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Solutions and Comments for problems

Problem Set 1

1. Consider the triangle defined by the vectors a and b with common tail so
that the third side corresponds to a — b. Applying the Cosine rule we obtain

[la—b||* = [[a]|* + ||b]|* — 2]|al| ||b]| cos ¢

= (a1—b1)*+(ag—b2)?+(az—b3)* = (ai+a3+a3)+(b;+b5+b3)—2||a|| ||b|| cos b
= —2aeb = —2||a||||b]| cos b
= aeb = ||a|| ||b]| cos¥.
2. Put a = (x1,22,0) and b = (y1, y2,0) and square both sides of the final
equation of Question 1. Since 0 < cos? 6 < 1 we obtain

(z1y1 + m232)” < (27 + 23)> (U7 +43)°.

Comment This inequality extends to three and to higher dimensions.
3.
lla+b|?=(a+b)e(a+b)=aeatbeb+2aeb

< [[a[[* + [[b[[* +2llal| [[bl| =(Ilal| + [b]|)*
= [la+b|| = [|a]| +[[b]l.

4. This can be verified directly from the definition. However, the determi-
nant form of the cross product allows us to gain the result from the fact that
interchanging any two rows (or columns) in a determinant only changes its sign:

i j k i j k
—(axb):— ap ag ag|=|by by b3|=Dbxa.
b1 b bg ap a2 ag

ae(a x b) = (a1,as2,a3) ® (agbs — asbs, azby — a1bs, arbs — asby)

= ayasbs — arasbs + asaszby — asa1bs + azai1bs — azasby =0

as the terms cancel in pairs.

Comment Since it is equally the case that be(a x b) = 0, the geometric
interpretation of this result is that a x b is orthogonal to the plane defined by
the pair of vectors a and b.

6.

||a X b||2 = (a2b3 — a3b2)2 + (&31)1 — G1b3>2 + (a1b2 — a2b1)2



= (agbg + a§b§ + a%b% + a%bg + a%b% + a%b%) — 2(a2b3a3b2 + azbiai1bs + albgazbl);
||a|[?[|b||* — (a e b)® = (af + a3 + a3)(b] + b3 + 3) — (a1b1 + azbs + asbs)?
= (a3b] + a3bs + a3b3) + (a3b3 + aib3 + a3b] + a3b3 + a3b? + a3b3)—
((a%b% + a%b% + a%b%) + 2(a1b1a2b2 + a1b1a3b3 + a2b2a3b3))

= (CLng — a3b2)2 —+ (a3b1 — a1b3)2 —+ (albg — a2b1)2 = ||a X b||2
7. From the identity of Question 6 we have by using Question 1:

[la x b|[* = [[a] [*[[b]|* — ||al|*||b|[* cos® &

= |[al*[[b][*(1 — cos*8) = ||al|*||b]|* sin® §
and since lengths are non-negative, by taking square roots we obtain
lJa x b]| = lal] |[b|| sin .

In particular ||a x b|| = 0 if and only if at least one of a or b is 0, or if siné = 0
in which case the vectors a and b point in the same or in opposite directions.
These conditions are summarised by the condition of the vectors being parallel:
a = Ab for some \ € R.

8.

ax(b+c) = ((az(bg+cs)—as(be+ca), az(bi+c1)—ai(bs+cs), a1(batca)—az(bi+cq))

= (agbs —asba, asbi —a1bz, a1ba —agb1)+ (azcs —asca, ager —aics, aica —asct)

=(axb)+ (axc).

ax(bxc)=(aec)b—(aeb)c

We verify equality between the respective x components of each side of the
equation. By symmetry the result will hold for the other two components, thus
establishing the identity.

(a X (b X C))l = (az(blcz — bgcl) — a3(b3c1 — blcg))
= agcaby + asbics — asbacy — agbszeq (].)

on the other hand, the first component of the right hand side is
(a101 + asco + agcg)b1 — (a1b1 + agby + a3b3)01

= agcoby + azesby — asbaci — asbser (2)

We see that (6) and (7) are the same, as required.
10. From Question 9 it follows thata x (b x ¢) = (ax b) x ¢ = —(cx(a x b)
if and only if
(aec)b—(aeb)c=—(ceb)a+ (cea)b



< (aeb)c=(bec)a.

In particular, equality can only occur when a and c are parallel.

Problem Set 2

1. Let v be a unit tangent vector to the level surface f(z,y,2) = ¢. The
directional derivative of f at any point on this surface is 0 and f(z,y, 2) is equal
to the constant ¢. This tells us that ve(V f) = 0 and since v#0 it follows that
V f|p for any point P on the surface is a vector orthogonal to the tangent plane
at that point.

2. For any point P the directional derivate in the direction of a unit vector
v is

ve(Vflp) = Iv]-[(Vflp)cost

where 6 is the angle between the two vectors in question. At the fixed point
P the vector (Vf)|p is fixed too and so this quantity takes on the respective
maximum and minimum values of this directional derivative will occur when
cos® = +1, which is to say when v is chosen to be in the direction of (Vf)p
and opposite to the direction of (Vf)p respectively. Hence (Vf)|p points in
the direction of most rapid change of the scalar field f(z,y, z) at the point P in
question.

3. VT(z,y,2) = (—e % —2e7Y,4¢%*). The temperature increases most
rapidly in the direction of the gradient, which at (1, 1,1) has value VT'(1,1,1) =
(—e™1, —2e71 4e); equivalently the direction of (1,2, —4e?).

4. We have f(x) = z%yz + 4222 so that

V(x) = (2zyz + 422 272, 2%y + 8x2)
f(1,=2,-1) = 2(1)(=2)(=1)+4(-1 ) 2(—1) 1%(=2)+8(1)(=1)) = (8,~1,10).

v=(2-1,2)=|v|= /22 + + (=22 =V4+1+4=3;
1
=>v==-(2,-1,2).
v=3(2,-12)
We need
1 37
Vi, —-2,1)ev = 5(8,—1,—10) (2,-1,2) = 3
5. The surface is the zero contour of f(x,y,z) = 2® + y?> — 2 so that

Vi(x,y,z)=(22,2y,—1); V(1,1,2) = (2,2,—1) = u. Now |[u| = /22 +22 + (—1)2 =
3; hence n = %(2, 2,—1) is a required normal vector. There is a second possi-
bility in the opposite vector —n = £(—2,-2,1).

6. P(2,—1,2) does indeed lie in Sy : 2% +y> + 22 =9 as 224+ (1) +22 =9
and also in Sy : 2 = 22 + 9% — 3 as 22 + (—1)? — 3 = 2. The angle 0 between the
surfaces at P equals the angle between the normals at P.

