 —2v/5.

8. BA, AC and CB are each the diagonal of a face. Hence AABC is
equilateral and in partciular ZABC = 60°.

sin?36° = 1

Hence

9. The area of an ellipse is mab where a and b are respectively the length of
the sem-axes of the ellipse. From the equation we have a? = 9 and b = 49 so
that @ = 3 and b = 7. Therefore the required area is 7 - 3 - 7 = 217 units2.

Comment It is easy to justify the formula for the area of an ellipse, given that
a circle of radius b has area mb%. Stretch the circle horizontally away from its
vertical diameter by a factor of . Imagine the circle covered by thin horizontal
strips that are similarly strectched to cover the ellipse. Since each strip has its
area multiplied by the factor ¢, the same applies to the ellipse (by taking the
area to be the limiting value of the covering by thin strips) so the area of the
ellipse is therefore wb? - 7 = mab. This simple result contrasts with the question
of the arc length of the ellipse, which is not related to that of the circle in so

simple a manner.

10. Tetrahedron: V — E 4+ F =4 —-6+4+4 = 2; Cube: V - E+ F =
8 — 12 4+ 6 = 2; Octahedron: V — F+ F = 6 — 12 + 8 = 2; Dodecahedron:
V-E+F=20-30+12 = 2; Icosahedron: V — E4+ F =12 — 304 20 = 2.

Comment: Note that for the dual pairs (Cube, Octaderon), (Dodecahedron,
Icosahedron) the vertex and face numbers are interchanged (recall Set 2 Ques-
tions 1-3). These are the five platonic solids and they are the only regular convex
solids that can exist (regular meaning that each face is planar and the solid is
assembled in the same manner from each vertex).

Problem Set 8

ab (=6 — 6 —4) 16
la|-|b]  V1I+4+16-vV/36+9+1 +/21-/46

Therefore x = 121° (to the nearest degree).

cosT = = —0-5148to 4 d.p.

2. Since ABCD is a parallelogram
OD = OA + AD = OA + BC = (—i+ 2j) + (—3i — 10j) = —4i — 8§j.
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Therefore D = (—4, —8).

Comment: You need to be careful to find the parallelogram ABCD and not
the alternative parallelograms ABDC or ACBD. In general, given a triangle
AABC there are three parallelograms that may be formed with vertices A, B,
and C corresponding to the three choices of sides of the triangle that act as a
diagonal of the parallelogram.

3. ura=8+1+6=15:a-a=16+1+4 = 21.

p = projau = ga :g (4i—j—2k)
4. The vector component of v orthogonal to a is q = u—projau =
(21 — j+3k) — (?i—gﬁl—?{)k)
q= fgif% + %k.

Comment Questions 3 and 4 together furnish an example of breaking a given
vector into components parallel and perpendicular to a given direction (as the
outcome does not depend on the length of the second vector a, but only its
direction). This is a task that arises constantly in problems in mechanics. It is
also used to solve the problem of the distance from a point to a line (see Set
10 Question 5). The formula for p comes from observing that p =ra for some
r € R and that » = u e a. Alternatively, we may solve more directly as p = ra,

P+49=u, and peq=0. This also leads to r = % and the solution.

5. If we place one corner of the cube at the origin with sides aligned to the
three co-ordinate axes we then want the angle 6 between the unit vector i and
d =i+ j+ k, which represents the vector of the diagonal of the cube from the
origin. Hence we have:

i-d i-(i+j+k) 1
cosf = — = =
i[-1d]  1-vV12+12+12 V3
hence § = arccos(%) ~ 54°44’. To the nearest degree the required angle is
therefore 55°.

6. r = a+ bt where a = —i—2j+2k and
b =(1— (=1))i+(7 — (-2))j+(11 — 2)k = b =2i+9j + 9k.

