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The first five problem sets in this module are about techniques to solve
first linear and then quadratic equations in modular arithmetic. The solving of
quadratic congruences is a surprisingly intriguing subject and we shall take one
of the main theorems, the so called Quadratic Reciprocity Theorem for granted.
This theorem relates the existence of solutions to the equations 2 = p (mod
q) and 22 = ¢ (mod p). It was thought to be true for many years before being
proved by Gauss, in eight different ways. Problem Set 3 introduces the so called
RSA algorithm, which is the basis of pretty much all internet cryptography.
It completely relies on congruences based on large prime numbers and is the
certainly the most major application of number theory to the everyday world.
It is arguably the single most important application of mathematics that we
have.

Set 6 is on the topic of countable and uncountable sets. It was proved by
Cantor using his Diagonal Argument that the integers and the real numbers
cannot be matched in one-to-one correspondence and this questin set explores
various interesting collections and asks which ones have the same cardinality as
the integers and which do not.

Set 7 introduces difference equations, which are the discrete analogoue of
differential equations and the elementary ones presented here may be solved
using parallel techniques.

Set 8 introduces both standard and exponential generating functions for
combinatorial sequences and gives problems that can be solved using them. Set
9 is based on the Inclusion-Ezclusion Principle, which is almost a common sense
piece of mathematics that yet has powerful applications and is indispensable
for many combinatorial counting problems. The final set introduces Catalan
numbers, which count a number of different types of combinatorial objects and
are intimately related to the central binomial coefficients.



Problem Set 1 Linear Congruences

Recall that the statement that integers a and b are congruent modulo n,
written, a = b (mod n) means that b = a + kn for some integer k. A linear
congruence is an equation of the form ax = b (mod n). Find all least residue
solutions, which means solutions in the range 0 < z < n — 1 for the following
congruences. Let d = ged of a and n. There are no solutions to the congruence
equation if d is not a factor of b but if it is then there are d solutions.

1. 3z =2 (mod 6)

. bx =2 (mod 6)
. 4z =2 (mod 6).
. 6z = 14 (mod 31).
. 152 = 12 (mod 57).
. Find a number that leaves a remainder of 1 when divided by 2, a remainder
of 2 when divided by 3 and of 3 when divided by 5.
7. Find the smallest odd n > 3 such that 3|n, 5|n + 2, and 7|n + 4.
8. Solve the simultaneous linear congruences
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x+2y =3 (mod 7), 3z +y =2 (mod 6).

9. How many possibilities are there for the number of solutions of a linear
congruence modulo 207

10. February 1968 had five Thursdays. How many other years up to and
including 2100 will be so rich in February Thursdays?



Problem Set 2 Linear Diophantine Equations

In Questions 1-3 find all solutions in integers.

1.
20 +y = 2.

2.

15z 4+ 16y = 17.
3.

15z 4+ 18y = 17.
4. Solve in positive integers

Tr 4 15y = 51.
5. Solve in negative integers

6z — 15y = 51.

=2}

. Solve in positive integers the simultaneous equations:
r4+y+z2z=31, v+ 2y+3z2=41.

7. Suppose that a collection of centipedes, scorpions, and worms contains
296 legs and 35 heads. How many worms are there?

8. A farmer sold her sheep for £180 each and her cows for £290 a piece,
receiving £2890. How many cows did she sell?

9. When Ann is half as old as Mary will be when Mary is three times as old
as Mary is now, Mary will be five times as old as Ann is now. Neither Ann nor
Mary may vote. How old is Ann?

10. Andy and Bob put their collections of vinyl records up for sale on the
internet with Andy selling 30 records and Bob 40. Each sold some of their
records at £5 each and the rest at a common lower price in an integer number
of pounds. And each received the same amount of money overall. What is the
smallest amount that each could have received?



Problem Set 3 RSA Cryptography

Recall that the greatest common divisor of integers a and b is written as
d = (a,b). The Euler ¢-function ¢(n) is defined on the positive integers by
¢(n) = {k < n: (k,n) = 1}|; it has the property that a®(™ =1 (mod n) for
any 1 <a<n-—1.

1. For a prime p, find the value of ¢(p™).
2. Given that ¢(ab) = ¢(a)p(b) if (a,b) = 1, show that
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where p1,p2,---,p, are the distinct prime factors of k.

