Mathematics 208 Classical Mechanics

Professor Peter M. Higgins
January 21, 2019

This module on classical mechanics follows on and presumes the content of
MA108 Mechanics. The central theme is that of rotating bodies and so we see
in Sets 1 and 2 the focus is on problems involving the centre of mass and the
moment of inertia of a system of particles and of a rigid body in two and three
dimensions, including the Perpendicular and Parallel axis theorems. Sets 3 and
4 are based on energy and work considerations related to moments of inertia and
feature standard problems involving the motion of masses on inclined planes,
over pulley systems and the torque that results within systems subjected to
external forces. Set 5 features questions involving both the static and kinetic
coefficient of friction when forces are in play on objects moving over rough
surfaces.

In the latter half of the module we introduce some new techniques apart from
our standard approaches of the use of Newton’s laws and Conservation of energy.
Set 6 calls upon the technique of Virtual work to resolve forces on systems in
equilibrium. Just as force is the rate of change of linear momentum, torque is
the time derivative of angular momentum and these concepts are the work of
Set 7. The Fuler-Lagrange equation is introduced in Set 8 as an alternative
to the Newtonian scheme in mechanics questions. Sets 9 and 10 have as their
subject rotating frames of reference. Coriolis forces are explored in Set 9 while
in Set 10 we return to the topic of central forces.



Solutions and Comments for the Problems

Problem Set 1

1. We put the weighted averages of the my(z; — T) to zero and solve for T.
(In doing so, we specify T to be the point M such that the torque of the system

about M is 0):
ka(xk — f) =0
k

ékaxkaka =0
k k

Dk Mk
Zk my
Comment If we take the masses as distributed along a see-saw (line) then
T is the position of the fulcrum that leaves the system in balance. The idea
extends to two and three coordinates. Alternatively the torque (tendency to
spin) around the centre of mass is 0. The calculation for this would be as above
with masses replaced by forces that would simply involve the introduction of
the local gravitational constant g in each term, which would cancel to give the
same result.

ST =

2. Let (Z,7) be the required coordinates. Then

2-0+3a+6a+7-0_9a a 2-0+3-0+6a—|—7a_13a

2+3+6+7 18 277 18 T

T =
so that (z,7) = (3a, 15a).
3(a) In discrete notation we have

Mz = Zmz + me = MaTa + MpZTg.
1€A 1€EB

Maza+ Mpzp
—

Comment We will extend this to more than two bodies and in the limiting
case, to integrals, which are then written in the form:

Mfz/xdm:/xi—mdx:/xé(x)dx
T

. . . d
where §(z) is the density function 7.

(b) The shape is comprised of two rectangles. The first has mass My =

1 x (11 — 1) = 10 and centre of mass at (z4,%.) = (3,4). The second has

=>Tp =



mass Mp = 1 x 5 = 5 with centre of mass at (5,1). The total mass is M =

Ma+ Mp =104 5 = 15. By part (a) the centre of mass of the entire body has
coordinates:

@) = (22 +5G).1005) +5(3), _ 35 LSy _ (7 2

V= 15 30" 30 66/
Comment Note that in this case the centre of mass lies outside the body. If

the L were tossed into the air it would spin about this point.

4. Place the side of length a on the z-axis with the right angle at (a,0). The

hypotenuse then has equation y = g:c. Taking the density d(z,y) of the triangle
T to be 1 we then have:

bx
a o 1 a ba 1 ab2 2
Mz:/ / ydyd:c:—/ 2 d:c:—/ —z dx;
o Jo 2 Jo 2Jo a
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Y76 ba 3
By symmetry, T = a — §, so that (T,7) = (%", %), or, if we place the right-angle

at the origin, we have the centre of mass of the triangle lies (%, %)
5. Alternatively we may use the formula:

a a 3 2
My:/0 :Cyd:czg/o xde:?)%[ﬁ]g:%:b%
_ M, ba® 2 2
YT T8 e 3
yielding the same result as before.
And we may find 7 by integrating the limiting contribution from thin rect-
angular strips ydx to M. Each contribution is § = $dx as the centre of mass
of the strip lies at (z, ¥). This gives:

“1, B2 oo b B2, b

6. We place the centre of the circle at the origin with the semicircle lying
above. By symmetry we have T = 0. For § we have the boundary equation
y = va? — x2. Since y is an even function of x the integral becomes:

| e a 3 3. 248
M= [Pl [ty dn =t - = 1o - ) =
2 0 3 3
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M= yd:z::/ \/a2—$2dx:2/ Va2 — x2dx
—a —a 0

Put ¢ = asinf so doz = acosfdl, va? —x%2 = acosl; x = a — 0 =
r=0—~60=0,

N

7'l'a2

]\4:6;2/2 2c0529d9:a2/2(1+00529)d9: -
0 0

Hence

_ M, 2d* 2 da
y_M 3 wa? 3r

Therefore (z,7y) = (0, 3—7‘1)

Comment We have essentially solved this problem in MA108 using the The-
orems of Pappus.

7. By symmetry T = 0. To calculate ¥ we model the mass contribution using
2
vertical strips, the centre of mass of which corresponds to (Z,9) = (z, 45%).
The moment of the strip about the x-axis is:

)
sz/gdm:/ —(4— 2% dx
92
2

) 8 x® 64 32
/25(4:02)2@5/0 (16 — 8z +z*) :5[16xf§x3+€]3:5[32f§+€]
75480—320+96 _ @5
N 15 15

2 ) 2 ) 3, 8, 32
M= [dn= §(4—2")dx =20 | (4—2°)dx =26[4z——]5 = 20[8— =] = —
L 0 3 373

M, 256 3 8

YT T 35
8
- (@7 = (0,2).
@7)=(0%)

8. Replacing ¢ in the previous problem by § = 222 we obtain:

2 2 3 5 7
1
M, :/ 2?4 — 2% dr = 2/ (1622 — 8z + 2%) dx = 2| 6z7 8i+$_]g
-2 0 3 5 7
128 256 128 128(35 + 15) — 256(21) 50 — 42 2048
=2t =)=2 = 256 ==
( 3 5 + 7 ) ( 105 ) ( 105 ) 105
2 2 3 5
4
M:/ 2x2(4—$2)d$=2/ (8x2—2$4)dx:4[i_$_]3
-2 0 3 5
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32 32 5—3. 256
—4(Z -5y =128(—2) = =,
5 -3 (F) =1

oM, 2048 15 8
Y= T 105 256 7
8
B _5_205_'
(T,7) = ( 7)

9.
1 2z 1 . ) y2
M = / / 5(1'5 y) dyd:r = 6/ / (z+y+1) d’yd:c = 6/ [:Cy+_+y]g:2z da
0 0 0 o A 5

223 2%

1 1
:6/ (2x2+2$2+2$)d$:12/ (2x2+x)dx=12[7+7]0
0 0

2 1. 12
—12(; +35) = ><7:14.

2z 2z
Mmf/ / yo(z,y) dydxf/ / (62y + 6y* + 6y) dydx

7/ [3zy? + 2¢° + 3y%)Y~ de:c:/ (2822 + 122%) dx
0 0

= [Ta' +42°)j =T+ 4 =11

2z 2z
Myf/ / xydyd:cf/ / (622 + 6y + 62) dydx

f/ [62%y + 32y® + 6yl def/ (2423 4 122%) da
0 0

= [62” + 42”]) = 6+ 4 = 10.

10.

1 2z 1 2z
I, = / / y26(z,y) dyde = / / (62y* + 6y°> + 6y7) dydx
o Jo o Jo

1 1

3 _

= / [2xy3+5y4+2y3]g—2”” dr = / (4021 +162%) dx = [82°+421]) = 8+4 = 12.
0 0

1 2x 1 2x
Iy:/o /0 $25(x,y)dydx:/0 /0 (623 + 627y + 62%) dydx



1 1
:/ [62°y 4 32292 + 622y]4~>" dx —/ (24x* + 122°) da
0 0
25

24 39
— U = =
39 99
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Problem Set 2

3 2t
M, // acdydx—/ [acy]z ;zdx_/ ($2—x3)d$:[?_1]52%_i:i-
_ 1/12 1/15 11

2. Since y? + 2?2 is an even function in all three variables we have:

I, —/ / / y + 22 5d$dydz—85/ / / 2+ )dmdydz

c b c 3 < 3 2
:4115/2/2(y2+22)dydz:4a5/2[y—+22y]§dz:4a5/ (b Jr—b)dz

b3z 3b_ be  Ab abcd M
= 4ad|—— Z 12 = 44q Z 7\ = 2y _ 27 (2 2y
‘1[24Jr 6] (48+48) Ty )=+

Comment By symmetry, the values of I, and I, can each written down as
the above calculation solves all three problems up to the naming of the variables.