7. From Question 6, (x,y, z) is on the line if and only if x = —1 + 2t,y =
—2 49t and z = 2 + 9¢t. Solving for ¢ yields:
z+1 y+2 z-2
2 9 97
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8. Following the hint, we see that the equation has the form 5x+3y—8z+d =
0. To determine d, we substitute the value of the included point, (—1,—2,5) to
get

5(~1)+3(—-2) —85) +d=0= —5—-6—-40+d =0 = d = 51;

Hence the equation of the plane is 5z 4+ 3y — 8z + 51 = 0.

j k

1 7 2/=i35—-4)—-j5+2)+k(2+7) =(31,-7,9).
2 5

10.

i k
c=|1 1 1|=i141)—-j1-1)4+k(-1-1)=2i-2k;
1 1

hence ||c|| = v/22 + 22 = /8 = 2¢/2 and so a required unit, vector is

Lo _ V2
2—\/5(2172k) = 7(17k).

u=

Problem Set 9

1. Writing each dot product as an equation in the three unknowns z,y and
z gives
—y+4z=-2 v+2y+32=17, -z —y+ 2= —T.
Adding the last two gives y + 4z = 10, which when added to the first gives
82=8=z=1,whencey =10—-4=6,2 =17—(2x6)—(3x1)=17-12-3 = 2.
Hence x =(2,6,1).

2. Making use of the dot product we have

vei a

Cosx =

similarly the other two direction cosines can now be expressed as cos 5 = b and
cosvy = c. Finally

cos? a +cos? B+ cos®y = a® +b? + 2 = |v|2:12 =1
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3. PO = ((2,1,-1)—(1,~1,0) = (1,2, —1), and PR = (—1,1,2)—(1,~1,0) =

(—2,2,2). Hence a vector perpendicular to the plane PQR is given by P
Ph—
i j k
det 1 2 -1
-2 2 2

=i2x2—((-1)x2)—jAx2—(-1)x (-2)) + k(1 x2) — (2 x (=2)) =
61 + 6k.

Therefore we can take v=1i+ k or indeed the corresponding unit vector, which
is v/\/§ The equation of the plane then has the form x + z = ¢; substituting
the point P(1,—1,0) into this equation gives 1 +0 = 1 = ¢, so our equation is
r+2—-1=0.

4. AB =(3,-2,2), AC = (—2,2,3) so that AB x AC is given by the formal
determinant of:

i j k
-3 -2 2
—2 2 3

= (=6 —4)i — j(—=9 4 4) + k(—6 — 4) = —10i+5j—10k.

The required area is then

1 ) ) ) 15

5. The required distance d is given by |(ro — r1) e n| where rg is the given
point, r; is any point in the plane and n is a unit normal vector the plane. We
have (1, —1,4) is normal to the plane and has length /T + 1 + 16 = /18 = 31/2.
Also rg = (2,2,2) and we may take r; = (9,0,0). Then:

((2,2,2) — (9,0,0)) @ (1,—1,4 | -7,2,2) e (1, 1,4)|

=
1 | IRV

3v2 32 6

6. The plane contains the two vectors: a = (2,4,1) — (-=1,0,1) = (3,4,0)
and b = ((8,2,-5) —(—1,0,1) = (9,2, —6). Hence a normal vector to our plane
IT is given by

-

-2+8|=

axb=i(—24—0)—j(—18 — 0) + k(6 — 36) = —24i+18j — 30k,

dividing by —6 we may use n = (4,—3,5). Hence II has an equation of the
form: 4z — 3y + 5z = ¢; substituting the point (2,4, 1) into this equation gives
c=8—12+4+5=1,so0 Il is given by

dr — 3y + 5z = 1.
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7. The vector a = (2,0,3) — (1,1,1) = (1,—1,2) lies in the required plane II
as does b = (1,2, —3) as b is normal to the given plane. Hence a normal to IT
is given by a x b =

(1) % (=3)—2%x2) —j(1x (=3) = 2x 1)+ k(1 x 2 — (—1) x 1) = —i+5j+ 3k.

Hence II has an equation of the form —x + 5y + 3k = ¢. Substituting the point
(1,1,1) into this equation gives ¢ = —1 + 5+ 3 = 7. Therefore the equation of
Il is
—r+5y+3z2=".
8. Expanding the determinant gives:
i(’LLQ’Ug — U3’L)2) 7j(ul’l)3 — ’LL3’U1) + k(ul’Ug — UQUl)
= (UQ'UB — U3v2, u3vV1 — U1V3, U1V2 — ’LLQ’Ul) =u X V.
9. The LHS when expanded gives

w1 (vaws — v3u2) + uz(vswi — viws) + uz(viws — Vawy)

which matches the expansion of the determinant.