RSA cryptography algorithm Bob sends Alice a message, coded as a number
M. Her private key is (p,q, d) where p, ¢ are primes. Her public key, known to
all, is (n = pq, e) where (e, ¢(n)) = 1.

Here we take p=3,¢g=11and e = 7.

3. Find n, and ¢(n) in this case and show that e = 7 satisfies the previous
criterion.
4. The number d satisfies 1 < d < ¢(n) — 1 and ed =1 (mod ¢(n)). Find d
in this example.
5. Bob sends to Alice M® (mod n). Find Bob’s transmission for M = 6.
6. Show that
M = M (mod n).

7. Show how Alice can now recover Bob’s plaintext message, M = 6.

8. Let (p,q) = (23,47) and e = 15. Let M = 77. Show that Bob’s transmis-
sion is now 646.

9. Show that in this case d = 135.

10. Recover Bob’s plaintext message M = 77 for Alice.



Problem Set 4 Quadratic congruences

Throughout, let p and ¢ denote odd primes.

1. By a completing the square argument, show that any quadratic congru-

ence
Az? + Bz + C =0 (mod p), A # 0,

can be reduced to one of the form y? = a (mod p).

2. Apply this approach to reduce 222 + 3z +1 = 0 (mod 7) to the form
y? = a (mod 7) and find the two least residue solutions.

3. Solve 322 + 2 +4 =0 (mod 7).

4. Show that if p is not a factor of a then 2 = a (mod p) has either no
solutions or exactly two (least residue) solutions.

5. By using the corresponding property or the Euler ¢—function (see Set 3)
derive Fermat’s lemma, that

a? = a (mod p).

6. Deduce from Question 5 that

p—1

a2z = =1 (modp).

Euler’s criterion Given that p is not a factor of a, the conguence z?2

(mod p) has two solutions or no solutions according as:
p—1
az =1or -1 (mod p).

We call a a quadratic residue or a quadratic non-residue accordingly.

7. By checking the Euler criterion, show decide whether or not 7 is a
quadratic residue modulo 31.

For questions 8 and 9 show that the equations in question have solutions
and find them.

8. 22 =7 (mod 31).

9. 22 = 41 (mod 61).

10. Find conditions on r that will ensure that if a is a quadratic residue
(mod p) and ab =r (mod p), then b is a quadratic residue (mod p).



Problem Set 5 Quadratic reciprocity and the Legendre symbol

The Legendre symbol (a/p) = +1 according as a is or is not a quadratic
residue modulo p. The Quadratic Reciprocity Theorem says that if p =¢q = 3

(mod 4), then (p/q) = —(q/p); otherwise (p/q) = (¢/p)-

For Questions 1-3 show that the Legendre symbol has the following proper-
ties.

1. If a = b (mod p) then (a/p) = (b/p).

2. If p is not a factor of a then (a?/p) = 1.

3. If p is not a factor of either a or b then (ab/p) = (a/p)(b/p).

4. Find the values of (19/5) and (—9/13).

5. Find whether or not 22 = 85 (mod 97) has a solution.

6. Prove that (—1/p) =1if p=1 (mod 4) and (—1/p) = —1 otherwise.

7. Given that (2/p) = 1 if and only if p = 1 or p = 7 (modulo 8), find
(3201/8191).

8. First show that 22 = 14 (mod 31) has solutions and then find them.

9. Show using the Quadratic Reciprocity Theorem to show that if p = ¢+4a
then (a/p) = (a/q).

10. Find all the solutions of 22 = 211 (mod 159).



Problem Set 6 Countable and Uncountable Sets

We call an infinite set S countable if there is a bijection f : N =S (ie, a
one-to-one and onto mapping). Finite sets are also considered to be countable.
Cantor’s diagonal argument shows that the real interval (0, 1) is uncountable,
meaning not countable. The Schroeder-Bernstein argument shows that if there
are injective mappings (ie one-to-one functions) from a set A to a set B and
from B to A, then there is a bijection between the sets, in which case we say
that A and B have the same cardinal. A subset of a countable set is easily seen
to be either countable or finite.

1. Show that S = {z € R: 0 < z < 1} is uncountable.
2. Show that the union -
A=A,
n=1

of a list Ay, As,---, of countable sets is countable.

3. Prove that the sets Z, of all integers and @Q, the set of rationals, are
countable sets.

4. Deduce using Question 4 that the set I of all irrational numbers is un-
countable.

5. Show that the direct product (or Cartesian product)

P=A; x As x -+ x A, = {(a1,a2, - ,an) : a; € A;, 1 <i<n}

of finitely many countable sets A; (1 <14 < n) is itself countable.

