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Solutions and Comments for the Problems

Problem Set 1

1. Let x denote the length of the shorter side. The given information is


aptured by the equation:

x2+(3x−1)2 = (3x+1)2 ⇒ x2 = (3x+1)2−(3x−1)2 = (3x+1+3x−1)(3x+1−(3x−1))

⇒ x2 = 6x(3x+1−3x+1) = (6x)(2) = 12x ⇒ x2−12x = x(x−12) = 0 ⇒ x = 12.

Therefore the length of the hypotenuse is 3x+ 1 = 37 in
hes; the other side

has length 3x− 1 = 35 in
hes.

2. Let y denote the unknown length. We 
al
ulate the area of the triangle

in two ways to give:

A =
1

2
· 12 · 35 =

1

2
· 37y ⇒ y =

12 · 35
37

= 11 · 35 in
hes.

3. We work in units of 106 for 
onvenien
e. The question tells us that M
is the 
entre of a semi
ir
le with AB as base. Sin
e the angle in a semi
ir
le

is a right angle, we have that ∠ACB = 90◦ and we may apply Pythagoras's

Theorem. We get |AB|2 = 52 + 122 = 169. Hen
e |AB| = 13 × 106,whi
h is to

say that |AB| = 1.3× 107km.

Comment That the angle in a semi
ir
le is a right-angle is of 
ourse a spe
ial


ase of the 
lassi
al Eu
lidean Cir
le Theorem that the `angle at the 
entre of a


ir
le is twi
e that on the 
ir
umferen
e'. This means that if A and B are two

points at either end of a 
hord of a 
ir
le with 
entre O, and C is any point on

the 
ir
umferen
e then ∠AOB = 2∠ACB. The semi
ir
le theorem is then just

the spe
ial 
ase that arises when that 
hord is the diameter of the 
ir
le.

4. |OP |2 = 32 + 42 = 9 + 16 = 25 ⇒ |OP | = 5. Sin
e a tangent tou
hes

the 
ir
le at right angles to the radius at that point it follows that △PQO has

∠PQO = 90◦ and we may apply Pythagoras and the fa
t that |OQ| = 1 to

infer that |QP |2 = 52 − 12 = 25 − 1 = 24. Therefore |QP | =
√
24 =

√
4× 6 =√

4×
√
6 = 2

√
6.

Comment Note that there are two (symmetri
) possibilities for the line L.

5. Let OA be the radius of the 
ir
le that passes through A. Now

|OA|2 =
(1

2

)2
+
(

− 2

3

)2
=

1

4
+

4

9
=

9 + 16

36
=

25

36
⇒ |OA| = 5

6
.

The required length is |AB| = 1− 5
6 = 1

6 .
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Comment We are saying impli
itly that for any point C on the 
ir
le, |AC| >
|AB|, whi
h is true be
ause the lengths of two sides of any triangle ex
eed

the length of the third side and so |OA| + |AC| > |OC| = 1 when
e |AC| >
1− |OA| = |AB|.

6. Let r be the radius of the planet. The initial length of the 
able is 2πr.
The extended 
able has length 2π(r + 1), so that in both 
ases the in
rease is

2π(r + 1)− 2πr = 2πmetres.

Comment People are often surprised that the out
ome is independent of the

radius of the 
ir
le. Even more surprising perhaps is that we get the same result

for any smooth 
losed 
urve C: at ea
h point of C imagine we ere
t a normal

line segment of length 1 unit and let C′
be the 
urve that is tra
ed out be the

end of the normal as ths base traverses the 
urve C. The 
urve C′
is then an

enlarged version of C and it may be shown that the in
rease in length as we pass

from C to C′
is always 2π. This is a 
lassi
 problem in ar
 lengths of 
urves.

7. Opposite angles in a 
on
y
li
 quadrilateral sum to 180◦. Hen
e ∠BCD =
180◦ − 110◦ = 70◦ and ∠CDA = 180◦ − 40◦ = 140◦.

Comment Any three 
orners of a quadrilateral will lie on the radius of a


ir
le (whose 
entre is the interse
tion of the perpendi
ular bise
tors of the


orresponding sides). In general there is no reason why the fourth 
orner should

also lie on that 
ir
le but if it does we have a 
on
y
li
 quadrilateral and a

simple geometri
 argument using the 
ir
le and isos
eles triangles shows that

the opposite angles are supplementary, that is ea
h su
h pair sum to 180◦.

8. Let O be the 
entre of the 
ir
ums
ribing 
ir
le of the regular polygon.

Then ∠AOB = 2π
11 and so ∠ACB = 1

2∠AOB = 1
2 · 2π

11 = π
11 .

9. Let θ be the required angle. Partitioning the n-gon into n triangles with

the 
entre as 
ommon vertex and summing their interior angles yields:

nπ = nθ + 2π ⇒ θ =
(n− 2

n

)

π.

(The nπ term arises as the sum of the angles of ea
h of the n triangles is π
and the 2π term represents the sum of all the angles of those triangles at the


ommon vertex that is the 
entre.)

10. The (equilateral) triangle, the square, and the hexagon. No others are

possible, for if k n-gons meet at a vertex then

k
(n− 2

n

)

= 2π ⇒ k =
2n

n− 2
∈ Z

+.

But 2 < 2n
n−2 < 3 ∀n ≥ 7; and forn = 5, 2n

n−2 = 10
3 6∈ Z.
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Comment Indeed any triangle tessellates (by parallelograms made up of of

pairs of the given triangle) and, mu
h less obviously, so does any quadrilateral.

(See Mathemati
s for the Imagination).
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Problem Set 2

1. The dode
ahedron has 12 pentagonal fa
es, with ea
h edge meeting 2
fa
es and therefore:

#edges = 1
2 (12× 5) = 30.

2. The regular solid will have 6 verti
es, with ea
h fa
e an equilateral trian-

gle, giving an o
tahedron.

3. The regular solid will have 8 verti
es, with ea
h fa
e a square, giving a


ube.

Comment : the 
ube and o
tahedron are duals of one another in that the

operation of forming a solid by taking a vertex at the 
entre of ea
h fa
e, trans-

forms one into the other.

4. CD ‖ AB so the equation of CD is 4x+ 3y = k for some k. Substituting
the 
o-ordinates of the point C =(−1,−1) into this equation gives:

4(−1) + 3(−1) = k ⇒ k = −− 4− 3 = 7;

Therefore the required equation of the line is 4x+ 3y + 7 = 0 or y = − 4
3x− 7

3 .

