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This module builds on your existing knowledge of complex numbers to begin
the study of functions of a complex variable, which holds many surprises. The
first two problem sets continue the theme with the introduction of stereographic
projection and problems involving the standard tool of using the complex expo-
nentiation function and moving to real and imaginary parts. A complex variable
can be viewed as a single variable and so the definition of differentiability of a
real function extends to a complex one. However, at the same time it partakes
of the nature of two variable functions in that the limit must exist through all
directions of approach and the result is that complex differentiablity is very de-
manding in that the real and imaginary parts of the function must be linked
through the Cauchy-Riemann equations, which are the subject of Set 3.

Contour integration, which the student will have seen in the context of vector
functions, is introduced in Set 4 but the special nature of integration in the
complex plane is explored through the Cauchy integration formula of set 5.

Since all differentiable functions of a complex variable are analytic and can
be represented by series, the topic of series arise often in the problem sets,
including Set 6, where the complex logarithm function is also introduced. In Set
7 we study functions that are not analytic but can be represented by series that
allows for negative powers of the complex variable z, the so-called Laurent series.
In Set 8 the emphasis is on the Cauchy Residue theorem and its application in
calculating integrals, including sometimes results for integrals along the real
line. In Set 9 there is a variety of further problems making use of the techniques
that have been introduced while Set 10 introduces the celebrated Riemann zeta
function and some of its remarkable properties are to be found there.



Solutions and Comments for the Problems

Problem Set 1

1. Using the |z|?> = 2z and the additive and multiplication properties of
conjugation the LHS can be written as

(21 + 22)(21 + 22) + (21 — 22)(21 — 22)
= 2121+ 2921 + 2122 + 2920 + 2121 — 2122 — 2221 + 2222
=2(z121 + 22%) = 2(|21[* + |22]?).
2. Write z = = + iy and the equation becomes
az+az+b = a(z+iy)+a(r—iy)+ih = (a—a)r+a(x—iy)+ih = (a—a)z+i(a+a)y+ih
= 2iIm(a)z + 2iRe(a) + ith =0
=Arxr+By+C=0

where A = 2Im(a), B = 2Re(a) and C = h.
3. In general the technique is to write z =
Here we see however

2=z
21

z+z
2

and y = and simplify.

f(z) =22(1 —y) +i(2® - y* +2y)
=2z + 2yi +i(a® — y* + 2wyi)
= 2(z +iy) +i(x + iy)?

o f(z) =i2% 4 22,

(1+4)(z+iy) = (x —y) +i(z+y)

so Re((1+14)z) =z —y > 0, which is to say y < x. The region is the half plane
in the complex plane strictly below the line y = .

5. The line L runs between N = (0,0, 1) and w = (z,y,0) so that a typical
point on L has the form

('Taya 0) + t((oa O’ 1) - (xa Y, O))

={((1 = t)a, (1 = t)y,t), —00 < t < o0}

6. The coordinates of W in terms of ¢ therefore satisfy
1=1-t)222 + (1=t +2 =1 —t)*|w]* + 2

=11 =(1-1t)?w)?



Since ¢ # 0 as |w| # oo we arrive at

(lw? +1) = 2tlw* + |[w|* —=1=0

2lw|? £ Aw|t — 4wt +4  |w|> -1
=t= = :
2(Jw]* + 1) jw|* +1

Since
lw|? — 1 2

1-t=1- =
lw*+1 JwP + 17

we find that the coordinates of W for w = x 4 iy are therefore

2z 2y lw|? — 1
w? +17 [w]* + 17 jw]? + 1

W:(acl,xg,acg):( ) (1)
7. Given W = (21, x2,23) we may find w by setting ¢ = z3 in the equation
of L to get
T 4 1To 1 )
1—$3 1—.%'37 1—.%'3.

w=x+1y =

W, W') = (21 — 2h)? + (22 — 24)? + (w3 — 23)°
= (23 + 25 + 23) + (2 + 2B + 2) — 2212 — 2x0xh, — 2737}
=2 — 2(x1 2] + T2xh + z32%).

9. We may write (1) also as

7(w+w (0w — w) |w|2—1)
WP w1l + 1

Continuing the calculation:

(w +w)(w' +w') + (w—w)(w —w) + (wf - )(jw'* — 1)

FWw)=2-2 (w2 + D(w P+ 1)

72(|w|2+|w'|2+|ww’|2+1fww'fwlf)’fww’fww’—ud

B (L4 |w?)(1 + [w']?)

cww’ + ww' +ww’ — ww' — |ww'|? 4 |w|? + |w']? — 1)
(1 + fw?)(1 + [w'|?)

CAwP 4+ W) —ww —ow') A + w'w — ww' — ww')

o

A+ )@+ ) @+ )+ [w]?)
_ 4(w —w')(w — w') _ 4w — w'|?

(4 wP)(X +w'[2) (L4 [w2)(L+ [w'f?)

= d(W,W') = 2lw — |

[(1+ wl?) (1 + | |)]



10. As |w'| — oowe have W' = N = (0,0, 1) and so

d*(W,N) = 23 + 23 + (z3 — 1) = 23 + 25 + 23 — 223 + 1 = 2(1 — x3);

lw|? — 1 2
oW T w1 T+ wp
2
= d(W,N)= ———.
(1+ w]?)?