Vf(x)=(2z,2y,2z2), Vg(x) = (2z,2y,—1)



n; = Vflp = (4,—2,4), o = Vg|p = (4,—2,—1)
Ini|=v16+4+16=6,ny =16 +4+1 =21

njeny (4,-2,4)e(4,-2,1) 16  8/21

cosf = = = = :
1| [[n2| 6v/21 6v21 63
8v/21
=0 =cos }(—=) =095
63
7.

22 4+ y?) — 222 —2x2 2 g2 22
(z°+y Y

V=i ) e )

_ (3222 22°) \ _ (.5
Hence Vf(2,3) - ((22+32)27 _(ngrgz)z) - (@7 _1_69)'
8. At the point (zg,y0) = (2,3) we have zy = ﬁ = %; fu(zo,y0) =

1—29, fy(zo,y0) = —1%9. The equation of the tangent plane at (xq,yo, 20) is

fz(20,90)(x — 20) + fy(%0,%0)(y — Yo) = 2 — 20, which gives:

5 8 2
O (- Sy —3) =z =,
6o ") =3 =2"73

9. This follows at once from the linearity of differentiation:

ONf +pg) ONf+pg) ONf+ ug))

VO +p9) = (=5 — R
_ ot 99 \of 99 \Of Og
_(A8I+M8x’)\3y+M3y’)\8z+uaz)

IR RN
Ox’ Oy’ Oz K Ox’ Oy’ Oz
AVS) +u(Vg).

_ (9t 499 Of 09 Of . .09

N (8xg+f8:v’ 6:vg+f8y’ Bzg+faz)
_ (9f of of 99 99 99
_(8x’8y’az)g+f(8x’8y’8z

)= (Vg + F(V).



Problem Set 3

1. From the definition we have

div(F) = (55 3y> 52) *(f1: fo, f3) = oL + afz + 9

2. In determinant form we have curl F =

Jj k
0 o o

det G - _8LE3
f

x Oxo

fi fo
_,0fs  Ofay., Oft  Of . ,0fs Ofi
—(@—a—%)lﬂ‘(a—%—a—m)ﬂ‘(a—m—a—b) (3)

In partciular V x F = 0 if and only if all of the three terms in (8) is identically 0.
These three equalities collectively are equivalent to the statement that aj L= %

e i
for all ¢ # j and of course if i = j the equality is trivial.

3.
VeF=yz4+0+1=1+yz.
4.
curlF = (0 —2)i+ (zy — 0)j + (2 — z2)k = —zi+ zyj + 2(1 — 2)k.
> 1 1/ 1
= — Yz 7‘@:_ L Yz
VeF x—l—xze +1—|—(z/x)2 I+I2+22+:Eze
6.
0F; 0F; 0Fy OF; 0F, 0F
P =28 22 Sl Nt 2 Ty
o (8y Bz) +(82 8:10) (8:10 8y)
_ TYZ\3 Z 3 TYz __
(0 — zye )1+(0+7x2+22)3+(yze 0)k
TYzs z 3 Yz
:—xyey1+x2+z23+yzeyk.
" o 8 . ,0f of of
20 _ (LY Yye (YL YY)
Vf_v.vf_(8:67(934’(92).((9:8’834’(92)
*f  of  *f
2 —_— —_— —_—
VI =gzt e o
8.

by = kcoskxsinlyeVF T2 = ¢ = —k%¢
¢, = IsinkxcoslyeVF" 0% = ¢, = 126



¢z =V k2 + 12¢ = ¢zz = (kz + l2)¢;

= Guz + Qyy + b2 = (K> =P+ K2+ 1% =0.

9.
_ of of of
Vo (V) =V x (50 500 5)
_ (291 9007 007 00f 00/ 00f
SNy Oz 0z0y 0z0x Oxdz 0xdy Oyox
=(0,0,0) =
as 88; 9 = ;%g‘:y and so on, with each pair of partial derivatives cancelling.

Comment This says that the curl of the gradient of a smooth scalar field is
the zero vector: in general a vector field whose curl is identically zero is called

irrotational.
10.

(5 0 5) (5f3 Of 0fi  O0fi  Ofs Of2 afl)
oz’ oy’ 9z Oy 0z’ 0z 0z Oz’ dxr Oy

Ve(VxXF)=

P fs Oy [ 071 O%fs n Pf  Pf

- Oxdy  Oxdz  Oydz Oydx  0z0x 020y

as each of the three terms carrying a positive sign is matched by another carrying
a negative sign with the order of differentiation reversed. Hence they cancel in
pairs to give the (scalar) zero.

Comment A vector field such as this one whose divergence is identically zero
is called solenoidal.

Problem Set 4

Ve (fxg) =V e (fogs — f3g2, f391 — [193, f192 — f291)

_ Ofag3 — f392) 4 O(f3g1 — f193) + A(f192 — f201)

or oy 0z
0 0 0 0
8f2 s 93 8f3 - fs o 92
af3 a91 afl
+ oy 7! + f3 oy oy ” f1
0 0 0 3
+ f f1 92 f2 fz g1 (4)



Next we work ‘from the other end’:

goV xf—feVxg

B B B B) B B)
—nlG, -G+l - 5D TG - 5

) ) B ) ) )
_fl(ag; B af)_fz(agzl B agxg)_ﬁ(ag; B agyl) (5)

and the twelve terms in each of (9) and (10) may be matched, thereby estab-
lishing the identity.
2. Applying the identity of Question 1 with f = Vf and g = Vg we obtain

Ve(VfxVg)=Vge(VxVf)—Vfe(VxVg). (6)

However, by Question 9 of Set 3 we have V x Vf =V x Vg = 0 so the RHS of
(11) becomes 0 — 0 = 0.
3. On the LHS we have

81)3 8’02 81)1 81)3 8’02 8’01

the first component of which is

ﬁ(%_%) _ﬁ(%_%)

Oy * Ox dy 0z 0z ox

- 62’02 _ 62’01 _ (92’01 + (92’1)3

- Oydxr  Oy? 022 0201
On the RHS we have

(9’()1 6’1)2 6’1)3

ovy | Oz | OU3y 2
3x+8y+8z) vy

V(Vev)—Viv=Y(

which has first component:

82’01 81)2 82’03
+ +
0x2  Oxdy Oxdz

821)1 82’01 821)1 .
0x2  Oy? 022"’
we note that the first and fourth terms of (13) cancel leaving the same four
terms that we see in (12), as required to complete the verification of equality

(8)




of the first term. The second and third terms follow the identical pattern up to
the naming of the subscripts.
4. Now [ Fedr= [ Fedrg—

/1((t2—t2), (92 —t%), (t—t%))e(1, 2t, 3t%) dt = /1(2t(9t3—t2)+3t2(t—t6))dt =
0 0

! ! 185 9
/(18t4—2t3+3t3—3t8)dt:/ P+ 18t =3 dt = [— + — — =]} =
3+§_1_15+216—20_E_3§
45 3 60 T 60 0 T60°

F(z,y) = (¢ +y°,2zy + 1) = (¢2, 0y)
= 0= [+ do = 50+ o + £0)

d
:>¢y=2:1cy+d—‘2:2:Ey+1:>f(y):y+c.