5. Joining the 
entres of the 
ir
les gives an equilateral triangle T of side

length 2 and so area

1
2 · 2 · tan 60◦ =

√
3. Ea
h 
ir
le meets T in a se
tor S of

angle 60◦ so the required area is represented by T − 3S

=
√
3− 3 · 60

360
· π =

√
3− π

2
≈ 0 · 1613.

6. The radius of the maximum 
ir
le is given by tan 30◦ so the required area

of the 
ir
le is

π(

√
3

3
)2 =

π

3
.

7. △AC1C2 is equilateral, all sides being radii of unit 
ir
les. We �rst �nd

the area of the segment AC1B, whi
h equals

(Area of se
tor ABC2) - (Area of △ABC2) =

π

3
− 2Area△AC2D = π

3 − 2 · 1
2 sin

π
3 cos π

3 =

π

3
− 1

2
sin

π

3
=

π

3
−

√
3

4
.

Therefore the total required area is:

2π

3
−

√
3

2
=

4π − 3
√
3

6
.
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8. We see that the a
tion of the pair of mappings is des
ribed by (x, y) 7→
(x,−y) 7→ (−x,−y), whi
h 
orresponds to a rotation of 180◦ about the origin.

9. The interior angle is given by

(

n−2
n

)

π (see Set 1, Question 9) and so the

exterior angle is

π − n− 2

n
π = π(

n− n+ 2

n
) =

2π

n
.

10. It follows that the sum of all the exterior angles is n · 2π
n

= 2π, one

omplete turning.

Problem Set 3

1(a)

2π
4 = π

2 .

(b)

y = 3 + 3 sin 3x cos 3x = 3 +
3

2
sin 6x,

hen
e the period of y is

2π
6 = π

3 and the maximum value of y is 3 + 3
2 = 9

2 .

2. Sin
e arctan1 = π
4 we turn to the remaining two terms. We use the

identity

tan(A+B) =
tanA+ tanB

1− tanA tanB
:

tan(arctan 2 + arctan 3) =
2 + 3

1− (2)(3)
=

5

−5
= −1;

taking the ar
tan of both sides gives arctan 2+arctan3 = arctan(−1) = 3π
4 and

therefore:

arctan 1 + arctan2 + arctan 3 =
π

4
+

3π

4
= π.

Comment We need to be mindful that we may only say immediately that

arctan2+arctan3 = 3π
4 +mπ, but we observe that 0 < arctan 2+arctan3 < π,

so that m = 0 here.

OR

tan(arctan 1 + arctan 2) =
1 + 2

1− (1)(2)
= −3

and so

tan((arctan 1 + arctan 2) + arctan 3) =
−3 + 3

1− (−3)(3)
= 0,

whi
h then allows the 
on
lusion that the three ar
tans sum to π.
OR If you are familiar with 
omplex numbers we multiply together 1+i,1+2i,

and 1 + 3i (as their respe
tive arguments are arctan 1, arctan 2, and arctan3)
and we get:

(1 + i)(1 + 2i)(1 + 3i) = (−1 + 3i)(1 + 3i) = (3i)2 − 12 = −9− 1 = −10.
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The argument of a produ
t is the sum of the arguments, and sin
e −10 is on

the negative real line, its argument is π, and so we again have the result.

3. Put sinθ + cos θ = r cos(θ − α) = r(cos θ cosα + sin θ sinα); equating

oe�
ients gives r
osα = rsinα = 1, whereupon squaring gives

r2 cos2 α+ r2 sin2 α = r2(cos2 α+ sin2 α) = r2 = 12 + 12 ⇒ r =
√
2;

sinα = cosα =
1√
2
⇒ α =

π

4
;

√
2 cos(θ − π

4
) =

√
2 ⇒ cos(θ − π

4
) = 1 (0 ≤ θ ≤ 2π)

⇒ θ − π

4
= 0 ⇒ θ =

π

4
.

Comment The 
onversion of a sum of sines and 
osines to a single 
osine

fun
tion is very useful as it allows you to see many important aspe
ts of the

fun
tion at on
e. For example the amplitude r gives the maximum and minimum

values of the fun
tion and the lag α allows you to see where these turning points

o

ur, without the need for any 
al
ulus. Students often solve this equation by

�rst squaring both sides. Squaring is not a one-to-one operation so will generally

drag in extraneous solutions: in this 
ase it leads to the equation sin2θ = 1,
whi
h in the spe
i�ed range 0 ≤ θ ≤ 2π, has two solutions. These are θ = π

4
and θ = 5π

4 but only the former is a valid solution of the original equation.

4. Sin
e sec2 x = 1+tan2 x the equation 
an be rewritten as tan2 x+5 tanx+
3 = 0. Solving for tanx yields:

tanx =
−5±

√
13

2
= −0 · 6972, −4.3028.

Taking the inverse tan fun
tion of ea
h of these values then yields the approxi-

mate se
ond quadrant solutions as 2.53 and 1.80 respe
tively.

5.

sec
(

θ +
π

6

)

= 2 ⇔ cos
(

θ +
π

6

)

=
1

2
⇔ θ +

π

6
= 2nπ ± π

3

θ = 2nπ +
π

6
, or 2nπ − π

2 (n ∈ Z).

6. Let θ = ar

os

(

9
41

)

. Then take the right triangle with hypotenuse of 41
and one side of length 9 so that the in
luded angle is θ. Marking the other side

as y we get y2 = 412−92 = 1600 ⇒ y = 40. Hen
e sin θ = sin(ar

os
(

9
41

)

) = 40
41 .

7. Applying the Cosine Rule yields the equation: (x+ y)2 = x2 +(x− y)2 −
2x(x− y) cosA ⇒ 4xy − x2 = −2x(x+ y) cosA

⇒ cosA =
x− 4y

2(x− y)
.
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8. The Sine Rule here gives:

sinA
x+y

= sinB
x

= sinC
x−y

. Hen
e

sinA− 2 sinB + sinC = sinB
(x+ y

x
− 2 +

x− y

x

)

= 0.

9. We require the angle at the vertex B and sin
e we have all three sides of

the triangle we re-arrange the Cosine Rule to make cosB the subje
t and then

insert the given values:

cosB =
a2 + c2 − b2

2ac
=

(5 · 2)2 + (7 · 1)2 − (3 · 7)2
2(5 · 2)(7 · 1) ≈ 0 · 8635.