Problem Set 2

27

1. The roots of 2™ — 1 = 0 have the form e = ei5 so the least value of n
for which this is true satisfies 2 = 1 so that n = 20.
2. Now for z =z + iy

.. . 1
cosz = cosx coshy —isinzsinhy = —

7

For Im(z) = 0 we have either that sinhy = 0 < y = 0 in which casecosh(0) = 1,
cosT = \/LE & ¢ = 2nm £ § or sinz = 0, so that cosz = £1, coshy = $%.

However, since coshy > 1 for all y, there are no such solutions. Hence the
solution set is

{z:x—l—iyeC:x:Qnﬂ'i%,y:O,neZ}.

3. Let z = x + iy so that
1
z

=cC

T — 1y T
):R( ):$2+y2_

R

( $2+y2

éx2fg+y2:0
c

Lo 2 _
20) ty T 4e2’

which is the equation of a circle centred at (o5,0) with radius 5-.

= (z—

4& 5. Put z=en" :cos%7r +isin27”. Then
n—1
1—2 1—2 '
k=0
Since zF = ¢ = cos %T’T + isin %Tﬂ we obtain by first taking first the real,

and then the imaginary parts of the previous equality that

n—1 n—1

2km 2km
g 005720: g COSTZ—L and
k=0 k=1



k=0 k=1
6 +1 1
Z AR
ZP=(1+2)"=( )n—l 1+==e™
z z
1
= 2= 50 (1<k<n-1)
en —
1 e cosiE _jsinkr
e (e —em ) 2isinkm 2i sin £%
ik . km
sin —* 47 cos - 1 , km
=—" " = _——(1+icot—);
—2sin%7r 2( * n )
and in particular Re(z) = —1, so all n — 1 solutions lie on that line.

7. Following the hint we note that for z = z + iy that z + z = 2R(z) and
since 22 < 224 y? and |z| > 0 it follows from R(2)? < |z|? that R(z) < |z|. Now
replacing z by 2w in the equality z + Z = 2R(z) we obtain

20 + 2w = 2R(20)

= ——— = R(zw) < |2w] = [2][w] = |z[[w].

(z+w)? = (z+w)ZFw) = (z+w)(Z +)
=224 20 + wZ + ww < |2 4+ 2|z]|w| + |w|? = (2] + |w|)?;

where the inequality comes from Question 7. Taking square roots of both sides
then gives the Triangle Inequality:

|2+ w| < [2] + [wl.

9. Let us write
Z3 — 29

@ = —— then
zZ9 — 21
23 — 22 = (22 — 21) (2)
zg— 21 =23 — 22+ 22— 21 = (1 + p)(22 — 21) (3)

Substituting (2) and (3) in the given equality and cancelling the common factor
of |20 — 21|? gives
1+ pf =14 [uf
= (1+p)(+7a) =1+pui=p+7a=2R(u) =0.
Therefore = i for some S € R, which is the result required.

10. Let z = = + ic where ¢ € R is a constant, so that z represents a line
parallel to the real axis. Then

sin z = sin(z 4 ic) = sinx cosh ¢ + i cos z sinh c.



Write u = sinz(cosh¢) and v = cosz(sinh ¢). Then

u? v?

+ =1;
cosh?c  sinh®c¢ ’

giving an ellipse in the uwv-plane, centred at the origin with semi-minor axis

lengths of cosh ¢ in the u-direction and |sinh ¢| in the v-direction.
For a line parallel to the Imaginary axis we take z = ¢ + iy so we have

sin z = sin(c + iy) = sin ccosh y + i cos csinh y,
writing u = (sinc¢) coshy and v = (cos ¢) sinh y we obtain:

u? v?

2

=1;

sin‘¢  cos?c

which is the equation of a rectangular hyperbola centred at the origin with
asymptotes given by v = £(cot ¢)u.

Problem Set 3

1.
fz) =2 = (& +iy)* = (2% = y*) + 2ayi
= u(z,y) = 2> —y?, v(z,y) = 2zy.
We have
0 0 0 0
u(z,y) =a* -y = a_z = 2z, a_Z = =2y, v(z,y) =20y = a_z =2y, G_Z =2
ou  Ov Ju v
Lo =g =2 o=y = -
or Oy oy Or
= f(2) =2z + 2yi = 2(z + iy) = 2z.
2. _ _
f(z) =e€" =" = % = e”(cosx + isiny)
= u(z,y) = €” cosy, v(z,y) = e” siny.
ou ov Ou . . Ov
— =¢"cosy = —, — = —e’siny = ——
Ox 4 oy’ Oy Y Ox
= f'(2) = e" cosy +ie” siny = e*.
3.