1
cop(z,y) = gwg +zy’ +y+e

Comment We can check: ¢, = 2 +y?, ¢, = 2zy + 1. The constant ¢ could
be chosen to satisfy a given initial condition for ¢.
6.

Hence
1
¢(:v,y72)=/(:v+2y+42)d:v=§w2+2yw+4zw+f(y,2)
= ¢, =2+ f(y,2) =22 -3y —z= fy(y,2) = -3y — 2
3
= fly,2) = =5v° = 2y + 9(2);
dg 2
:>¢Z:4x—y+az4x—y+2zég(z):z +ec.
L o 3 9 2
égb(x,y,z):ix —|—2xy—|—4:1:z—§y —zy+z2°+ec.
7.
u(x,y,z) = (xyz,z,2)
i j k
curl(u) = | & 8% Zl=(0-0)i+(0—a2y)j+(1—2z2)k
xyz x oz



and hence u is not conservative for if u = V¢ say then V x V¢ = 0 by Question
9 Set 3.

8. Let C have a parametrization r(t) = (z(t),y(t), 2(t)) (a <t < b) so that
our integral I takes the form

b
I:/ f(r(t)) er'(t)dt

L[ @t ooy v,
N Ordt Oydt 0zdt

b
— [ it =o0) - o).

In particular, if C' is a closed curve we may take b = a and so we get
yé fds = ¢(a) — ¢(a) =0.
c

9. Since F(z,y) = Vé(z,y) is conservative, (where ¢(z,y) = 32° +zy* +y)
the value of our integral I is independent of the path taken between endpoints
and has value

I'=¢(b) —¢(a) = ¢(1,2) — ¢(0,0).
1

= (5(13) +(1)2H+2-(0+040) = 6%.

10. The line L from (0,0) to (1,2) has a parametrization r(t) = (¢,2t)
(0 <t <1),and sor'(t) = (1,2). Our vector field F(x,y) = (22 + y?,2zy + 1)
so that
F(t) = (t2 + (2t)%,2t(2t) + 1) = (5t%,4t* + 1)

_/F(t)or’(t)dt_/1(5t2,4t2—|—1)o(1,2)dt
L 0

1 1
:/ (5t2+8t2+2)dt:/ (13t% +2) dt
0 0

A3, o 13 191

Problem Set 5

1. Solve 96 5
oY 2 2 _ 2
5y~ T = olwy) =5ty + f(y)
ég—zzlry—i—j—z:%cy—i—ey:>g(y)=—ey+c

10



3

so(zyy) = % +axy? —e Y+
03 13
I= ¢(078) - ¢(17 _1) = (E + 0(82) — 678) — (E —+ (1)(—1)2 — 67(71))
1 4
s I=e— =3

2. Put

o zcosx +1Inz = é(x,y,2) = zsinz +xlnz + f(y, 2)
T

0 0
- G == ) = %+ 9l

= ¢(z,y,2) = zsinz +xlnz + % +9(2)

N nz+ 24+ _gnat o g(2)
— =sinz+—+ — =sinx + — z)=c.
0z z dz z g

Hence the general solution is

3
¢(l‘,y72) =zsinz+xlnz + % +e.

Now appying the intitial condition ¢(%,1,1) = 0 gives an equation in ¢

T 3

HELD =10 410) + 5 +e=0=c=—1.

y' 4

Sd(x,y,2) = zsine +xlnz + T3

3. Put z(t) = cost, y(t) = sint, (0 < ¢t < 27).
y'(t) = cost so that our integral I becomes

Then 2/(t) = —sint,

27 2
1= / (2sint(—sint) — 3cost(cost)) dt = —/ (2sin? t + 3 cos? t) dt
0 0

2 2
1
= —/ (2 +cos?t)dt = —2(27) — 3 / (14 cos2t)dt
0 0

1
= —4r — 5(271') = —5m.

Comment Since cos 2t has period m, which divides the length of the interval

of integration (27), we know, without further calculation, that its contribution
to the value of I is zero.

11



i ik
V=wXr=|w wy wg|=i(wez—wsy)+jlwsz—wiz)+k(wiy —wez),
r Yy oz
i ; K
=curlv = (V x (w x 1)) = % 8% %

woZ — W w3l — W1z W1y — wWal
3 3

= i(w1 +w1) + jlws + w2) + k(ws + wz) = 2w
1 1
o =curlv = w.
2

5. The curve of integration consists of four connected line segments, which
we parametrize as follows:

04 : I‘4(t> = (07 1- t)vrﬁl(t) = (05 _1)3
with 0 <t <1 in all cases. Then our integral I = ichas four parts:

1
/ Fodrlz/(O,tQ—t)o(l,O)dtzo;
Cq 0

1
/ Fedr, :/ (t,1' —1) @ (0,1)dt = 0;
CQ 0

/C3Fodr3:/01(1,(1—t)2—(1—t))o(—1,0)dt:—/01dt=—1;

1
/ Fodr4:/(1—t,02—0)dt:0.
Cy 0

.'./FOdr:0+O—1—|—O:—17§O;
c

and since the circulation around this closed curve is not 0, the vector field F
cannot be convervative.

Comment If you try to find a potential function ¢ for F in the manner of
our previous examples, a contradiction will arise in the that the functions of
integration that arise will depend on variables not in their argument, indicating
that no solution is possible to the equation F = V.

6. From F = mr”(t) we obtain

/CFodr =m /C r’(t)er'(t)dt =

12



5 |G 0+ r(0?) a

m

m d m m
=5 [ GO OIF) at = FU O = Fob - 5o

Equating the two expressions for the integral now gives

B(A) — 6(B) = iy — Zmv?