Therefore B ≈ 30.29◦, whi
h, to the nearest degree gives, B = 30◦.
Comment It is always easier to do the ne
essary algebrai
 manipulation �rst,

thereby giving yourself a formula for the required value, and then to substitute

the numbers at the very end of the exer
ise to gain the answer. Students often

feel on safer ground when the 
al
ulator takes over and so insert numbers at the

earliest possible opportunity but then struggle to deal with the messy number

manipulations that follow.

10. Let AB = 10, BC = 9, and ∠CAB = 60◦. We have from the Cosine

rule:

BC2 = AB2 +AC2 − 2(AB)(AC) cos∠CAB

⇒ 92 = 102 +AC2 − 2(10)(AC) cos 60◦

⇒ AC2 − 10AC + 19 = 0

⇒ AC =
10±

√
100− 76

2
=

10± 2
√
6

2
= 5±

√
6.

Comment This 
ase where we are given two sides and an angle that does not

lie between these sides is 
alled the ambiguous 
ase as the given information in

general leads to two distin
t possibilities for the third side.

Problem Set 4

1. sin(x + π
4 ) = sinx cos π

4 + cosx sin π
4 = 1√

2
(sinx + cosx). Now sin
e the

sine fun
tion is odd,

∫ t

−t
sinx dx = 0, giving:

1√
2

∫ t

−t
cosx dx

∫ t

−t
cosx dx

=
1√
2
.

Comments Remember that a fun
tion f(x) is even if f(−x) = f(x) for all x,
(examples are any even power of x and the 
osine fun
tion) and f(x) is odd

if f(−x) = −f(x) for all x (examples being all odd powers of x and the sine
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fun
tion). You should be able to dis
over for yourself simple rules 
on
erning

the sums, di�eren
es, produ
ts and quotients of even and odd fun
tions: for

example, the quotient of an even by an odd is odd, so tanx is an odd fun
tion.

For any odd fun
tion we have by symmetry that

∫ t

−t
f(x) dx = 0 while for an

even fun
tion we get

∫

(t−tf(x) dx = 2
∫ t

0 f(x) dx. Both the fa
ts are `obvious'

from the pi
ture of the 
orresponding graph although it is a good exer
ise to

verify them algebrai
ally. In any event, they are symmetries that often simplify

de�nite integrals 
onsiderably, as in this 
ase where, in the end, no integration

at all was needed.

2. Sin
e the period of the tan fun
tion is π we get here

π
5 for the period of

y(x).

3. Put A = 45◦, B = 30◦ in the given identity to obtain:

tan 75◦ =
tan 45◦ + tan 30◦

1− tan 45◦ tan 30◦
=

1 + 1√
3

1− 1√
3

=

√
3 + 1√
3− 1

=
(
√
3 + 1)2

(
√
3− 1)(

√
3 + 1)

=
4 + 2

√
3

3− 1

= 2 +
√
3.

4.

cos 15◦ = cos(45◦ − 30◦) = cos 45◦ cos 30◦ + sin 45◦ sin 30◦ =

√
2

2

(

√
3

2
+

1

2

)

=

=

√
2

4

(
√
3 + 1

)

=

√
6 +

√
2

4
.

Or, applying the alternative formula gives

cos2 15◦ =
1

2
(1 + cos 30◦) and so cos2 15◦ =

1

2

(

1 +

√
3

2

)

=
2+

√
3

4
.

when
e cos 15◦ =
1

2

√

2 +
√
3.

Again the two di�erent looking answers may be dire
tly re
on
iled through


omparing their squares or by use of the formula

√

A±
√
B =

√

A+ C

2
±
√

A− C

2
, where C =

√
A2 −B.

5. If we di�erentiate the fun
tion y = arcsinx+arccosx we get y′ = 1√
1−x2

−
1√

1−x2
= 0, so that y = c, a 
onstant. If we put x = 0 we see that c =

arcsin 0 + arccos 0 = 0 + π
2 = π

2 .

∴ arcsinx+ arccosx =
π

2
.
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Alternatively, 
all the quantity A and 
onsider

sinA = sin(arcsinx+arccosx) = sin(arcsinx) cos(arccosx)+cos(arcsinx) sin(arccosx)

= x2 +
(

√

1− x2
)(

√

1− x2
)

= x2 + (1− x2) = 1,

and so A = π
2 .

Comment If we denote arcsinx and arccosx by α and β respe
tively, we see

that sinα = x = cosβ. It follows that, in the �rst quadrant, whi
h applies if

x ≥ 0, α and β are 
omplementary angles so that α + β = π
2 . For −1 ≤ x < 0

the same 
on
lusion applies although α and β lie in the 4th and 2nd quadrants

respe
tively. In this 
ase we have 0 < −x and arcsinx = − arcsin(−x) and

arccosx = π − arccos(−x) so that

arcsinx+arccosx = − arcsin(−x)+(π−arccos(−x)) = π−(arcsin(−x)+arccos(−x))

= π − π

2
=

π

2
.

6. First take x ≥ 0, put θ = cos−1 x so that (see diagram) sin θ =
√
1− x2

.

If on the other hand x < 0, then

sin(cos−1 x) = sin(π−cos−1(−x)) = sinπ cos(cos−1(−x))−cosπ sin(cos−1(−x))

= 0− (−
√

1− (−x2) =
√

1− x2.

∴ sin(cos−1(x)) =
√

1− x2 ∀x : |x| ≤ 1.

7.

sin
(

sin−1
(2

3

)

+ cos−1
(1

3

)

)

=

sin
(

sin−1
(2

3

)

)

· cos
(

cos−1
(1

3

)

)

+ cos
(

sin−1
(2

3

)

· sin
(

cos−1
(1

3

)

)

=

=
2

3
· 1
3
+

√

1− 4

9
·
√

1− 1

9
(as cos(sin−1(x)) =

√
1− x2 = sin(cos−1 x))

=
2

9
+

√
5

3
·
√
8

3
=

2 + 2
√
2 ·

√
5

9

=
2(1 +

√
10)

9
.

8. The qui
kest way to do this is �rst to multiply by sin 20◦ and then keep

applying the double angle formula, sinx cosx = 1
2 sin 2x.