() 1 1 T — 1y T .y
)= — = = = —1
z -T+'Ly .’L'2 +y2 .’L'2 +y2 (EQ +y2




Y

= u(r,y) = v(w,y) = TR A2

X
$2+y2’

du (@@ 4+y)1) - Qa)a g —a?

o (22 + y2)? CEDE
v @+ - (9)2y) P -2 du
oy (a2 + y2)? (@ ty)? O
du _ (0)(@* +y°) —2y(x)  2ay
oy (@+y?)? (@2 +y?)?
v (0)@*+y?) - Q2e)y 22y  Ou
T @R @R o
2 g2 . 2z x —iy)?
= ['(z) = y2 22 V2 y22:_ ( y) 2
(@ +y2)? (22 +y?) ((z +iy)(z —iy))
_ 1 _ 1
Qe R
Hence for f(z) = 27! we have f/(z) = —272.
4. 1
u(z,y) = B In(z? 4+ y?), v(zx,y) = arctan (g)
T
oz - Qfry
R R O R e
I T G 70 N
R R
éf/(z) = 21 71$2+y2
1, z+2 S R—Z 1,17 1 1 1 1
=3 ) T iGE ) =G e =3

Comment Indeed Logz is differentiates to % everwhere away from the slit of

the non-positive reals.
5. f(z) =z = x—iysothat u(x,y) = z and v(x,y) = —y. Then g—g = 1 while

g—Z = —1, so the first equation is violated and so f(z) = Z is not differentiable.
(However, the second CR equation holds here as u, = vy = —v, = 0).

Similarly ¢g(z) = /22 4+ y? = u(z,y) while v(x,y) = 0: clearly both CR
equations fail.
6. We have by the Cauchy Riemann equations that

= ) s - (- )=

and so by equality of mixed partial derivatives, the sum of these two terms
vanishes.




7. First
@
or

2 2 2 2
2(17y)8u70,8u 0“u 0y 0%u

=0, =2 =0= a2y =040
T 0x2 Oy x@yQ = o +8y2 +

Hence u(z,y) is harmonic. We require v(z,y) to satisfy the Cauchy-Riemann
equations so we put

Ov  Ou

3y~ op 2" W@y =2 -y +6()
for some ¢(x) to be determined. Then by the second equation we obtain:
% =¢'(z) = —g—Z = —(—22) =2z = é(z) = 2% +c.
o(zy) =22 -y + 2y +c

u(z,y) = 2y° — 622y + 42* — Toy — 4y* + 3z + 4y — 4
= Uy = 122y + 8x + Ty + 3 = vy
7
= v(x,y) = —6xy® + 8xy + §y2 + 3y + ¢(z)

= —v, =6y° — 8y —¢'(z) =

uy:6y2—6$2—7$—8y+4

= ¢'(z) = 622 + 7o +4 = é(z) :2x3+;z2+4z+c.
7 7
sou(z,y) = —6xy® + Say + §y2 + 3y + 223 + 5302 +4z+c (ceR).

u(x,y) = sinhxsiny = u, = coshwsiny = v,

= v(x,y) = — coshx cos y+¢(z) = —v, = sinhz cosy—¢'(x) = u, = sinhz cosy
Hence ¢(x) = ¢ € R and so

v(x,y) = —coshzcosy + ¢

= f(z) = sinhasiny —icoshx cosy + ic, (c € R).

Now
e +e*  e%eW e Te™W  e¥(cosy+isiny) + e *(cosy — isiny)
coshz = = =
2 2 2
T —x r __ ,—x
:cosy(e J;e )Jrisiny(%) = cosy coshx + i sinh x sinh y

= i(sinhzsiny — i coshxz cosy) = if(z)

- f(z) = —icoshz.



10. z = re"? = rcosf +irsin@. Hence u(r,0) = rcosf and v(r,0) = rsin6.
Then

20— cosd v _ cost?él@*l cosﬁfcos,@*%
or ~ 790 " rog T TN T g
ov . ou . 10u 1 . . ov
= sind, %0 = —rsinf = ~ %0 = —;(—rsm@) =sinf = o
Problem Set 4
1. On C we have |z|] = 1. Using the standard parametrization z = e

(0 <t < 27) we get dz = e dt and so

2m
/ |z|dz = / 1-ie'dt = [e"]3™ = ™ — 1 =0.
C

0
2. On C we have Re(z) = cost = 1 (e — e~) so we obtain:
/ Re(z)dz = & [Z7 (e 4 e~)eit dt = & [77 (e + 1) dt
c

:£[62it +t]g7"— 7 647ri +2ﬂ__l_0]:1+7m-_
2° 20 )

[ 1
T2t 9 2i 4 4
3.0nC wehavez=c¢

= mi.

~it 30 we obtain:

27 o
/ zZdz = z/ e~ et dt = 2mi.
c 0

4. Parametrize the circle by z(t) = zo + pe* (0 <t < 2r). Then % = ipe’
and the integral becomes

2m 2m
/ (peut)n . Z-peit di = ipn+1/ ei(nJrl)t dt
0 0

_ Z-anrl[ 1 eint}zﬂ _ p (€™ — %) =0
i(n+1) 0 n+1 '
5. If on the other hand n = —1 in the previous problem our integral becomes

27
/ 1 dt = 27mi.
0

6. Our parametrization this time is z(t) = e (0< ¢ < Z). On C, |z =1 so
we get

3

/ ie't dt = [eit}f = (cosg +ising) — (cos 0+ isin0)
0



=0+4)—(1+0)=13—1.