1 1
= ¢(A) + 5”“’124 = ¢(B) + gmv%.
7. We have r'(t) = (2t,2,3t?) for 0 < ¢ < 1. Hence

b 1
/ F x dr = / (F x v/(t)) dt :/ (2%, 3 t%) x (2t,2,3t%) dt
C t=a 0

i j k
23— | = i(=3t° — 2t*) — j(6t° — 2t°) + k(41> + 2t*) so
2t 2 3t
! A A 1 2 26 4 2.5,
I= / (=3t° — 2t 2% — 6t°, 4% + 2tY) dt = [(—=t° — =°, =10t + Z1°]]
0 2 5 3 5
— (- 9 _2 Z)
10" 3’57
8. We have P(z,y) = 2y so that %—5 = 2 and Q(z,y) = —3z so that
% = —3. Hence, by Green’s theorem
0Q P
—_— - — d:bdy:/ -3 —2)dxdy = —57
| GE-5 (32

as R is a unit circle with area 7(12) = 7. This is in accord with our direct
calculation of Question 3.

9. To apply Green’s theorem we put P(z,y) = y* and Q(x,y) = —3 so that
%—1; = 3y? and %—f = 322. This gives an integral that is naturally expressed in
polar form

yg yide — 23dy = // (=322 — 3y?) dady = —3// r? - rdrdf
c R R

27 2 4
16
- —3/ / r3 drdd = —67|—)2 = —6r[~> — 0]
9=0 Jr=0 4 4

= —24m.
10. Here we hae P(z,y) = % so that %—5 = y? and Q(x,y) = x — % S0

that % = 1 — 2% Hence the integrand in Green’s theorem is in this instance
9Q opr

s gy =1l- 22 —y? = 1 — r2. This quantity is positive throughout the unit

13



circle and is negative outside it. Hence we maximize the integral by taking C'
to be the unit circle. This maximum value is then given by

27
// l—r Tdrd@-/ / r—r3 drd9—2w[%—%]o

Problem Set 6

1. P(x,y) = 2%y = %I; =a%, Q(z,y) = 2zy = 5 aQ = 2y. Hence

%Fodr—// 8Q 8P ddy—/ / (2y — 2?)dydx
=0 Jy=x2

1
— X 2 AT = .IQ—ZEB — I4—ZE4 ui
- / b~ sty ede = [ [ o)~ (0! —at)a

1 CE3 (E4
- [@—ahde= [ - Th= G- P-0-0= 3.

2. We need to split the boundary curve into two. First the parabolic section
Ci:y=2%(0<x<1),s0using r =t as parameter we have ry(t) = (,t?)
(0 <t < 1) as the two sections meet at (1,1). Hence r}(¢t) = (1,2¢t). The line
segment from (1,1) to the origin is Cs : ro(t) = (1—¢,1—1¢), (0 <¢ < 1) and so
rh(t) = (—=1,—1). Now F(z,y) = (22y,2zy) and so F(r(t)) = (t? - 12,2t - t?) =
(t4,2t3) while

F(ra(t) = (1-1)*(1 = 1),20 = )1 — ) = (1 = 1)°, (1 = 1)*).

Hence we obtain

1 1
56 :/ (t4,2t3)o(1,2t)dt+/ (1 =1)>%,2(1 —t)?) e (—1,—1)dt
c 0 0

= /1(154 + 4th) dt — /1((1 — 1)} +2(1—t)%)dt
0 0

1 0
:/ 5t4dt+/ u® + 2u? du, where u =1 —t
0 1

14



3. In the notation of Green’s theorem:

P(.I,y) =T yvé a_ = xzv Q(xvy) - —$y2 = (Z_C:j = _y2

I=/ Fodr:—//(x2—|—y2)dwdy;
c R

converting to polar coordinates we obtain

27 2 2 7,4
—/ / r2rdrdf = —27r/ 3 dr = 21[—)2
o Jo 0 4

= —27T[I — 0] = —8m.

4. Now C has parametrization r(t) = (2cost,2sint) (0 < t < 27) so that
r'(t) = (2/(t),y'(t)) = (—2sint, 2 cost). Hence the integral becomes

1= /277((2 cost)?(2sint)(—2sint) — (2cost)(2sint)?(2cost)) dt
0

2 2

2 2
1 4t
= —8/ (1 — cos? 2t) dt = —8(27) + 8/ _FC% dt
0 0

2 27
1+ cos2t, 1 — cos2t
:—32/ cosztsinztdt:—32/ (RO (L0092
0 0

= —167 + 4(27) = —8m.

5. Take the integral equality in Green’s theorem:

%Pdaz—!—@dy—// 8Q 8Pddy

and put P(z,y) = —y so that ‘9P = —1and Q(z,y) = = so that OQ = 1. Hence

%yécxdy—yd:r:%//R(l—(—l))da:dy://Rdxdy:A

6. Using the parametrization r(t) = (acost,bsint) (0 < t < 27) we have
r'(t) = (—asint,bcost) and so by Question 1

1 2m 1 2m
A= —/ (P,Q)er'(t)dt = —/ (—y,z) e (—asint,bcost) dt
2 Jo 2 Jo
1 2T
=- (—bsint,acost) e (—asint,bcost) dt
2Jo
1 [ b b
:—/ (absin®t + abcos? t) dt = a dt:a—~27r:7rab.
2/, 2/, 2
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7. The standard parametrization of the line segment is given by

r(t) = (a,b)+t((c,d)—(a,b)) = (1—-t)(a,b)+t(c,d) = (1 -t)a+tc, (1—t)b+td),
0 <t <1. Hence r'(t) = (¢ — a,d — b). We thus obtain

L ody bdx
xdy — ydx = / x—dt—/ y—dt
/c o dt o dt

1 1
:/ ((1—t)a+tc)(d—b)dt—/ (1= t)b+ td)(c — a) dt
0 0

@-o5e- S5 a - - aga- S5
(=I5 ~0) = (0= (G +(a=aG -0~ 0 3)

1
§(d—b)(c+a)+ E(a—c)(d—i—b)

1
i(ad—kcd—bc—ab—!—ad—l—ab—cd—bc):ad—bc.