With this in mind, put a = cos 20◦ cos 40◦ cos 80◦. Then, following the advi
e
above, we obtain:

a sin 20◦ = sin 20◦ cos 20◦ cos 40◦ cos 80◦ =
1

2
sin 40◦ cos 40◦ cos 80◦

=
1

4
sin 80◦ cos 80◦ =

1

8
sin 160◦ =

1

8
sin 20◦,
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where the �nal equality is justi�ed by the general relationship, sin(180− x)◦ =
sinx◦

. We no longer have need of the fa
tor of sin 20◦, and so we 
an
el it to

obtain:

cos 20◦ cos 40◦ cos 80◦ =
1

8
.

Of 
ourse, sin
e cos 60◦ = 1
2 we also get

cos 20◦ cos 40◦ cos 60◦ cos 80◦ =
1

16
.

The problem is also approa
hable using 
omplex numbers, whi
h leads to a

set of more general identities that in
lude this one as a parti
ular 
ase.

9. Referring to the diagram: tan 30◦ = 2x ⇒ x =
√
3
6 ; z = sin 60◦ =

√
3
2 .

Hen
e

cosα =
x

z
=

√
3

6
· 2√

3
=

1

3
.

10. From the viewpoint of G, The Goblin, the patrol boat P, 
omes from the

SW, giving a triangle PIG, where P denotes the initial position of the Patrol

Boat, G the initial position of the Goblin and I the inter
eption point. Let us

say that the inter
eption 
omes after time t, so that |PI| = 25t and |GI| = 10t.
Let α = ∠GPI. Then by the Sine Rule we have:

sinα

10t
=

sin 135◦

25t
⇒ sinα =

10

25
· 1√

2

=
2

5
√
2
=

√
2

5
.

We infer that

θ = 45◦ − α = 45◦ − sin−1
(

√
2

5

)

= 28.57◦;

The answer to the nearest degree East of North is then 29◦.
Comment It is interesting to note that the answer is independent of the

initial separation of the two vessels as it is independent of the time taken for

the inter
eption.

Problem Set 5

1. From the Euler formula e(u+v)i = euievi gives

cos(u + v) + i sin(u+ v) = (cosu+ i sinu)(cos v + i sin v)

= (cos u cos v − sinu sin v) + i(sinu cos v + cosu sin v),
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and equating real and imaginary parts gives

cos(u+ v) = cosu cos v − sinu sin v, sin(u+ v) = sinu cos v + cosu sin v. (1)

2. Mu+v = MuMv gives

[

cos(u+ v) − sin(u + v)
sin(u+ v) cos(u+ v)

]

=

[

cosu − sinu
sinu cosu

] [

cos v − sin v
sin v cos v

]

=

[

cosu cos v − sinu sin v − cosu sin v − sinu cos v
sinu cos v + cosu sin v − sinu sin v + cosu cos v

]

and equating entries of the matri
es gives the identities of Question 1.

3.

cos(u − v) = cos(u+ (−v)) = cosu cos(−v)− sinu sin(−v)

= cosu cos v + sinu sin v (2)

sin(u − v) = sin(u+ (−v)) = sinu cos(−v) + cosu sin(−v)

= sinu cos v − cosu sin v (3)

4. Put u = v in (1) we get in the �rst instan
e:

cos 2u = cos2 u− sin2 u = 1− 2 sin2 u = 2 cos2 u− 1 (4)

and from the se
ond formula in (1):

sin 2u = sinu cosu+ cosu sinu = 2 sinu cosu (5)

5. Add the �rst formula in (1) to that in (2). The result is:

cos(u+ v) + cos(u− v) = 2 cosu cos v; (6)

Adding the se
ond formula in (1) to that of (3):

sin(u+ v) + sin(u− v) = 2 sinu cos v (7)

6. Put u+ v = x and u− v = y, whi
h is to say that u = x+y
2 and v = x−y

2
allowing us to re-write (6):

cosx+ cos y = 2 cos
(x+ y

2

)(x− y

2

)

Subtra
ting (2) from the �rst formula in (1) gives:

cos(u+ v)− cos(u − v) = −2 sinu sin v

⇒ cosx− cos y = −2 sin
x+ y

2
sin

x− y

2
.

7. Applying this to (7):

sinx+ sin y = 2 sin
x+ y

2
cos

x− y

2
. (8)
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Finally, repla
e y by −y in (8). We obtain:

sinx+ sin(−y) = 2 sin
x− y

2
cos

x− (−y)

2

⇒ sinx− sin y = 2 sin
x− y

2
cos

x+ y

2
.

8. Applying (1) again we obtain:

tan(u + v) =
sin(u + v)

cos(u+ v)
=

sinu cos v + cosu sin v

cosu cos v − sinu sin v
=

tanu+ tan v

1− tanu tan v
;

applying (2) and (3) we obtain:

tan(u − v) =
sin(u − v)

cos(u− v)
=

sinu cos v − cosu sin v

cosu cos v + sinu sin v
=

tanu− tan v

1 + tanu tan v
.

9.

sin 15◦ = sin(45◦ − 30◦) = sin 45◦ cos 30◦ − cos 45◦ sin 30◦

=

√
2

2

(

√
3

2
− 1

2

)

=

√
6−

√
2

4
.

10. From (7) we obtain:

∫

sin 7x cos 8x dx =

∫

1

2

(

sin
(

7x+ 8x
)

+ sin
(

7x− 8x
))

dx

=
1

2

∫

(sin 15x− sinx) dx =
1

2

(

− 1

15
cos 15x+ cosx

)

+ c

=
1

2
cosx− 1

30
cos 15x+ c.

Problem Set 6

1. Let x ∈ domf . Repla
ing x by x − p in the de�nition of period we get

f(x − p) = f((x − p) + p) = f(x) so that f(x) = f(x − p)∀x ∈ domf . In

parti
ular we may say that f(x) = f(x ± p) holds in general and by a simple

indu
tion that f(x) = f(x+ kp) for all k ∈ Z.

2. First we observe that for all x in the domain of our fun
tion we have

g(x+
p

|c| ) = a+ bf(c(x+
p

|c| ) + d) = a+ bf(cx+ d± p);

but from Question 1 we see that this also equals a+bf(cx+d) = g(x). Therefore
g(x+ p

|c|) = g(x) for all real x. Hen
e the period of g(x) exists and is bounded

above by

p
|c| .