7. Parametrizing the two line segments separately: in the first segment
z(t) = 1—1t, (0 <t < 1) so that dz = —dt and in the second z(t) = it
(0 <t <1)sodz=idt. Hence we obtain:

1 1
/|z|dz:—/ |1—t|dt+i/ ]t
C 0 0

(1-1)?2 2 { 1 i—1

= — |, =10+2)—(54+0) = .
izl =0+35) - G+0)=—

8. Integrand has an anti-derivative in F'(z) = —z cos z+sin z and the contour
runs from —3 to 7 so that
™ ™ . T ™ 7T . ™
I= [75 COS(E) + SIH(E) - (75 cos(fg) + sm(fg)]
=1+1=2.

9. Since 22 + 2 = z(z + 1) we use partial fractions to write the integrand as
é + zBl' By the cover-up method we get on putting z = 0 in 3;:15 gives that
A = 55 =5 and putting z = —1 in @ @ = —2. Hence our
integrand f(z) = 2 — -27. This is analytic everywhere except, the first term
fi(z) = 2 is not defined at z = 0 and the second f3(z) = —Z?H at z = —1.
Using the result of Question 5 and the Principle of Deformation we now obtain:

5—dZ:5/ %:5-27r:10m'.
\

c ? zl=1 ?

2d d
/ 2:2/ Y 9. o —ami
cz+1 lot1l=1 %

/ 3255 42 = 10mi — dri = 6,
cz°t+z

‘cn-‘r

gives B =

+

Similarly

10. An anti-derivative of zsinh 2% is 1 coshz? so we get

cosh9 — cosh 1

[cosh 22]?1 = 5

[(cosh(fQ) - cosh(—l)] —

N |
N |

Problem Set 5

1. == fails to by analytic at z = 0, which is inside the circle. Put f(z) =
cos z and zg = 0. By the Cauchy formula we then obtain:




CcoS z . .
é/ dz = 271 - cos 0 = 2mi.
e} V4

2. The base n = 0 case is the Cauchy integration formula. Let n > 1. Then

f(n)(zo) _ (f(n—l)(ZO))/ _ ((n - 1)! 9§C ( f(Z) )n dz)/

211 zZ— 29
=D d o f(2) L (=D L EDEnfE)
T oomi 550 dzo ((z — zo)") d 2m 560 (z — zp)"H! d
B O

T 27 Jo (z— z)ntt

and so the induction continues, are required.

3. Note that ij_l =G +i§(z_i), which is defined and analytic everywhere
except z = +i. For the first circle, only z = —i is in the circle |z +i| = 1 so set
f(z)= Zz—: and zg = —i. The Cauchy formula then gives:

) 1 22 dz
f(=i) = 2—/ - .
T J|zqij=1 Z =t Z+1
24 _N2 —omi
- I D ) .
|o4i=1 2+ 1 —i—1 —24
4. This time only z = i lies inside or on the circle |z —i| = % so put
f(z)= Zz—jz and zg = i. By the formula we get:
) 1 22 dz
fli) =5 .
T Jpi|=l 2+ Z2—1
22 dz o2 —2mi
= - =2m - —— = — = —T.
a1 2241 i+ 2
lz—i|=3

5. We may re-write the integral as

1.2
ZZ
———dz.
/Izl—l (z=3)?

Now z = % lies within the circle C' and the integral is in the form of the
derivatives formula, with f(z) = % and n =1, zp = 3. Applying that formula
then gives
2
1 1 =
r = [ i
2

- dz.
2 21 J|z)=1 (2

Now f/(z) = £ so that f'(1) = 1. Hence

2

22 21 1 21 T

7d = — "z = — = —.
[T

11



6. We have z = 0 lies within the circle so set f(z) = cosz, n =1 and z¢ = 0.
Then f'(z) = —sinz and by the derivatives theorem:

o
/‘ EP2 4z =1 £(0) = —2mi - sin 0 = 0.

7. Again z =0 hes in the circle. This tlme set f( )=¢*",n=2and z = 0.
Then f'(z) = 322¢*" and f”(z) = 6ze* + 9z%¢* = 3¢* (22 + 3z4). By the
derivatives theorem we obtain:

3
e? 271 43
/z_l —7dz= 5 3¢7 (22432220 = 0,

8 & 9. Since w = z4+1 we have z = w—1 and s04—6z = 4—6(w—1) = 10—6w
and 222 —32+1=2w—-1?-3(w-1)+1=2w? —4w+2-3w+3+1=
2w? — Tw + 6 = (2w — 3)(w — 2). Hence

4—6z 10 — 6w B 5 — 3w A n B
-32+1 (Quw-3)(w-2) (w-3)(w-2) w—% w—2’
by the cover-up rule
5—3 5-6
A=z—2=-1,B=—==-2 50
32 2-3
L 5=dw 12 2 L
(w-—3Hw-2) 3-w 2-w 1-2w 1-%

Hence for lw| < 2 we have

—— =1+ Jw+ (3w)? + - -- while for |w| < 2 we
3

have = =14 % + (%)? + - --. Therefore
5 — 3w 2,2 w 2 i1 ] 3
e — (2w (=) = Zyn Y™ . Z H
o D=7~ LGEY ) = LG G, Vs i < 5. Hence
4—6z =2 1 3
e § Zyn+1 Z\n 1)7- 1 .