6. Show that the result of Question 5 does not extend to countably many
factors by putting 4; = {0,1} (i = 1,2,---) and considering A; X As x -+ X
A'n, NEEES

7. Show that the range of a function f: A — B, where A is a countable set,
is itself countable.

8. Let A and C be countable sets. If B is some arbitrary set, can you decide
whether or not AU (BN C) is countable?

9. Prove that the set C of all complex numbers is uncountable.

10. Show that the set of all algebraic numbers, which are real numbers that
are roots of some polynomial equation with rational coefficients, is countable.
Hence deduce that the set of transcendental numbers (real numbers that are not
algebraic) is uncountable.



Problem Set 7 Difference Equations

1. Solve the difference equation w, = 2u,_1+1,n=1,2,--- with ug = 0.
2. The Fibonacci numbers f, are defined by fo = 0, fi = 1 and f,41 =
fn+ fn—1 for all n > 1. By substituting f, = Aw", find a formula for f,, of the
form f, = Ajw} + Aswh.
3. Hence find lim,,_, o
4. For the second order ﬁlomogenous linear difference equation

fn+1

Up = PUn+1 + qun—1,

with p+¢ = 1, p # g by substituting u,, = Aw™ find two candidates u,, = AjwY
and u,, = Aswy for solutions.
5. Check that
Up, = Aqwl + Aswy

does indeed solve the equation of Question 4.

6. Determine values of A; and As so that ug = 0 and u; = 1 and so find the
solution to the equation with these values.

7. The case where p = ¢ = % is that of twin roots of the associated quadratic
for then we find w; = wy = 1 = w. In that case we seek solutions in the form
un = (A1 + A2n)w™. Use this approach to solve

unzwﬂmz(xul:l_
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8. Solve the inhomogenous difference equation
vp =1 + PUnt1 + qUn—1

with vg = v; =1 and p+ ¢ = 1 by augmenting the solution of the corresponding
homogeneous equation by adding the term f(n) = kn.

9. Solve the equation of Question 8 for the case p = ¢ = % by adding the
augmented solution f(n) = kn? to that of the solution of the corresponding
homogeous equation.

10. Hence solve the equation of Question 8 and 9 subject to the initial
conditions that ug = 0 and u; = 1.



Problem Set 8 Generating functions

Suppose that a, is the number of ways of selecting r objects subject to
some constraints. The generating function for the a, is then g(x) = Y a,a",
while the ezpontential generating function is g(z) =37, “’"TTT
example used in several of these quesionts is

() -a

r=0

. One particular

1. Find the coefficient of 2" in (2% + 2% + - -+)5.
2. Find the coefficient of z'? in x?(1 — x)~10.

3. Find the number of ways of selecting 10 balls from a large pile of red,
white, and blue balls if there must be an even number of blue balls.

4. How many ways are there to place an order for 12 drinks if there are 5
types of drinks and at most four drinks of any one type are allowed?

5. Write down the generating function for collecting r euros from 20 people,
each of which can give either 1 euro or nothing and the other can give either
0,1, or 5 euros. Hence find the number of ways of collecting 15 euros from this
group.

6. Find the number of ways to distribute 25 balls into seven distinct boxes
if the first box can have no more than 10 balls but the others can hold any
amount.

7. How many ways are there to select 25 toys from seven types with between
two and six of each type.

8. How many ways are there of getting a sum of 25 when 10 dice are rolled?

9. Use exponential generating functions to find the number of ways of placing
25 people into three rooms with at least one person in each room.

10. Find the number of r-digit quaternary sequences (sequences made from
the digits 0,1, 2,3) with an even number of 0’s and an odd number of 1’s.



Problem Set 9 Inclusion-exclusion Principle

Inclusion-exclusion principle Let U denote a universal set of IV elements and
let A; CU for 1 < i <n. Let Si denote the sum of the sizes of all the k-tuple
intersections of the A;’s . Surpressing the intersection signs we write:

|Aj Ay Ay | =N =814+ 8y =Sz 4 -+ (=) Sk + - + (=1)"S,..

1. How many ways are there to select a 5-card hand from a regular 52-card
deck such that the hand contains at least one card in each suit?