13



On the other hand, suppose that g(x) = g(x + q) for all real x, where
0 < q ≤ p

|c| . Then for all x ∈ R we have

a+ bf(cx+ d) = a+ bf(c(x+ q) + d)

⇒ f(cx+ d) = f(c(x+ q) + d) ⇒ f(x) = f(x+ cq)

as b, c 6= 0 and we may then repla
e x by

x−d
c

throughout. Thus we obtain

f(x) = f(x+ |c|q) by applying Question 1.

It now follows by the de�ntiion of period that |c|q ≥ p so that q ≥ p
|c| and

therefore we 
on
lude that q = p
|c| , as required.

3. Suppose that q is not an integer multiple of p. Certainly p < q so we may

write q = np+ r for some remainder r with 0 < r < p. But then for all x ∈ R

we have

f(x+ r) = f(x+ q − np) = f(x+ np) = f(x),

whi
h, sin
e 0 < r < p, 
ontradi
ts that p is the period of f(x).

4. Sin
e cosx = sin(x−π
2 ) it follows from Question 2 (with a = 0, b = 1, c = 1

and d = −π
2 ) that the period of cosx is the same of that of sinx, whi
h is 2π.

Next observe that tan(x+π) = sin(x+π)
cos(x+π) =

− sin x
− cosx = sin x

cosx = tanx for all x for

whi
h tanx is de�ned. On the other hand, if tanx = tan(x+ p) with 0 < p ≤ π
then in parti
ular we have

0 = tan 0 = tan p =
sin p

cos p

so that sin p = 0 and so p = π. Therefore the period of tanx is π.

5. By Question 2 we have the period p of 1+2 sec(3x−π) is 1
3 of the period

of secx. Sin
e secx = (cos x)−1
and the inversion fun
tion is inje
tive it follows

that the period is the same as that of cosx, when
e it follows from Question 3

that p = 2π
3 .

6. First note that sin2(x+π) = (− sinx)2 = sin2 x so that sin2 x has a period

of p where 0 < p ≤ π. Next suppose that sin2(x+ q) = sin2 x for all real x and

for some q with 0 < q ≤ π. Then in parti
ular 0 = sin 0 = sin q, when
e π ≤ q
and we 
on
lude that the period of sin2 x is indeed π.

Sin
e the period of tanx is, by Question 4, equal to π it follows that the

period p of tan2 x exists and 0 < p ≤ π. Then 0 = tan2 0 = tan2 p whi
h implies

that sin p = 0 so that p ≥ π. Therefore the period of tan2 x is π. Alternatively
we may argue that tan2 x = 1 + 1

1−sin2 x
and sin
e the fun
tion g(x) = 1 + 1

1−x

is one-to-one, it follows that the period of tan2 x is the same as that of sin2 x.

14



7. Write 3 sinx + 4 cosx = R cos(x − α). We get R2 = 32 + 42 = 52so
that R = 5 and tanα = 3

4 . By Questions 2 and 3 we see that the period of

5 cos(x− α) is 2π.

8. sin 12x cos 30x = 1
2 sin 42x − 1

2 sin 18x. Now these terms have respe
tive

periods of

2π
42 = π

21 and

2π
18 = π

9 . The required period p is therefore the least


ommon multiple of these two periods. We require m and n with (m,n) = 1
su
h that

m
21 = n

9 ⇒ m
n
= 21

9 = 7
3 and hen
e p = 7π

21 = π
3 .

9. Let p be the period of f(x). Then

f ′(x+ p) = lim
h→0

f(x+ p+ h)− f(x+ p)

h
= lim

h→0

f(x+ h)− f(x)

h
= f ′(x)

so that f ′(x + p) = f ′(x) for all x and therefore f ′(x) is also periodi
.

Comment Note that this does not prove the period of f ′(x) is p as there


ould 
on
eivably be a smaller positive number q su
h that f ′(x + q) = f ′(x).

10. Suppose that p > 0 and that f(x) = sinx2 = sin(x + p)2. Putting

x = 0 we get 0 = sin p2 so that p2 = kπ say (k ∈ Z
+) and p =

√
kπ. Now

f ′(x) = 2x cosx2
and, by Question 9, f ′(x) = f ′(x+ p) also. Hen
e

0 = f ′(0) = f ′(p) = f ′(
√
kπ) = 2p cos(kπ) = ±2p,

whi
h 
ontradi
ts that p > 0. Hen
e sinx2
is not a periodi
 fun
tion.

Problem Set 7

1. From Problem 9 on Set 4, the height of the tetrahedron h is su
h that

h√
3/2

= sin
(

cos−1
(1

3

))

=

√

1− 1

9
=

√

8

9
=

2
√
2

3
.

Hen
eh = 2
√
2

3 ·
√
3
2 =

√
6
3 .

The area of the base is

1
2 sin

π
3 = 1

2 ·
√
3
2 =

√
3
4 . Therefore the volume of the

tetrahedron is

V =
1

3
× base× height =

1

3

√
3

4
·
√
6

3
=

3
√
2

32 · 4 =

√
2

12
units

3.

2. (a) Substitute y = mx+ c in the equation of the unit 
ir
le and we �nd:

x2 + y2 = 1 be
omes x2 + (mx+ c)2 − 1 = x2 +m2x2 + 2mcx+ c2 − 1 = 0

15



⇔ (1 +m2)x2 + (2mc)x+ (c2 − 1) = 0.

Now y = mx + c is a tangent to the 
ir
le if and only if it meets the 
ir
le

exa
tly on
e, whi
h in turn is equivalent to saying that the pre
eding quadrati


equation has a unique solution. This o

urs if and only if the dis
riminant is

zero, whi
h is to say:

4m2c2 − 4(m2 + 1)(c2 − 1) = 0 ⇔ m2c2 = m2c2 −m2 + c2 − 1

⇔ m2 = c2 − 1 ⇔ m = ±
√

c2 − 1.

(b) Alternatively, let us �nd the slope m = m1 of the line AC. By noting

the equality of the angles as marked on the diagram we obtain that the right

triangles △ABO and △AOC are similar. By Pythagoras,

BC2 + 12 = OC2
and so BC =

√
c2 − 1.

Therefore

OC

OA
=

BC

BO
⇔ c

a
=

√
c2 − 1

1
.

Sin
e m = c/a we may 
on
lude that m =
√
c2 − 1.

3. The minimum mirror height required to see your whole body in a mirror

is half your own height. To a
hieve this, the top edge of the mirror should be

half in-between the level of your eyes and the top of your head, and the bottom

edge of the mirror should be at a level half way between your eyes and your

feet. The re�e
ting surfa
e must 
over this mu
h of the plane to be able to view

the extremities of your body.