8. Applying Question 5 and the result of Question 7 to each side of the
polygon we obtain the area formula:

A:

N =

[(z1y2 — w2y1) + (w23 — T3Y2) + -+ + (Tn_1Yn — Tn¥Yn—1)]-

In the given example we obtain

A= 31(0-4- (30)) + (32 = (~2)(4)) + (-2)(0) — 2(-1)) + (~1)(0) — 0-2)]

1 16
= §[O—O+6+8+0+2+0—O] =5 =8.
9. We parametrize the circle in the usual way: z(t) = cost, y(t) = sint

(0 <t < 2m) so that 2/(t) = —sint, y'(t) = cost. Hence

2w :
— t t
yﬂ Fedr :1:/ (— 2 (—sint) + ——
C 0

cos2t + sin?¢ cos?t + sin?t

27 27
/ (sin?t 4 cos? t) dt = / dt = 2.
0 0

(cost) dt

10.
Py = ——Y 9P _ W2 +y?) - @)(2y) _ y* —a?
’ .’L'2+y2 ay .’L'2+y2 $2+y2’
z 0Q _ () +y?) —2x(z) y*—2a°
Q(%y):ﬁ?_: 2 2 =72 2"
2 +y Ox 2 +y 2 +y
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Hence

// @_8_19 ddy—//Od:vdy—O

The answers to Questions 9 and 10 are not equal, showing that Green’s theorem
does not apply here. However we note that the vector field F has a singularity
within the circle R at the origin, where it is not defined.

Problem Set 7

1. Parametrize the cone by cylindrical coordinates r(¢, z) = (z cost, zsint, z)
0<t<2m, 0<2z<1. Then

0
8_2 = (cost,sint, 1),

0
8—; = (—zsint, z cost,0)

. . k
or 0 ' J
8_r X 8—; =| cost sint 1| =i(—zcost)—j(—zsint) +k(zcos®t+ zsint)
z —zsint zcost 0

3}
é||—r ||_\/z20052t+2231n t+ 22 =2z,

/f dg_\/—/%/ zcost) 22 dzdt
:\/5/0 cos t(/o < dz dt = \/_/W1+COS2t[Z Jodt

4
\/5/2”dt2\/§7r\/§7r
T8 T8 4

2. We use = and y as our paramters for the surface S so that r(z,y) =
(z,y,9(x,y)). Hence

or dg, Or N
8$ - (1707 (9.%)7 8y - (0717 8y)’
i j k
Or Or a . dg dg
—x—=11 0 = -
oo, | B i(-g,) ~ig,) Kk
dy

or or dg .2 dg 2
:>||%xa—y||_\/1+(%) +(3)

ﬁ//ffya dff—//fxygwy)\/1+(g )2+(gg) dxdy.
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3. Let h(z,y,2) = z — g(z,y). Then

99 9%

Vh(iC,y,Z):( axv_a_yv )

dg.\2 g\ 2
9 =1+ (2 ()

-/ /S fayz)do = | /R F(@, 9,9z, )1V h]] dady.

4. Here g(z,y) = \/x2 + 32 so that

99 _ x99 _ Yy
or /22 +y2 Oy /22 + 42

2 2
;»||Vh||—\/1+ Y

$2+y2 $2+y2

The region of integration is the projection of the surface onto the xy-plane,
which in this case is the unit circle. Sticking with cartesian coordinates this

gives

1 \/17’y2 2 2 1 —

1= \/5/ / v drdy = i/ (2] vt dy
y=-1 y:*\/ﬁ 3 -1

2v2 ! 5
ZT/ (1 9%z dy.
—1

Put y = sint so that dy = cost dt;

W2 [2 W2 2
I= T\/_/ (1 —sin®t)? cost dt = T\/_/ cos* t dt
-3 -3

42 21 2t 2 [z
= \?{—/2( +C208 )2dt:§/2(1+20052t+60822t)dt
0 0

2 s 3 1 4t
- £(z + [sin 2] +/ TS T g
3 \2 o 2

as the period of cos4t is Z, its contribution to the integral is 0 and we get

PR
I:ﬁ+o+ﬁz:@'
6 6 2 4

5. Write the surface in the form y = g(x,z) = 1 — x so that h(x,y,2) =
y—g(z,z) =x+y— 1. Hence

Vh=(1,1,0) = ||Vh|| = V2, f(z,y,2) = 2+2y+32z = 2+2(1—2)+32 = 2—x+32

18



:>//Sf(x,y,z)daz//Rf(x,g(:v,z),z)HVthxdz

1 1 2
:\/5/ / (2—:C+3z)dxdz:\/§/ [2x—%+3x2];:0d2
2z=0Jz=0 0

1
—\/5/0 (g+3z)dz:\/§[§z+§z2]5:¥

52+ 5 (14+1)=3v2.

6. Parametrize the surface S using x = rcost,y = rsint and z = %r. for
0<t<2rand 0 <r < R. Since then z?+y? = r? and z increases linearly from
0 to h as r increases from 0 to R. Hence this gives the surface of an inverted
cone. We can find its surface area by integrating the constant function 1 over
S. Now

O I% _ (cost,sint, L) x (—rsint, rcost, 0)
— X — = (cost,sint, — —rsint,rcost,
or Ot R
i J k h h
=| cost sint % :i(——T cost)—j(——r sint) + k(r cos® t + rsin’ t)
. R R
—rsint rcost 0

Jor Or h2r2 . \/1"2(h2 + R?) r
2w 2 = 2 2 2 _ 2 2
j”@r X (%H \/R2 (cos?t +sin’t) +r 72 R\/h + R2.

27 rR
S 0 0

_VRE+RZ [T RddimW+mﬂR
- Ry Mrﬂt——ﬁr—%b

27/ h? 2 R?
- 2rvh”+ R R = 1R\ h2 + R2.

R 2
7.
. . Kk
dg 0 ' J
a—z X 8_5 = (cosw,sinv,0) X (—usinv,ucosv,1) = | cosv sinv 0

—usinv wucosv 1

= i(sinv) — j(cosv) + k(u cos® v + usin’ v)

0 0
:>||—g X —g||:\/sinzv—i-cos?v—i—u?:\/l—i—u?.
ou  Ovuf

Hence the required area A of the surface is given by

3 1
A://da:l/ /\/1+u2dudv
s 2Jo Jo

37
1 1
2/0 [iu( 1+u2+§1n(u+ 1+ 2]} dv
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- %/%[(ﬁ—l—ln(l—l—\/i)—(()—l—())]dv

0

= 3;(\/5+1n(1+\/§)).