2. How many ways are there to roll 10 dice with all 6 faces appearing?

3. How many n digit decimal sequences (using 0,1,2,---,9) are there in
which the digits 1,2 and 3 all appear?

4. How many ways are there to distribute 7 distinct objects into five distinct
boxes with at least one empty box?

5. Use generating functions to find the number of different integer solutions
to the equation x1 + 22 + --- + 2 = 20, 0 < x; < 8.

6. Solve Question 5 using inclusion-exclusion.

7. If n leads are plugged randomly into n sockets, what is the probability
that no lead is in its correct socket?

8. A permutation o on i = {1,2,---,n} for which ia # i for all 1 <i <n
is call a derangement. Find the limiting proportion of derangements of all the
permutations on 7.

9. Show that

Dy = (n—1)(Dp-1+ Dp—2) (n > 3).
10. Use Question 9 to show that

D, =nDp_1+ (-1)" (n>2).

10



Problem Set 10 Catalan numbers

The nth Catalan number C,, is the number of ways of splitting a regular
(n 4 2)-gon into n triangles by non-intersecting diagonals of the polygon.

1. Conventionally we put Cy = 1. Find C, for n =1,2,3.
2. Use an inductive argument to prove the recurrence:

Cn = Ci-1C-r.
k=1

3. By counsidering a box of n red and m blue balls, justify the identity:

> ()(3) - (o=

4. Show that the central binomial coefficient (27:1) satisfies:
m\ (===,
n) n! (=4)".

5. Hence show that the generating function g(x) for the central binomial
coefficients is

= [2n\ , 1
g(x)zz<n>;v :ﬁ, where [z] < 1.

n=0

6. By use of the factorization

(1—d2)™" = (1 —4a)"% - (1 —da) "2

> ()0 -+

k=0

verify the identity

7. By replacing x by 22 and integrating both sides of the equality of Question
5 between 0 and % deduce the identity:

i 1 <2n) oo
127 (99 + 1) g
A (2n+ 1)\ n 3
8. Let h(z) = Yo, Crx®. Show that

(h(@)? =3 Copra®
k=0

11



9. Use Question 8 to set up a quadratic equation for h(z) and conclude that

1—+1—4x

hz) = 2z

10. By expanding h(z) by the Binomial theorem, deduce that

C - 1 (211)
n+1l\n

12



Hints for Problems

Problem Set 1

Congruence problems: for d = ged(a,n) the equation axz = b (mod n) is
equivalent to a’z = b’ (mod n’) where a/ = 2,0 = % and n’ = 2. Adding
multiple of the modulus to the RHS then eventually allows cancellation; alter-
natively acting the Euclidean algorithm on the pair a/,n’ can be used to find
all solutions.

9. Express as three linear congruences. Find the general solution of the first

and substitute into the second, solving for the free variable, and continue.

Problem Set 2

One method to solve linear Diophantine equations is to work module a where
a is one of the coefficients of = or y (easiest to take the smallest coefficient). This
will give one variable in terms of a parameter ¢ that can then be substituted
into the equation to find both = and y in terms of ¢. The solution set can then
be formulated, taking into account any further restrictions on the solution type
required.

Problem Set 3

No particular hints: just be mindful of the given definitions and defining
properties of the parameters that are used to prove various properties listed,
such as that in Question 6.

Problem Set 4

1. Use the fact that az = 1 (mod p) has a unique solution to make the
coefficient of x2 equal to 1; however you need to deal separately with the cases
where the coefficient of the linear term is even or odd.

4. If r is a solution, then so is p — r. Then you need to check that every
solution equals either r or p—r. Use the difference of two squares and the Euclid
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lemma; if a prime divides a product then the prime divides one of the factors
of that product.

8. & 9. Add on mulitples of the modulus to the right hand side; upon
reaching a number with a square factor s, divide both sides by s? and continue
the calculation with (%)2

10. Use the Euler criterion.

Problem Set 5

2. Just solve the corresponding equation.

3. Begin with (a/p) = o'z (mod p).

6. Again use the Euler criterion.

9. Relate (p/q) and (g/p) to (a/q) and (a/p) respectively, use the CRT and
the fact that p = ¢ (mod 4).

10. Factorize the modulus into the product of two primes and solve in the
manner of the Chinese Remainder Theorem substitution technique.

Problem Set 6

1. Argue by contradiction: if (0, %) were countable, show there would be a
bijection g : N — (0,1), which you know does not exist.

2. A bijection from N onto the set A; can be regarded as a list of all its
members, a;1,a;2, .. Use all these lists to somehow create one big list for
their union.