Surprisingly perhaps, this is independent of your distan
e to the mirror as


an be seen by drawing a diagram that shows straight lines from your eyes going

to the top of the head and to the bottom of the feet of your mirror image.

4. Lo
ate the 
entre C of the 
ake as the interse
tion of the diagonals. Any

line through C 
uts the 
akes into two (equal) halves. Next �nd the 
entre O
of your 
ir
le (by �nding the point of interse
tion of any two of its 
hords).

The line of the 
ut OC 
uts both the 
ir
le and the overall 
ake into two equal

portions, as required.

5. By the Cir
le Theorem of Eu
lid, the angle ∠ACB standing on a 
hord

AB of a 
ir
le is half the angle ∠AOB at the 
entre. In this 
ase △AOB is

equilateral as all of its sides are equal to the 
ir
le's radius. Hen
e that a
ute

angle ∠AOB = 60◦ so that ∠ACB = 30◦ for any point C on the 
ir
le in the

larger segment of the 
ir
le with side AB. On the other hand if C is in the smaller

segement then ∠ACB is half of the obtuse angle ∠AOB = (360− 60)
◦

= 300◦

so that ∠ACB = 150◦.

16



6. Let O,C and P denote the origin, the 
entre of the smaller 
ir
le and let

P denote the point where the 
ir
les tou
h. Let D be the point on the x-axis
that the smaller 
ir
le tou
hes. Sin
e the 
ommon tangent to the 
ir
les is at

right angles to the radius of ea
h 
ir
le through P , it follows that O, C and P
are 
ollinear and |OP | = 1. Let r denote the radius of the smaller 
ir
le. Then

by Pythagoras for the triangle ODC we obtain:

r2 + r2 = (1− r)2 = 1− 2r + r2

when
e r2 + 2r − 1 = 0. Solving and taking the positive root then gives r =√
2− 1.

7. Here is just one of several possible arguments, in
luding the use of

trigonometry. Let the diagonal length be d and note that△ADB is similar to △ABC
so that

a

1
=

1

d
(9)

Also △OEF is similar to △OBC so that

d

1
=

a

d− 2a

Hen
e

d2 − 2ad− a = 0 ⇒ d2 − 2− 1

d
= 0 by (16).

Hen
e d3 − 2d− 1 = 0 ⇒ (d+ 1)(d2 − d− 1) = 0.

Sin
e d is positive, it equals the positive root of d2 − d− 1 = 0, whi
h therefore

gives

d =
1 +

√
1 + 4

2
=

1 +
√
5

2
, the Golden Ratio, φ.

Comments: The pentagon is replete with symmetries: for example ABCF is

a rhombus (square parallelogram) of unit side length, (as 
an now be 
he
ked).

The diagonals of the pentagon meet ea
h other in segments in the ratio φ : 1
leading to an inverted 
opy of the pentagon appearing the verti
es of whi
h are

the diagonal interse
tions of the parent pentagon. This kind of self-similarity

behaviour is typi
al in mathemati
al obje
ts involving φ.
As an interesting bonus, we 
an �nd the exa
t values of cos 36◦ and sin 36◦.

Using the fa
t that the angles of a triangle sum to 180◦ and the angle at ea
h


orner of the pentagon is

360◦

5 = 108◦ we may dedu
e that the angle α = ∠BAC
satis�es 2α+ 108◦ = 180◦ and so α = 36◦. Let M be the midpoint of AC and


onsider the right triangle △ABM . We then obtain

cos 36◦ =
d

2
=

φ

2
=

1 +
√
5

4
.

17



Next using sin2 α = 1− cos2 α gives

sin2 36◦ = 1− 6 + 2
√
5

16
=

10− 2
√
5

16
.

Hen
e

sin 36◦ =
1

4

√

10− 2
√
5.

8. BA, AC and CB are ea
h the diagonal of a fa
e. Hen
e △ABC is

equilateral and in part
iular ∠ABC = 60◦.

9. The area of an ellipse is πab where a and b are respe
tively the length of

the sem-axes of the ellipse. From the equation we have a2 = 9 and b2 = 49 so

that a = 3 and b = 7. Therefore the required area is π · 3 · 7 = 21π units

2
.

Comment It is easy to justify the formula for the area of an ellipse, given that

a 
ir
le of radius b has area πb2. Stret
h the 
ir
le horizontally away from its

verti
al diameter by a fa
tor of

a
b
. Imagine the 
ir
le 
overed by thin horizontal

strips that are similarly stre
t
hed to 
over the ellipse. Sin
e ea
h strip has its

area multiplied by the fa
tor

a
b
, the same applies to the ellipse (by taking the

area to be the limiting value of the 
overing by thin strips) so the area of the

ellipse is therefore πb2 · a
b
= πab. This simple result 
ontrasts with the question

of the ar
 length of the ellipse, whi
h is not related to that of the 
ir
le in so

simple a manner.

10. Tetrahedron: V − E + F = 4 − 6 + 4 = 2; Cube: V − E + F =
8 − 12 + 6 = 2; O
tahedron: V − E + F = 6 − 12 + 8 = 2; Dode
ahedron:
V − E + F = 20− 30 + 12 = 2; I
osahedron: V − E + F = 12− 30 + 20 = 2.

Comment: Note that for the dual pairs (Cube, O
taderon), (Dode
ahedron,

I
osahedron) the vertex and fa
e numbers are inter
hanged (re
all Set 2 Ques-

tions 1-3). These are the �ve platoni
 solids and they are the only regular 
onvex

solids that 
an exist (regular meaning that ea
h fa
e is planar and the solid is

assembled in the same manner from ea
h vertex).

Problem Set 8

1.

cosx =
a·b

|a| · |b| =
(−6− 6− 4)√

1 + 4 + 16 ·
√
36 + 9 + 1

=
−16√
21 ·

√
46

= −0 ·5148 to 4 d.p.

Therefore x = 121◦ (to the nearest degree).

2. Sin
e ABCD is a parallelogram

OD = OA+AD = OA+BC = (−i+ 2j) + (−3i− 10j) = −4i− 8j.

18



Therefore D = (−4,−8).
Comment : You need to be 
areful to �nd the parallelogram ABCD and not

the alternative parallelograms ABDC or ACBD. In general, given a triangle

△ABC there are three parallelograms that may be formed with verti
es A, B,
and C 
orresponding to the three 
hoi
es of sides of the triangle that a
t as a

diagonal of the parallelogram.