10.
1 1 -1
2 -1 0
-1 4 1
=1(-1-0)—(2-0)—1(8—1) = —1-2—7=—10,
and so the required volume is | — 10| = 10.

Problem Set 10

1. Given line has vector equation x = (1,0,1) + ¢(3,—1,0) so required line
isx=(3,4,1)+¢3,-1,0) =2 =3+4+3t,y=4—1t, =1 (t € R). Eliminating
the parameter ¢t we obtain:

z—3
3

=4—y, z=1.

2. For two lines x = a+tb and y = ¢ + sd (¢, s € R), the required distance
is given by d = |ne(c — a)| where n = ‘Eig‘. In this case a = (3,4,1),b =
(3,-1,0),c=(0,1,3) and d = (—2,1,2). Hence c—a =(-3,-3,2) and bx d

is given by:

i((-1)x2-0)—jB3x2—-0)+k(Bx1—(-1) x (—2)) = —2i— 6j+k;
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and so |b x d| = v/4 + 36 + 1 = v/41. Hence

1 2%  26v41
d=5|(-2.-6.1)¢(-3,-3,2)| = —\6+18+2\ N dalTe

3. A vector in the direction of the line of intersection is
(1,1,1) x(2,-1,4) =i(1x4—1x(-1))—j(Ix4—-1x2)+ k(1 x (-1)—1x2)

= 5i — 2j — 3k.

Adding the two equations gives 3x + 5z = 5 so we may put x = 0,z = 1 whence
y = —x — z = —1, giving the point (0, —1,1) on the line. Hence a parametric
equation for the common line is

r=(0,—1,1)+¢(5,-2,-3) = (5t, =1 — 2¢, 1 — 3t).

4. From Question 1 we get r(t) = (z(t),y(t),z(t)) = (5¢,1 — 2¢,—1 — 3¢).
Making t the subject of each co-ordinate formula we obtain:

x y+1l =z-1

5 -2 =3
5. First find a vector u to the given point (2,0, —3) from a point on the line:
we put t = 0 to get i+j — 3k = (1,1, —3), so that u = (1, ) Next project u
onto the direction of the line, which is a = (0, 3,4) as r(t) ( —3)+1(0, 3,4).
We obtain
uea  (0-340) 3

a= a = a.
aea 0+9+16 25
Hence the normal vector from the line to our point isn=u—p = (1,—1,0) +

2(0,3,4) = (1,—32, 32). The required distance is then

Il =(1 + 256+144)% _ (1025)% vz
B 625 6257 5

6. The area of the rotated circle is 7r? and its centroid is its centre, which
travels a distance 27d to generate the torus. By Pappus, the volume of revolu-
tion, V is thus

V = (mr?)(2nd) = 2m*r?d.

7. The area of the semicircle is Zr?

57 and its centroid travels a distance 27d,
where d is the distance from the centre of the circle along the line at right angles
to its diameter to the centroid, C, of the solid semicircle.

The volume generated is that of a sphere of radius r, which is thus %777“3.

Hence Pappus gives the equation:

4 1 43 4
—mr® = (z7mr?)(2rd) = 7*r*d and so d = 2
2 3n2r2 3w
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8. The perimeter of the generating circle has length 277 and its centroid is
the centre of the circle, which travels a distance 27d in sweeping out the torus.
Hence the surface area S is:

S = (277)(2nd) = 47?rd.

9. Rotating the wire about its diameter generates a sphere of surface area
A = 47r?. By symmetry, the centroid of the wire lies on the radius at right
angles to this diameter at a distance d say from the centre. Since the perimeter
of the generating curve is 7r, we have by Pappus that the surface area of the
sphere equals A = (27d)(nr). Equating these two expressions for S gives us:

2
A = 4nr? = 27%rd and so d = Amr = %
2m2r o
10. Let s denote the slant height of the cone. The surface of the cone is
generated by rotating the slanting edge around the axis of the cone. The centroid
of the line segment generator is the midpoint of the slant and is a distance 3
from the axis of rotation. Hence, by Pappus, the surface area A of the cone is
A =2r(%)s = nrs. By Pythagoras, we have s? = 7% 4+ h? so that in terms of r

and h the surface area of the cone is given by:

S = mry/r? + h2.
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