Comment This final series has centre —1 and radius of convergence of %
This approach via partial fractions and geometric series is much quicker than
directly deriving the series by differentiation.

10. Cross-multiplication gives:

B33

P By
2 .3
B
éZ*(anZ—Jr%vL )(1+Blz+§z +--)

12



B B
éz:z+Ble+—222+—3,z + .-

2! 3!

1 By B3
+a(22+312’3+524+gz +-)

1 B
i (0 Buzt b e )

By 1 Bs By By 1

1 B Bi Bs By B
= 2422 (Bi+ 5 )+ 23 (o b ) (o 2 ) (e o

2 2 2 6 6 4 6 24 7R TRNTRIY)
Hence equating coefficients now gives By + 2 = 0 so that By = —3. Next
Bo _1_1 _1.p _ L1 1y p i1
?—Z—lg SOthatBQ—6,B3—6(—ﬂ+ﬁ—ﬂ)—0,B4—24(0—ﬁ+@—
T20) = ~30-

Problem Set 6

1. Writng u,, to denote the nth term of the series we get;

|un+1|7‘(1+i)”+1 2" 1+i‘:\/12+12:@<

L,
2 2

and so the series converges (absolutely).
2. Putting z + 1 = 0 so we get that the centre is z = —1. Again take the
absolute value of the ratio of successive terms gives and boundi it strictly by 1:
32(n+1)(1 +Z>3(n+1)

32n(1 + Z)Sn

|=301+2)° <1

1 1
é|(1+z)|3<§é|1+z|<3—.

V3

Hence the radius of convergence is %3
3. Centre is z = 0. As for the radius of convergence we put

(n+2)5”+1z"+2| |z(n—|—2)| BNV
= - n Q.
(n 4 1)5n+2zn+l 5(n+1)

| 5

Hence the series converges if % < 1, so the radius of convergence is 5.
4.

=

+1‘:‘(n+1)!e"(1+i)" 7‘(n+1)‘

nlent1(1 +i)ntt ' Te(1 4 4)
so the series diverges.

5. )
oL0g(2) — nlzl+iArg(2) _ inlz iArg(2)

— |2|eiAr8(2) = ;.

13

1



Log(i) = In|i| + iArg(i) =0 +4iZ = T
Log(—i) = In| — i| + iArg(—i) = 0 + i(—g) - —%
Log(1 + i) = In|l + 4| + iArg(1 +i)= In(v2) +iZ = 1 In2 + 4%
Log(4i) = In |4d] + iArg(4i) = 2In2 + i 7.
7. Clearly both sequences approach the limit ce’™ = —a < 0. Now

Es

Log(an) = Log(ae'™ =) =In|a| +i(r — 1) = Ina + im;
however
Log(bn) = Log(ae’™m))=In|a|+i(—7 + 1) = Ina — .

8. Here we have u(r,0) = In(r) and v(r,0) = 0
1
ur(r,0) = =, ug(r,0) =0, and
r

'Ur(rﬂe) =0, UG(TﬂQ) =1

and so recalling the formulae from Question 10 Set 3, we see that the CR
equations in polar form, which are:

ou 10v Ov 1%

or  rd o roo
are satisfied, remembering that v(r, ) here is only differentiable for r # 0 and
—m < 6 < 7 (so there is no discontinuity in v(r,6) in the domain of definition).
9.
log(z122) = In|z122| + targ(z122)

=1In|z1| + In|22] + i(argz + arg(z2))
= (In|z1] + darg(z1)) + (In [zo] + i arg(22))
= log(z1) + log(z2).

Similarly
21 21 . 2!
log (=) =In|— —
og () =In| | +iarg ()
_ |21| .
=1In (@) +i(arg(z1) — arg(z2))
= (In|z1| +iarg(z1)) — (In(|z2| + 7 arg(z2))
= log(z1) — log(z2).
10. Here we have z; = —27 and 2z = —1:

log(z1) = log(—2i) = In2 + i(fg +2n7), n € Z,

14



log(z2) = log(—i) = z(—g +2nm), n € Z;
noting that 2120 = (—2i)(—i) = 2i? = —2, we compare this to
log(z122) =log(—2) =In2 +i(r + 2nmw), n € Z

and so we we see that log(z122) = log(z1) +log(z2) as the arg term in both cases
runs over all odd integer multiples of 7. However

Log(z1) =In2 —i7, Log(z2) = —i7,

Log(z122) = Log(—2) = In2 + i,

and so
Log(z1) 4+ Log(z2) = In2 — im # Log(z122).