3. u · a = 8 + 1 + 6 = 15: a · a = 16 + 1 + 4 = 21.

p = projau =
u · a
a · aa =

15

21

(

4i−j−2k
)

=
20

7
i−5

7
j+

10

7
k.

4. The ve
tor 
omponent of u orthogonal to a is q = u−projau =

(2i− j+3k)−
(20

7
i−5

7
j+

10

7
k
)

q = −6

7
i−2

7
j+

11

7
k.

Comment Questions 3 and 4 together furnish an example of breaking a given

ve
tor into 
omponents parallel and perpendi
ular to a given dire
tion (as the

out
ome does not depend on the length of the se
ond ve
tor a, but only its

dire
tion). This is a task that arises 
onstantly in problems in me
hani
s. It is

also used to solve the problem of the distan
e from a point to a line (see Set

10 Question 5). The formula for p 
omes from observing that p = râ for some

r ∈ R and that r = u • â. Alternatively, we may solve more dire
tly as p = ra,
p+ q = u, and p • q = 0. This also leads to r = 5

7 and the solution.

5. If we pla
e one 
orner of the 
ube at the origin with sides aligned to the

three 
o-ordinate axes we then want the angle θ between the unit ve
tor i and

d = i+ j+ k, whi
h represents the ve
tor of the diagonal of the 
ube from the

origin. Hen
e we have:

cos θ =
i · d

|i| · |d| =
i · (i+ j+ k)

1 ·
√
12 + 12 + 12

=
1√
3
;

hen
e θ = ar

os

(

1√
3

)

≈ 54◦44′. To the nearest degree the required angle is

therefore 55◦.

6. r = a+ bt where a = −i−2j+2k and

b =(1 − (−1))i+(7− (−2))j+(11− 2)k ⇒ b =2i+9j+ 9k.

7. From Question 6, (x, y, z) is on the line if and only if x = −1 + 2t, y =
−2 + 9t and z = 2 + 9t. Solving for t yields:

x+ 1

2
=

y + 2

9
=

z − 2

9
.
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8. Following the hint, we see that the equation has the form 5x+3y−8z+d=
0. To determine d, we substitute the value of the in
luded point, (−1,−2, 5) to
get

5(−1) + 3(−2)− 8(5) + d = 0 ⇒ −5− 6− 40 + d = 0 ⇒ d = 51;

Hen
e the equation of the plane is 5x+ 3y − 8z + 51 = 0.

9.

∣

∣

∣

∣

∣

∣

i j k

1 7 2
−1 2 5

∣

∣

∣

∣

∣

∣

= i(35− 4)− j(5 + 2) + k(2 + 7) = (31,−7, 9).

10.

c =

∣

∣

∣

∣

∣

∣

i j k

1 1 1
1 −1 1

∣

∣

∣

∣

∣

∣

= i(1 + 1)− j(1− 1) + k(−1− 1) = 2i− 2k;

hen
e ||c|| =
√
22 + 22 =

√
8 = 2

√
2 and so a required unit ve
tor is

u =
1

2
√
2
(2i− 2k) =

√
2

2
(i − k).

Problem Set 9

1. Writing ea
h dot produ
t as an equation in the three unknowns x, y and

z gives

−y + 4z = −2, x+ 2y + 3z = 17, −x− y + z = −7.

Adding the last two gives y + 4z = 10, whi
h when added to the �rst gives

8z = 8 ⇒ z = 1, when
e y = 10−4 = 6, x = 17−(2×6)−(3×1) = 17−12−3 = 2.
Hen
e x =(2, 6, 1).

2. Making use of the dot produ
t we have

cosα =
v • i
|v| · |i| =

a

1
= a;

similarly the other two dire
tion 
osines 
an now be expressed as cosβ = b and
cos γ = c. Finally

cos2 α+ cos2 β + cos2 γ = a2 + b2 + c2 = |v|2=12 = 1.
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3.

−−→
PQ = ((2, 1,−1)−(1,−1, 0) = (1, 2,−1), and

−→
PR = (−1, 1, 2)−(1,−1, 0) =

(−2, 2, 2). Hen
e a ve
tor perpendi
ular to the plane PQR is given by

−−→
PQ ×−→

PR =

det





i j k

1 2 −1
−2 2 2





= i(2× 2− ((−1)× 2)− j(1× 2− (−1)× (−2)) + k(1× 2)− (2 × (−2)) =

6i+ 6k.

Therefore we 
an take v= i+ k or indeed the 
orresponding unit ve
tor, whi
h

is v/
√
2. The equation of the plane then has the form x + z = c; substituting

the point P (1,−1, 0) into this equation gives 1 + 0 = 1 = c, so our equation is

x+ z − 1 = 0.

4. AB =(3,−2, 2),AC = (−2, 2, 3) so that AB×AC is given by the formal

determinant of:

∣

∣

∣

∣

∣

∣

i j k

−3 −2 2
−2 2 3

∣

∣

∣

∣

∣

∣

= (−6− 4)i− j(−9 + 4) + k(−6− 4) = −10i+5j−10k.

The required area is then

1

2
|AB×AC| = 5

2

√

(−2)2 + 12 + (−2)2 =
5

2

√
9 =

5

2
· 3 =

15

2
units

2.

5. The required distan
e d is given by |(r0 − r1) • n| where r0 is the given

point, r1 is any point in the plane and n is a unit normal ve
tor the plane. We

have (1,−1, 4) is normal to the plane and has length

√
1 + 1 + 16 =

√
18 = 3

√
2.

Also r0 = (2, 2, 2) and we may take r1 = (9, 0, 0). Then:

d =
1

3
√
2

∣

∣

(

(2, 2, 2)− (9, 0, 0)
)

• (1,−1, 4)
∣

∣ =
1

3
√
2

∣

∣(−7, 2, 2) • (1,−1, 4)
∣

∣

=
1

3
√
2

∣

∣− 7− 2 + 8
∣

∣ =
1

3
√
2
=

√
2

6
.