8. We naturally use cylindrical coordinates to parametrize the curved surface

of the cylinder: r(t,z) = (cost,sint,z) (0 <t < 2w) 0 < z <1). Then

. Dk

or 9 ! J

T~ |—sint cost 0] = (cost)i+(sint)j;
ot 0z 0 0 1

2 1
= / Fendo = / / (cost,z,—sint) e (cost,sint, 0) dzdt
S o Jo

27 1 27 2’2
= / / (cos®t + zcost) dzdt = / [z cost + 5 cos ), dt
o Jo 0

2m 2
1 1
:/ (c052t+—cost)dt:—/ (14 cos2t + cost)dt
0 2 2Jo

1.1 1
= 5[t+ 5sm2t+sim]§” = 5[(27r+0+0) —0] =

9. As in Question 3 we find that

_, 0g Bg Br 8r

é//Fonda—//F 81‘ da:dy—//Fthdxdy

10. We may write the equation of the surface as z = g(z,y) ==2 - % — %

so that
r Yy

11
= Vh RR) = \5> _71 )
(2,3,2) = (5,3 1)
note that this accords with the correct direction of the positve normal to the
plane, which is (2,3,6). Now

F(z,y,2) = (182,-12,3y) = (182 — 5 — 2), -12,3y)
= (36 — 6z — 9y, —12, 3y).
The surface plane meets the xy-plane at the points where

2z
= )

The projection of the surface plane onto the xy plane forms a triangle consisting
of the positive axes together with the boundary line given by (14). Hence for a

2e4+3y=12=>y=4—

20



fixed value of = the variable y has limits of 0 and 4 — %m The upper limit for z

occurs when 4 — %x = 0 which gives x = 6. Hence our integral takes the form:

6 r4—22
11
//F(:z:,y,z)onda:/ / 3(36—6I—9y,—12,3y)o(—,—,l)dydaz
s 0o Jo 32

6

2 3

4 4
_/0 (24—4:1:—83:—!—%)511::[24:1:—6:1:24—%]8

=144 —-2164 96 — 0 = 24.

Problem Set 8

1. We have that
VeF =siny+0—siny =0

@#Fondaz///VOFd:EddeZ///dedydz:O.
1%

2. We use the alternative integral I provided by the Divergence theorem:

VeF =2+42y+ 22

:I:///(2+2y+22)dxdydz.
v

We can argue that, by symmetry, the terms y and z will contribute 0 to I so

that I is twice the volume of the sphere, and hence I = %w. We can do the

calculation explicitly however by passing to spherical coordinates:

2T ™ 1
J = /// ydxdydz = / / / 7 sin 0 sin ¢ 72 sin ¢pdrdfde
1% o Jo Jo
1 T 2w
/// ydxdydz =/ (/ rsin? (;5(/ sin@d@)d¢dr)
1% 0 0 0

but [Z7singdp = 0= J = 0.

VeF=y+z2+=x

11 gl 1 1

1
I:///(x+y+z)dxdydz://[—:172—|—:17y+z:17]6dydz

o Jo Jo o Jo 2
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1ol 1 2 1y
—/ / (§+y+z)dydz:/ [%+%+yz]édz:/ (5 +5+2)dz
o Jo 0 0

4. Here
VeF =4—4y+2z.
In cylindrical coordinates, the volume within the cylinder is represented by
r(r,t,z) = (rcost,rsint, z), 0<r <2 0<¢t<2m 0<2z<3.

By the Divergence theorem, the value of the integral I is

3 2w p2
1= / / / (4 —4rsint + 22)r drdtdz
o Jo Jo
3 p2m g2
= / / / (4r — 4r?sint + 2rz) drdtdz
o Jo Jo

3 2 4
= / / [2r% — —r¥sint + r?2]?_, dtdz
o Jo 3

3 2
32
:/ / [8 — —sint + 4z] dtdz;
0o Jo 3

the middle term integrates to 0 leaving

3 22 9

87r/ (2 + 2)dz = 872z + )3 = 8n[6 + =]

0 2 2
=47 x (12 +9) = 847.

5. To calculate the integral |, ¢ F endo directly we parametrize the surface
of the cylinder, the curved portion of which is given by

r(t,z) = (2cost,2sint, z), 0 <t <2m, 0< 2z < 3.

Our next ingredient in our surface integral is

Or Or g J k . . .
— X = |—2sint 2cost 0| =1i(2cost)— j(—2sint) + k(0)
ot 0z 0 0 1

(2cost,2sint,0), which is indeed outward pointing.

= F(x(t,2),y(t, 2),2(t,2)) ® % X ? = (8cost, —8sint, %) e (2cost, 2sint, 0)
z

= 16(cos® t — sin®t).
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Hence as regards the curved surface of the cylinder our integrand becomes

2 3 2
=1= 16/ (cos® t — sin® t) (/ dz) dt = 48/ (cos? t — sin®t) dt.
0 0 0

Now

27 27

1 9t 1

48/ cos? tdt = 48/ “%dt = 48(2m - 5 +0) = 4.
0 0

Now sin® ¢ is an odd function which is periodic with period 27. Hence its integral
over any interval of length 2 is the same and, since sin®¢ is odd, its integral
over the interval [—m, 7] is 0. (Alternatively, substitute u = cost and verify this
directly.) Hence the contribution to the surface integral of the curved surface
of the cylinder is 48,

The unit outward pointing normals to the top and bottom of the cylinder
are respectively k and —k. The top of the disc is parametrized by r(r,t) =
(rcost,rsint,3), 0 < r < 2 and 0 <t < 27. (Note that the r symbol used
as a parameter has no particular connection with the generic r symbol used to
indicate a parametrization.) Hence

i J k
or X or =| cost sint 0| =r(cos?t +sin? t)k = rk
or Ot .
—rsint rcost 0
= F(x(r,t),y(r,t), 2(r,t)) o ? ﬁ = (4rcost,—2r%sin*t,9) ¢ (0,0,7) = 9r
27
= # Fendo —/ / 9r drdt = / [r2]2 dt
= 18/ dt = 36m.
0

For the bottom disc we have r(r,t) = (rcost,rsin¢,0), 0 <r <2and 0 <t <
27. Hence

or Or i ,j k 9 9
— X — = | cost sint 0| =r(cos”“t +sin“t)k = rk
or Ot .