Problem Set 7

1 1 1
= =2(1 24 ...
z—22 z(1-2) z( tetat)
1+1++ +2" + i”||<1
= — z DR A e e z z .
z n=-—1 7
2.
3—z 3—z 3—z 9 4 om . 9 )
22724222(172%2 — (142242 422"+ ), with [22] < 16 2] < 1
3 23,94 5,96 T . .
= —27;+3fz+3z —2°432"—2"43x"—2"+- - -, so centre is 0, radius of convergence 1.
z
3. Put w =2z —1so that 2 =w + 1. Then
1 1 B 1
1—22 (1-2)1+2)  ww+2)
) = =2 =~ 2 (B
T =0wa+2) " 2wt 22 3
1 1 w  w? . w
=—5-17 §+1_6 , provided | 2| <1 & |w| <2
1 1 z2—1 (2—12 (z—1)"
= = - S (=) a1 < 2.
1) 2--1) 1 8 16 HED s <
4 -7. By partial fractions f(z) = %(Z}rl - 22—1+4) and f(z) is not defined

at z = —1 and z = +2i. This gives three regions to consider defined by the

15



inequalities (i) |z| < 1 (ii) 1 < |z| < 2 (iii) |z| > 2. Overall 1_%2 =3 o(=1)men,
when |z| < 1 and

2 4 6 Z?n

1 1 1
4 :1(1—Z—+—f—+-~~+(71)”7+~~), for |2] < 2.

4+22:1+§

(i) For |z] < 1 both of these series converge, so

f(z)::g(erl 22+4)
1 o 1 o Z2n

_ - —1)?" — — _1)nE—
e
n=0 n=0

I S S B PSS B B
G o) 5t G "5 TG
(ii) For 1<|z|<2 , the series for 4Jr%is valid but not the one for lerl . Instead

we use

! ! 1(1 1+1 1+ ) ided || < 1& |2]:>1
= =—(1—--+———+--+), provided |2 z| > 1.
z+1 z(1+%) z z 22 23 » P z

Hence in region (ii) we have a proper Laurent series:

While for region (iii) the Laurent series for Z—}rl is valid but we will need the

. . 1
correspondlng series for 1722

et D WEHC
21+ %) 22 = z
Summing the two series gives for this region:

£(2) 1 2 1 3 1 17
)= — — — JE— JE— -
52 522 5z3  5z4 525 526
8. f(z) = <=£= is singular at zo but is analytic otherwise. The pole at
zo = 0 is of order 4 so

4—1
Res.—of(z) = ﬁ#((z —0)*e2) =0
a3 1
= 5@(005 22)|.=0 = 5 23 8in 22|,—¢ = 0.
9. Here f(z) = % has a pole of order 2 and z = —1 and a simple pole

at z = 2. For the latter case put P(z) = 22+11z+1and Q(z) = (2+1)?(2—2) =
23 — 32 — 2 to find

2
Resz:2f(z) = 5/((22)) =2 ;_lelfr;_l s—o % =3.

16



Using the formula for a pole of any order we get
2—1 2
Res.=—1f(2) = o - e (2 + 1* - Fyeiy) [y

d 22+11z+1 2 —4z-23 _ -8,

= E(ﬁ)‘z:ﬂ = (W)‘szl 9

10. f(z) = sec z is singular when cos z = 0, which is when z = nw+7 Vn € Z.
Now Q(z) = cos z has Q’'(z) = — sin z, which is not zero at any of these singular
points so the poles are simple. Putting P(z) = 1 and Q(z) = cos z then gives

1

_ P> — =
Resz:nﬂ+gf(2’) eI e) |z:nﬂ'+% - 7sinz‘z:n7r+§ ==+l

according as z = 2nm + 5 or z = (2n 4 )7 + .

Problem Set 8

22 =222 —2=0&2(:2-2iz-1)=0&2(2—i)*>=0
Sz=0o0rz=1.

Hence f(z) has zeros at z = 0 and z = i; f/(2) = 322 —4iz — 1, f"(2) = 62 — 4i.
Then f/(0) = —1 # 0 so that f(z) has a simple zero at zo = 0. And f'(i) =
—34+4—1=0but f’(i) =6i+4 # 0 so that f(z) has a zero of order 2 at 4.

2. tanz = 0 & sinz = 0 & 2z = nw (n € Z). Next, f'(z) = sec’?z so
f'(nm) = 45 # 0 so that all the zeros nm of f(z) are simple zeros.

3.
z 1 z

fO=ra=1 71

so that f(z) has a simple pole at each of z = i%, each of which lie inside of C.
Putting P(z) = z and Q(z) = 22 — 1 so that Q'(z) = 2z. Hence
Res._1 f(2) = 2].—1 = 3 = Res.__1 f(2).

2

zdz  2mi 1 1, mi
/07422_1 =G =5
4. cosz=0< z=nn+ %, (n € Z). None of these zeros lie inside of C, so
by Cauchy’s theorem [, <42 = .
5. The integrand sin(2”) is analytic inside C so that [;. sin(z%)dz = 0.
6. The integrand f(z) is singular only at z = 1, which lies inside I'p and
(z — 1)f(2) is not singular at z = 1, which is therefore a simple pole. The

required residue is

Hence

22
by = lim ——— = —e
z—1

17



= dz = —e.