6. The plane 
ontains the two ve
tors: a = (2, 4, 1) − (−1, 0, 1) = (3, 4, 0)
and b = ((8, 2,−5)− (−1, 0, 1) = (9, 2,−6). Hen
e a normal ve
tor to our plane

Π is given by

a× b = i(−24− 0)− j(−18− 0) + k(6 − 36) = −24i+18j− 30k,

dividing by −6 we may use n = (4,−3, 5). Hen
e Π has an equation of the

form: 4x− 3y + 5z = c; substituting the point (2, 4, 1) into this equation gives

c = 8− 12 + 5 = 1, so Π is given by

4x− 3y + 5z = 1.
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7. The ve
tor a = (2, 0, 3)− (1, 1, 1) = (1,−1, 2) lies in the required plane Π
as does b = (1, 2,−3) as b is normal to the given plane. Hen
e a normal to Π
is given by a× b =

i((−1)× (−3)− 2× 2)− j(1× (−3)− 2× 1)+k(1× 2− (−1)× 1) = −i+5j+3k.

Hen
e Π has an equation of the form −x+ 5y + 3k = c. Substituting the point

(1, 1, 1) into this equation gives c = −1 + 5 + 3 = 7. Therefore the equation of

Π is

−x+ 5y + 3z = 7.

8. Expanding the determinant gives:

i(u2v3 − u3v2)− j(u1v3 − u3v1) + k(u1v2 − u2v1)

= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) = u× v.

9. The LHS when expanded gives

u1(v2w2 − v3u2) + u2(v3w1 − v1w3) + u3(v1w2 − v2w1)

whi
h mat
hes the expansion of the determinant.

10.

∣

∣

∣

∣

∣

∣

1 1 −1
2 −1 0
−1 4 1

∣

∣

∣

∣

∣

∣

= 1(−1− 0)− (2 − 0)− 1(8− 1) = −1− 2− 7 = −10,

and so the required volume is | − 10| = 10.

Problem Set 10

1. Given line has ve
tor equation x = (1, 0, 1) + t(3,−1, 0) so required line

is x = (3, 4, 1) + t(3,−1, 0) ⇒ x = 3 + 3t, y = 4 − t, z = 1 (t ∈ R). Eliminating

the parameter t we obtain:

x− 3

3
= 4− y, z = 1.

2. For two lines x = a+ tb and y = c+ sd (t, s ∈ R), the required distan
e

is given by d = |n•(c − a)| where n = b×d

|b×d| . In this 
ase a = (3, 4, 1),b =

(3,−1, 0), c = (0, 1, 3) and d = (−2, 1, 2). Hen
e c− a = (−3,−3, 2) and b× d

is given by:

i((−1)× 2− 0)− j(3× 2− 0) + k(3 × 1− (−1)× (−2)) = −2i− 6j+k;
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and so |b× d| =
√
4 + 36 + 1 =

√
41. Hen
e

d =
1

9

∣

∣(−2,−6, 1) • (−3,−3, 2)
∣

∣ =
1

9

∣

∣6 + 18 + 2
∣

∣ =
26√
41

=
26

√
41

41
.

3. A ve
tor in the dire
tion of the line of interse
tion is

(1, 1, 1)× (2,−1, 4) = i(1× 4− 1× (−1))− j(1× 4− 1× 2)+k(1× (−1)− 1× 2)

= 5i− 2j− 3k.

Adding the two equations gives 3x+5z = 5 so we may put x = 0, z = 1 when
e
y = −x − z = −1, giving the point (0,−1, 1) on the line. Hen
e a parametri


equation for the 
ommon line is

r = (0,−1, 1) + t(5,−2,−3) = (5t, −1− 2t, 1− 3t).

4. From Question 1 we get r(t) = (x(t), y(t), z(t)) = (5t, 1 − 2t,−1 − 3t).
Making t the subje
t of ea
h 
o-ordinate formula we obtain:

x

5
=

y + 1

−2
=

z − 1

−3
.

5. First �nd a ve
tor u to the given point (2, 0,−3) from a point on the line:

we put t = 0 to get i+j− 3k = (1, 1,−3), so that u = (1,−1, 0). Next proje
t u
onto the dire
tion of the line, whi
h is a = (0, 3, 4) as r(t) = (1, 1,−3)+t(0, 3, 4).
We obtain

p =
u • a
a • aa =

(0− 3 + 0)

0 + 9 + 16
a = − 3

25
a.

Hen
e the normal ve
tor from the line to our point is n = u− p = (1,−1, 0) +
3
25 (0, 3, 4) = (1,− 16

25 ,
12
25 ). The required distan
e is then

||n|| =(1 +
256 + 144

625
)

1

2 =
(1025

625

)
1

2 =

√
41

5
.

6. The area of the rotated 
ir
le is πr2 and its 
entroid is its 
entre, whi
h

travels a distan
e 2πd to generate the torus. By Pappus, the volume of revolu-

tion, V is thus

V = (πr2)(2πd) = 2π2r2d.

7. The area of the semi
ir
le is

π
2 r

2
and its 
entroid travels a distan
e 2πd,

where d is the distan
e from the 
entre of the 
ir
le along the line at right angles

to its diameter to the 
entroid, C, of the solid semi
ir
le.

The volume generated is that of a sphere of radius r, whi
h is thus

4
3πr

3.
Hen
e Pappus gives the equation:

4

3
πr3 =

(1

2
πr2

)

(2πd) = π2r2d and so d =
4πr3

3π2r2
=

4r

3π
.
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8. The perimeter of the generating 
ir
le has length 2πr and its 
entroid is

the 
entre of the 
ir
le, whi
h travels a distan
e 2πd in sweeping out the torus.

Hen
e the surfa
e area S is:

S = (2πr)(2πd) = 4π2rd.

9. Rotating the wire about its diameter generates a sphere of surfa
e area

A = 4πr2. By symmetry, the 
entroid of the wire lies on the radius at right

angles to this diameter at a distan
e d say from the 
entre. Sin
e the perimeter

of the generating 
urve is πr, we have by Pappus that the surfa
e area of the

sphere equals A = (2πd)(πr). Equating these two expressions for S gives us:

A = 4πr2 = 2π2rd and so d =
4πr2

2π2r
=

2r

π
.

10. Let s denote the slant height of the 
one. The surfa
e of the 
one is

generated by rotating the slanting edge around the axis of the 
one. The 
entroid

of the line segment generator is the midpoint of the slant and is a distan
e

r
2

from the axis of rotation. Hen
e, by Pappus, the surfa
e area A of the 
one is

A = 2π
(

r
2

)

s = πrs. By Pythagoras, we have s2 = r2 + h2
so that in terms of r

and h the surfa
e area of the 
one is given by:

S = πr
√

r2 + h2.
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