3. One way to show that Q is countable is to list its members by breaking
Q into a union of finite sets and combining the lists of these finite subsets into
one grand list.

5. By induction, only the n = 2 case need be done and again the challenge
is create one big list of A; x As from given lists for A; and As.

6. Think binary and that will allows you to set up a bijection from the
infinite product set and all the reals in the unit interval, which you know form
an uncountable set.

10. Show that the set of roots of polynomials with rational coeffients that
have degree at most n is countable. The set A of algebraic numbers is just the
union of all such sets and, being then a countable union of countable sets, it
will follow that A itself is countable.

Problem Set 7

14



1. Prove by induction a guess that can easily be made by computing the
first few members of the sequence.

Problem Set 8

1. Sume the geometric series.

3 - 8. Expand the product of the sums for each term and go after the relevant
coefficients.

9. The exponential generating function in this case is that of (e — 1)3; we
subtract 1 as we want none of the 3 rooms empty. Writing the coefficients in
the form i—? here is relevant as we are interested in the values of a, as we are not
interested in the order in which the distinct people are assigned to a room, hence
we divide the overall coefficient by r!. This is why the exponential generating
function is relevant.

10. Again you want the coefficient of ﬁ—: and the exponential generating
function works out to be %(e4m — 1) as the ’even’ and ’odd’ restrictions lead to
series for cosh and sinh.

Problem Set 9

1. Let each Ai_de_noice the number of hands with a void in each of the four
suits. You want |4y Ay A3 Ay|.
4. Use the formula
|A1UA2U"'UAn| =95 —Sg+5'3—---+(—1)"5n.
5. You want the coefficient of 22° in

gx) =1 +x+2>+-- +2%)°

6. Let A; be the subset of integer solutions in which z; > 9.

Problem Set 10

2. To set up an induction label the vertices of the (n 4+ 2)-gon N by the
integers 1,2,---,n and fix attention on the edge £ = 12. In any partition of
N by non-intersecting triangles, F is the base of some triangle T}, where k is

15



the third vertex of T) (3 < k < n + 2). The sides 1k and 2k split N into an
(n — k +4)-gon and a (k — 1)-gon respectively.

1

5. Use the binomial expansion of (1 — 4z)~=.
9. Express z(h(z))? in terms of h(x) and solve the resulting quadratic equa-
tion.

16



Answers to the Problems

Problem Set 1

1. No solution. 2. 4. 3. {2,5}. 4. 23. 5. {16,35,54}. 6. 23. 7. 213. 8.
z=3,y=009.7. 10. 4.

Problem Set 2

l.e=1-t,y=2t. 2. 2 =16t—1,y=2-15¢t. 3. =3,y = 2. 4. {(z,y) :
w=—4—5s,y=—5—2s 5>0} 5{(25,2,4), (24,4,3), (23,6,2), (22,8,1)}. 6.
21. 7. 21. 8. 5. 9. 5. 10. £120.

Problem Set 3

1 pmYp—1)3. n =33, ¢(n) =20, (7,20) =14. d=35 M =30T.
M=68.6469. d=13510. M = T77.

Problem Set 4

2. 3or4. 3. 4or 5. 7. 7is a quadratic residue. 8. 10 or 21. 9. 23 or 38.
10. r is a quadratic residue.

Problem Set 5

4. 1,1.5. Yes. 7. -1. 8. 13, 18. 10. 23,76, 83, 136.

Problem Set 6
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Problem Set 7

S

12" — 1.2 fn:%[(”f) ~(55)"], n=0,1,2,---. 3. 155 4,
%

2
A1, 42(2)" 6. (i) — 7. 38 A+ A5(2)" 429, A+ Asn—n? 10. n(l—n).

Problem Set 8

1(77%) - 2. 5005 3. 161 4. 320 5.(12) + (13) + (10)- 6-(35) — (39)- 7.
.9.3

(D=7 + ()-8 () —1009) + () EPTYE

25_3.2% 4310471,

Problem Set 9

L () =4(3)+6(F)—4("?) 2. 610—6-50415-410-30-3104+15.210-6 3.
10" —3- 9”+3 8" =T 4. 5:47—10-3"+10-2" =55 & 6. (o) —6(;9) +15(3)
7.only 0 , 8. e L

Problem Set 10

1.Ci=1,C,=3,C3=5.7Z09. hiz) =142 10. (2.

2 n+1
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