' + — %
7. Here f(z) has singularities at +1, and both these points lie within the
contour I'g. Now
sin(z — 1) . sin(z—1) 1 1 1

lim = lim - lim =1.-=_,
=1 (z—=1)(z4+1) =221 z—-1 221241 2 2

so that z = 1 represents a removable singularity of f(z). On the other hand,

. sin(z — 1) B sin(—2) 1.
zgnlﬂ(z +1)- CrGe-D . 2 §Sm2 and so

in(z —1 1
/ 78111(22 ) dz = -sin2.
Tr 22 —1 2

8. By the M L-inequality we have that

M

since the length of the arc I' is 7R. Then

lim /|F(z)|dz:0:> lim [ F(z)dz=0.
R—oo Jp R—oo Jp

9. For z = Re",

) = | 1 < 1 12
R6e0 + 1! = [R6e60] —1 ~ RS —1 ~ RS

if R is sufficiently large (R > 2 suffices), so we take M =2, k = 6.

Comment Note we used the inequality |21 + 22| > |21]| — |22| with 2; = RS
and zo = 1.

10. Let C be the closed contour consisting of the line from —R to R followed
by traversing the semicircle I' centred at 0 of radius R above the real axis. The
roots of z6 4+ 1 are z = e*™/6_ where k = 1,3,5,7,11 and these all represent
simple poles of 2 + 1 and the only ones inside of C' are when k = 1,3,5. The
respective residues are, (using L’Hopital’s Rule)

im 1 1 5
lim ((z —e6) ) = lim — =—-e o ;
25 ZG +1 2%66% 625
i3 1 1 1 _sx
lim ((z —e's" = lim — =—-e 2}
ZHS; (( )ZG + 1) 2%66% 62° 6
5T 1 1 1 x
lim ((zfe% )% ) li —5*—6722 ;
Z_V%r 20 +1 2—5e66 6z 6

18



'/R dzx +/ dz 2w
U igat 1 JpS41 0 30

Taking the limit as R — oo and using the result of Question 9 then gives:

/°° dv 2w
b+l 37

Problem Set 9

1.
o2 +i(%)(u+iv)
= 5 (= 0) + iy + v2)
but by the Cauchy-Riemann equation, u, = v, and u, = —v, so that % =0.
2.
e — s+ iy) = S040-0+1)=1;
3G +igo) e —in) = (L4004 1) = L

3. The points a and b both belong to the interior of 7, so we can apply
Cauchy’s theorem for multi-connected domains to obtain:

= / e / ((Zz_bczwn d”/% %d “hrk

where v, and ~, are contours around the points a and b respectively.
Now by the Cauchy integral formula we get

2mi  dn! 2mi (2n — 2)! 1
L =——75=3 —-b)™" z=a — 7 g\ n-l .
! (n— 1)!dz”*1((z )7l (n—l)!( ) (n—1)! (a—0b)2n1
and in exactly the same way we get
2mi 1 (2n—2)! 1
I - " 71 n—1 . .
? (n— 1)!( ) (n—1)! (b—a)n1’

Therefore I = I; + I = 0.

19



4. In this case b lies outside of « so that I = f,y and so by Question 4:

271
(n—1)!

2n — 2)! 1
(n—1! (a—bzn—1

(71)7171 (

5. The integrand is now analytic inside and on the boundary of  so by the
CIF we have that I = 0.

6. The integrand has a pole of order 4 at the point z = —2 interior to the
circle |z 4+ 1| = 2 so the CIF gives

omi d® i
=g gl = g eos2
7. Use the McLaurin series for cosine:
o . 521 52 A
cosz:nzzo(—l) ! :1—54_1_...
[e%s} n 9
n*  _q1_%, % _

= cosy/z = 7;)(—1) o) 1 51t

Comment The potential ambiguity in the Vv sign is inconsequential here as
cosine is an even function.

8. Now
4 4y 2y =042+ (y— 1) =1
2
x
& —1)?=1;
so 7 is an ellipse centred at (0,1) with z-axis [—1, 1] and y-axis [0,2]. The

denominator of the integrand is (z 4 i)?(z — i)?. The singularities are at +i of
which only ¢ lies within . Hence apply the CIF with f(z) = (ZeJr—l)Z and 2y = i.

Hence
™z

- pl . !
I =2mif'(z0) = QWZ[W] |2=i
Tz AV 2eT% ;
_ 27”_{7re (z+1) ' 46 (z+ Z)]z:i
(z+1)
Tz + 7w — 2
— 2 . Tz(_ - @ - - =i
7T'L[e ( (Z+Z)3 )]
21 — 2 ;
= 2mie™* ( W_Z&, )= gem(l — 7).
. () jancal | ol
Pz QAp—1 ap
> fan| - (21l oy
|2|™ |z |2|™

which implies that for all z with |z| sufficiently large

p()] - lanl

=
2" = 2

> 0;

20



in particular there exists a bound K such that for all z such that |z| > K,
[p(z)] > 1 so that |f(z)] < 1 for all z outside the circle of radius K centred
at the origin. Since f(z) is continuous there exists a bound M > 1 such that
|f(2)] < M for all z such that |z| < K. Therefore |f(z)] < M for all z € C,
which is to say that f(z) is a bounded function.