3. By symmetry T =7 = 0. To find Z we may put 6 = 1 and first find M,
which will equal the volume of the solid:

z:4—;vz—y2
M:/// dzdydx://(4—x2—y2)dydac.
D Jo D



Switch to polar coordinates:

o2 2 2
:/ / (4—r2)rd9dr:27r/ (4r —r3) dr
o Jo 0
A
:2ﬂwzfzﬁz2ﬂ8f®:8m
4—12—y2 22 2 2
sz:/// zdzdyd:z:://[—]éfz Y dydx
pJo D 2
1
:5//(47x27y2)2dyd:c
D

1 22 2
=- / / (4 —r*)%r dfdr = 7T/ (4 —r?)*rdr,
2Jo Jo 0

put w =4 — r? so that du = —2rdr and rdT:fédu and we obtain
E/Ou2duf[u_3]g—4f.%32_ﬂ_
2 J4 2°3 2 3 3
¢——Mly 327 4
"TTM T 38m 3
o 4
(.’L‘,y,Z) = (ana g)

4. We simply note that

Iz:/TQdm:/(zQerQ)dm:/:chva/dem:Iz+Iy-

5. We may assume that the perpendicular distance between the axes lies
along the z-axis and that the centre of mass lies at the origin. The moment of

inertia relative to the z-axis is
I :/TQdm:/(:EQ—l—gf)dm
On the other hand the moment of inertia relative to the 2z’ axis is
I:/((:C+d)2+y2)dm: /(m2+y2)dm+d2/dm+2d/xdm.

The first term is I.,,, the moment of inertia about the centre of mass, while the
second equals md?. The final term is a multiple (2d) of the x-coordinate of the
centre of mass, which is 0 as the centre of mass lies at the origin.

Therefore we obtain the Parallel axis theorem:

I=1I.,,+ md>.



6(a) Let @ denote the space occupied by the object (as R often denotes a
relevant radius). Then we have:

! 1 3

2 Z xo L 3 psl
I= 2dV = 2sdr =2 2dx = 2ps[——12 = 2ps— = 2
///Qp:c [ pr’sdr ps/o x* dx ps[S]O PSoL = T5

L
2

I = m_ZQ
12
(b) By part (a) we have:
ml? l m 4ml? ml?
I="" 2= 32 = -
o TR = = 3

7(a) The volume element of the integration is dV = lrdrdf

2t rR R4
I= /// pridV = lp/ / 3 drdd = 2rlp[— |5~ "
Q o Jo 4

2rlpR*  R? 9 1 9

7(b) By Questions 5 and part (a) we obtain by symmetry that:

L=1I,+1,=2I,

11 a1 9
=1, = 2(2mR ) = 4mR .
(¢) The contribution from a thin disc of height dz is by part (b) and the

Parallel axis theorem equal to md—,f(RTZ + 22). Hence

h h
m 2 m 2
I=— > +42%)dz = —(R’h *d
m 7%(R +4z%)dz 4h(R +8/0 z2°dz)
_mR2+2_m[23]%_mR2+2_m h_g_ﬂ(gRQ_i_h?)
] 3h° 0 T 4 3h 8 12 '
8(a)
b a b b
2 (2 2 2 2a b 2ab®  mb?
I, = 2dA = 2 dady = 24 :2/ 2y = =312 = _
//Ay /_g/_%y B a/_%y ym ), v 3[y]o 24 12
as ab = m.

(b) By the Parallel axis theorem and part (a) we obtain:

—_

3

S
¥

b2 1
m(i) :me(EJrZ): —_—.

mb?