—rsint rcost 0

but we must choose the opposite normal —rk as it is outward pointing. (This
direction would come from our calculation if we took the vector product in the
opposite order.) Hence

F(a(r,t),y(r,t),z(r,t)) e ? X % = (4r cost, —2r?sin? ¢, 0)e(0,0,7) =0
r

27 2
é#Fonda:/ /Odrdt:().
S 0 0
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.',#Fond0:487r+367r+02847r,
s

agreeing with the result found in Question 4 via the Divergence theorem.
6. By the Divergence theorem we have

#éVdeaz///VVo(VxF)dU:O,

as the divergence of the curl is identically zero (Set 3 Question 10).
7. Now Ver =1+1+1=3. Hence

#ronda:///VoFdxdydz:3///dxdydz:?)V.
s 1

8. Applying the Divergence theorem in the reverse direction gives us what
we want:

///ng:z:dydz:///VVondxdydz:#g(vf).ndg_

9. We parametrize the circle in the usual way: r(t) = (cost,sint) for 0 <
t < 27 and r'(t) = (—sint,cost). The (unit) tangent to the curve is T =
(—sint, cost) and so the outwards normal to this is n = (cost,sint) (—n points
inwards). Thus we get

2m
/ Fends = / (2sint, 5 cost) e (cost,sint) \/(—sint)2 + (cost)2dt
c 0

2 2m
7
:/ (2sintcost+5costsint)-1dt:5/ sin 2t dt = 0.
0 0

Now we evaluate it using the other side of the 2-dimensional Divergence theorem:

OF, 0OF,
F=—+—=0+0=0
Ve B + oy +

é//VoFd:z:dyzO,
R

and so the two calculations agree in this example.

10. In general the unit tangent T = (d—;”, Z—Z) and the outwards normal is

then n = (%, —4) (in general, rotating the vector (a,b) through —Z is (b, —a)).
Hence we may write nds = (dy, —dz). Hence we get:

ych ends = ng(P, Q) o (dy, —dz) = §£dey — Qda = §£dey — (—Q)dx

which by Green’s theorem is equal to

// 3_P+3_Q ddy_//RVoFd:rdy.

24



Problem Set 9

1. We calculate the first ingredient:

i j ok
VxF= |2 2 ZI=i0-0)-j1-22)+k(0-0)=(2z—1)j.
22 yg T

For our surface, we may take any surface with the triangle as boundary, and
the obvious candidate is the solid triangle (or lamina) itself. Two vectors in the
plane are (1,0,0) — (0,1,0) = (1,—1,0) and (1,0,0) — (0,0,1) = (1,0,—1). A
normal to the plane is then given by

i j ok
1 -1 0|=i+j+k
1 0 -1

so the plane has equation x 4+ y + z = ¢ and by substitution of any of the points
we get that ¢ = 1. We write this surface in the form z = g(z,y) =1 — 2 — y.
Our function h = z —g(z,y) = z2—(l—2z—y) =z +y+2—1 and so
Vh(z,y,z) = (1,1,1). This vector points in the direction consistent with the
right hand rule as we traverse the vertices of the triangle in the specified order.
Denoting the projected region of the triangle S on to the zy-plane by D we see
that, the required integral I has the form:

I_//SV><chr_//D(Zz—1)jo(i+j+k)dxdy_//D(Zz—l)dxdy_
://[)(2(1—x—y)—1)d:1:dy://D(1—23:—2y)d:1:dy.

The triangle D is bound by the x— and y-axes together with the line z +y =1
so that y = 1 — 2. Hence we may now calculate:

1 l1—x 1—x
1= / / (1 —2x — 2y) dydx = / [y — 22y — y2)0 " dx
0 Yy 0

=0
_/0((1_35)_233(1_33)_(1_35)2_(0—0—0))dx
_/1(1—13—23:4-2:1:2—1—|—23:—332)d3:
0

1 3 2
9 T zc, 1 1 1
= — d = |— — — = - — — = ——,
/O(x ndr=l5-5h=3-5="5

2. Let C; be the initial line segment parametrized as r1(t) = (0,¢,0) (0 <
t < 1) so that ri(t) = (0,1,0). Then F(ry(¢)) = (¢,0,0) and so

1 1
/ Fodrlz/ (t,0,0)o(O,l,O)dt:/ 0dt = 0.
(of} 0 0
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Next let Cs be the quarter circle, which is parametrized as ra(t) = (0,sint, cost)
0 <t < %) (Note that begins at (0,0,1) and ends at (0, 1,0) as required.) We
have r4(t) = (0,cost, —sint) and F(rz(t)) = (sint,cost,0) so that

b

3 3
/ Fedr = / (sint,cost,0) e (0,cost, —sint) dt = / cos? t dt
Ca 0 0

1 T T

B 1 =
:—/ (1+cos2t)dt:—+—[sin2t]02:Z—F [(0—-0] =
0

FNgr.

T
2 4 4 4’
Finally let C3 be the line from (0,1, 0) to the origin:rs(¢) = (0,1—¢,0) (0 <t <
1) so that r5(¢t) = (0, —1,0). We have F(r3(¢)) = (—1,0,0) and so

1 1
/ Fodr:/ (—1,0,0)-(0,—1,0)dt:/ 0dt = 0.
Cs 0 0

,',%Fodr:/ Fodr1—|—/ Fodr2+/ Fodr3:0+z—|—0::
c C1 Cs Cs 4 4

3. On the other hand we calculate

i j k
VxF(,y,2) =38 2 z|=i0-1)—j1-0)+k0-1)=—(i+j+k).
Y z T

As our surface with C as boundary, we take the solid quarter circle with
us

parametrization r(r,t) = (0,rcost,rsint) (0 < r < 1,0 <t < F). Also
F(r(t)) = (rcost,rsint,0).

or Or ! J ,k .
— x—=—=10 cost sint | = ri.
or ot .

0 —rsint rcost

However, given the orientation of C, the right handed normal points in the
negative z-direction, and since r > 0 we need to take —ri instead of ri (which
would have happened if we had taken the parameter ¢ before r and used the
reverse vector product). Hence our integral becomes

id 1 il 1
I:/VxFondo:—/2 / (1,1,1).(—r,0,0)drdt:/2/ rdrdt
S t=0 Jr=0 0 0

2 1 [2 1x T
= t = — 211 t=—— = —.
/o rrd 2/0 lod 22 4

N

i j K
o o] 9
V x F(z,y,2) = % Dy 52

. 3
sinz — % cosy+ % wyz

=i(zz —0) —j(yz — 0) + k(2 + y*) = z2i — yzj + (2* + yH)k.
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The simplest surface to use is S = {(z,9,2) : 22 +y?> = 1,2z = 1}. We
parametrize S by r(r,t) = (rcost,rsint,1) (0 <r <1,0 <t < 2n) so that

i j k
=| cost sint 0] =i(0—0)—j(0—0)+k(rcos® t+rsin’t) = rk,
—rsint rcost 0

o on
or Ot

which is oriented upwards, which is consistent with a right handed system
as applied to C. Also V x F(r(t)) = (rcost,rsint,r?cos®t 4+ r2sin’t) =
(rcost,rsint,r?). Hence our integral I is given by

2 1 2m 1
I= / / (rcost,rsint,r?) e (0,0,r) drdt = / / 3 drdt
o Jo o Jo

1 [ 411 1 T
= - = —(2 —.