10. We complete the proof of the Fundamental theorem of algebra by show-
ing that any bounded differentiable function f(z) is constant. This together
with Question 8 yields a contradiction to the assumption that p(z) has no root.
We do this by showing that f/(z9) = 0 for all zg € C by the Cauchy integration
formula for the first derivative. Since f(z) is differentiable everywhere we have

oL f)dz
f ( 0) ‘ /zzo_r (

2mi z—20)?

By Question 8 we have that |f(z)] < M for some bound M. However, since
|z — 20|?> = 72 on this contour and so we have by the ML-inequality that

1 f(z 1 M M
|f'(20) S%/ ‘ |%|dz§ — -2 = —.
z—zo|=r

(z — 20) 2 7 r

Since r is arbitary we see by letting » — oo that |f’(z0)| < 0 and so f'(z) =0,
which, as we have already noted, completes the proof.

Problem Set 10

1. n® = e(In™)s g that,

" k!
k=0
=1 = = (In(n)s)* | —1
=)= —=> 0 )
n=1 n=1 k=0
2.
1 1 =1 1 1 1
1——)t = — =1+ —+ 4. 4
( ps) 1— pls ;;) sk ps p25 p3s ( )

3. Consider the expansion of IT,(1 — #)_1 that comes from replacing each
term in the product by the corresponding series as in (4). We get the sum
of the reciprocals of all prime products, each raised to the power s. By the
Fundamental theorem of arithmetic, each positive integer n® occurs once and
(by uniqueness) once only as a denominator term so we conclude:

TR S o S
p n=1 n
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(1f2H)<(s>:(172.;)(1+i+i+~~)

25 ' 3s
—(1+1+1+)2(1+1+1+)
- 92s 3s 2s 45 65
1 1 1 1 1 > 1
=1—- — — - - _ — -1 n+l_—
25 + 35 45 + 55 65 + ;( ) nS

1 > 1

_ _1\n+1_—

C(S) - 1721,5 Z( 1) ns

n=1
and since the series on the right converges for all s such that R(s) > 0, we see
that this formula defines a function that extends {(s) to all values of s to the
right of the imaginary axis (except 1).
d5.

22 _ 22 1 _ 22 X, 22k
n2n? — 22 n2n2 1 22 n2p2 Z (nzﬁz) :
n2m2 k=0
Hence from the Euler identity:
>~ 2 > o 2k+2
z Z \2k 1 z
zootz=1-23% n2n2 Q. (E) ) =1-2> (> aRta) aRta)
n=1 k=0 k=0 n=1
[o ] o0
1 Z?k
=1-2> > )
k=1 n=1
6.
cos 2 (e +e7®) e 41 2iz ize?® — iz
zcotz = z2— =21 — = 12— = — + 5
sin z Z(ezz_e—zz) e2iz _ ] e2iz _ 1 e2iz _ |
_az(e?® —1) 2iz 2iz
=T ey YT am_1
7. By Question 10 Set 5 we have *5 = o B’;C!Zk, so applying this to the
result of the previous problem we obtain:
o0 .
, B (2iz)*
zcotz =1z + Z o
k=0
and since Bp =1 and By = f% we have by Question 5:
o0 . o0
By(2iz)F 22k
zeotz =1+ ZT —1- 2Zg(2/<;)ﬁ.
k=2 k=1
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8. Equating the coefficients of z2¥ we get that for all integers k > 1:

Boy2?i?F 2((2k)

QK pk

(_1)k+122kﬂ_2k32k

= C(2k) = 2(2k)!

k
k+1
Z( * )szo,Bozl
J

Jj=0

and so By + (f)Bl = 0 whence By = f%. (However Bgri1 = 0 for all k > 1.)

Next 3 5
By + <1>B1 + (2)32 =0

3 1
=1-= By =0= By = —;
2+3 =0 2 it

4 4 4
B+ (1)8 o+ (5) e+ (3) B0

=1-24+1+B3=0= B3 =0;

5 5 )
By + (1)Bl+ <2>B2+ <4>B40

—6+15-10 1

By = -
- 30 30
(_1)k+122kﬂ_2k32k
2k) =
= ¢(2k) 2(2k)!
From (9) we have for k =1,
[e'S) 1 (—1)22271'2 1 47{'2 7T2
D ) N TR
n=1 ’
and for k = 2:
=1 (—1)3247* By 1674 4
Yo =)= = = 55
—~ nt 2(41) 2(24)(30) 90
10. s
C(s) =2(2m)* sin(?)l"(l —8)¢(1—5), R(s) <1
Putting s = —2k in the functional equation we see that the factor sin(%*) =

sin(—km) = 0 so that ¢(—2k) = 0.
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Comment The negative even integers are known as the t¢rivial zeros of the
zeta function. The more interesting ones are the ones in the critical strip 0 <
R(z) < 1: the celebrated Riemann hypothesis is that all these zeros have R(z) =
1

5
On the other hand taking s = —2k + 1 we obtain:

m(—2k+1)

C(—2k 4+ 1) = 2(2m) =22 sin( 5

)T (2K)C (2k)

~ T(2k)(—1)F 122k g2k By (—1)F1D(2k) Boy

92k+22k+2 472
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