5. We are given that V x F = 0 so that, taking any orientable surface that
has C as boundary curve, we have by Stokes’s theorem

prete [ [(vxFendr= [ [oendr= [ [0ir-0

Comment The Fundamental theorem of vector fields says that any smooth
vector field can be written as the sum of an irrotational (zero curl) vector field
and a solenoidal (zero divergence) vector field.

6. Consider the statement of Stokes’s theorem

//SVxFondozychOdr. (10)

i j k
e 2 & _9Qy . 9P 0@ _op
Vs ool =10 32) i(0 8z)+k(3x 3y)’

and since P and () are independent of z we have V x F = (%—g — O—P) Also the
unit normal n to our surface S is clearly k, as we can calculate exp11c1t1y as for
the RHS of (15), take = and y as the parameters of the surfaceand remembering

that z = 0 we then have r(x,y) = (z,y,0). Hence % =i, —” = j so that

g; X gz =1ix j=k. Hence the LHS of (15) beomes:

//VXFondo—// a—Q—a—Pk k dzdy _// a—Q—g—]yD)dxdy.

(11)
On the other hand, for any parametrization r(t) of C' we have

B dr dy
ychodr = yéc(P(a:,y),Q(x,y),O) ° (E’ %,O) dt
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= ych(:c,y) dx + Q(z,y) dy (12)

Combining (17) with (16) gives Green’s theorem:
8 8P
yé P(z,y)dz + Q(x,y dy—// —Q——y dzdy.

7. By the Divergence theorem we have

#SE.nda_///vv.Edv,

which by Maxwell’s equation for the divergence of E is equal to

i///pd:z:dydz:g,
€0 v €o

where @ is the total charge enclosed by S.
8. Using Stokes’s theorem we obtain

%Eodr://VxEondU
C S

which, by Maxwell’s equation for the curl of E gives

//—ondo——%//SBondo.

OE
V X B = pupd —
X pod + pogo ot

OE

= Ve (V xB) :/J,QV.J—I—/L()EQV.E

and since the divergence of the curl is zero, we can cancel the positive factor pg
and take the differential operator outside the integral to obtain

O(VeE)

a0

V.J—FEO

and so by Maxwell’s equation for the divergence of E,

9(%)

ot

V.J—FEO

ap
:E—FV.J_O

10. On the other hand, applying the identity Ve (f x g) = ge (V x f) —
fe(Vxg)toVeP we have

Ve(ExB)=(VXxE)eB—(VxB)eE
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B E
= 0 ° B—uoé‘oa— o E

ot ot

10(BeB) 1 9(EeE) ouw
> Ve ®xB) =5t 5a o o

ow

Y P =0.

.8t+Vo 0

Problem Set 10

1. Write r;(t) = (x;(t), yi(t), z:(t) (i = 1,2). Then, surpressing the symbol ¢
we have riero = (Ilfbg, Y1Y2, 2’122) so that

i ! / ! / / i
(r1 era)’ = (2122 + 2125, Y1 y2 + Y195, 2122 + 2125)

= (‘Tllq"?v y/1y27 2122) + ($1$/2, ylyév leé)
=rjery+r;ers.
2. We have
(r1 X r2)" = (y122 — 21Y2, 21%2 — T122, T1Y2 — Tay1)'
= (Y1 22+ Y129 — 21Y2 — 21Yy, 21 T2+ 2105 — X 22 — 12y, Ty Y2+ T1Yy — THY1 — T2y
= (y122_21y27 21562—30/1227 x/1y2_x/291)+(ylzé_zlyéu 2190/2—961257 évly/z—fwyi)
=r] Xro471] XIS

3. Applying the identity of Question 1 we get:
(rer) = =>r'er+rer' =0

=9%rer=0=r 171"

Putting r = p/(s) = T'(s), and noting that 5'(s)e5’(s) = 1 we therefore conclude
that §’(s) L 5”(s), which is to say that 5”(s) L T(s).

4. Since N(s) = % we get at once that T'(s) = k(s)N(s), the first Frenet
equation.

5. Since B(s) ® B(s) = 1, it follows from Question 3 that B’(s) L B(s).
Next note that from BeT =0 we get (BeT) = B T + Be T’ = 0; however
BeT'=BekN = k(BeN)=0 from the First Frenet-Serret equation and so
we also infer that B’ ¢ T' = 0, which is to say that B’(s) L T'(s). Since B’ is
perpendicular to both B and T it follows that B’(s) can be written as a multiple
of N(s), so we may define 7(s) by the relation B’(s) = —7(s)N(s), thus giving
the so-called Third Frenet equation.
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6. By the identity of Question 2 we obtain:
N =(BxT) =B xT+BxT
and so using Frenet-Serret equations 1 and 3 we get
N'=(=7N)x T+ B x kN = (=7)(=B) + k(-T) = 7B — kT.

7. The results of the three Frenet equations may be summarised as

T’ 0 k0 T
N |=| -k 0 7 N
B’ 0 -7 0 B
8. )
aw . ws aw ws
T = / = (—— R — _ =
()= B8) = (- sin 2 W s 2 V)
putting [|T(s)]| = 1 gives
a’w? ws aw b2
= (sin27+cos2?)+c—2:1

= 2 = d*w? + V.

9.
2 2
joN o aw ws aw® . ws
T (S) = (—? COS ?, _c—2 sin ?, 0),
hence ||T'(s)|] = “;“‘;2 = k(s), a constant independent of s. Moreover N(s) =
% = —(cos “=,sin 2%, 0).
10.
i j k
B=TxN=| —2%gin%s Wcosus L
— cos ©* sin<® 0
b
= (- SlnE)l—(—COSE)jﬁ-(% sin? 2= 4 22 2w—)k
c c c
b . w b ws aw
L )
c ¢’ ¢
Hence " "
w  ws bw . ws
B(S):(C—2C _70_25n770)7
hence using B’(s) = —7(s)N(s) we see that the torsion function is the constant
T= c_g) = a2w;U+b2'

Comment The Fundamental theorem of space curves says that curves are
characterised by their curvature and torsion in that if two curves share the
same curvature and torsion functions then one curve can be mapped onto the
other by a rigid motion. In particular, any curve with constant curvature and
torsion is a helix.
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