I="—"
2"



9(a) By the Perpendicular axis theorem and Question 8(a) we obtain:

I = Z(a? + b2

12

(b) By the Perpendicular axis theorem and part (a) we obtain:

T=Lam((32+ () =m(S+ 5+ o4 o) = 2 ),

Comment: Alternatively the answer is i of the moment of inertia about an
axis perpendicular to the centre of a plate of double the dimensions, which by
part (a) is:

1 (2a)(2b)
4 12

(20)° + (20)%) = 35 - 4(a” + 1) =

2 12
=13 (a* 4 b%).

(c) Again by the Perpendicular axis theorem and part (a) we obtain:

a a? b2 a? m

Comment Alternatively the answer is % of the moment of inertia about an

axis perpendicular to the centre of a plate of double the dimension in the x
direction, which by part (a) is:

1 2ab m
= =—((20)* + %) = —(4a® + b*).
5 1o (207 +%) = S(4a +57)
10. We have 2 = prr? so dm = prr?dz. The mass m of our cone is then
given by m = pV =Z2pR?h so that p = —3%-. Hence
3M 9 3Mr?
dm = R -mredz = 7 dz.

However, by similar triangles we have 1z = Z. Substituting accordingly gives:

The moment I about the z-axis then satisfies:

ar 1, 1, 1., 3Mz? 3mz? R222
%257“ :dlzar dmzar s dz = STERRS> dz
3mR? [ 3mR2 3mR? 3
I = 4d — 51h _ . h5 _ = 2
BT /0 Tor7 2o = Tope T



Problem Set 3

2 -R
= pr[R'z R2x3—|— 5] = 7TR5[1—2+1]—§ mR°
=7 5l0=F 375 T
Now m = 37 R?p so we obtain
4 2 2
I = (=mpR®) - ZR? = ZmR>
(37PR°) - ¢ i

(b) Let m be the mass of the hollow sphere of density p with respective radii
Ry and Ry. We obtain

8 8 8
I=—prR} — —prR5 = —pn(R} — RS).
5P — s 15/%?( 5)

Now
m

m
PTV T SRR - R

8 3m(R —R}) 2m R} — R}

15 4 (R} — R3) 5 R3 RS’

2. Write Ry = R = Ry + r. Then we require

=1=

2m . (Re+7)>—R5 2m . 5R3r+o(r)
2m o U tr) =Ry 2m . SHor A olr)
5 r—0 (R +1)% — RS 5 a0 3R3r + o(r)

2m . 5R3+ % 2m 5R' 40

B 03R4 o) 5 3RE40

2m 5R* 2,

= — . —— =_-mR".

5 3 3

3(a) The velocity of a single point particle rotating at a distance r with
angular w is rw. Hence the kinetic energy of that particle of mass m is 2mv2

%mr w?. Hence if we sum this over a discrete set of particles of mass m; at a

dlstance r; from the axis of rotation we obtain:

E = Z mlrw— 2Zmr

10



(b) In the continuous case the sum takes the form of the integral:

1 1
—w2/ r2dm = = Iw?.
2 v 2

4 & 5. In each case we have the energy equation:

1 1 1 1
mgh = §Iw2 + imv2 = 5](}%)2 + §mv2.

For a solid sphere, I = 2mR? so we obtain:

m 1
mgh = —v° + —muv?

5 2
11 o2
h=(=+=)0?=~-"
= gh=(5+3)v" =15
10gh
LU= ——.
- =

For a thin spherical shell of the same mass the calculation is identical except
that the coefficient of % is replaced by %, hence we get

+ —)1)2 — %,02

6gh
Sv ==
)
_ 1, p2 : 2.1 1 _ 3 gios
6(a) We have I = ;mR*. Hence the coefficient of v* is ; + 5 = § giving

2 _ 4 — . /4gh
v® = zgh and so v = 4/ =L+,

(b) Since & < 3 < 42 (as 18 < 20 and 28 < 30) it follows that v is greater
for the solid sphere as compared to the cylinder, which in turn will beat the
spherical shell.

7. Let m be the mass of the hoop, so that I = mR?. Let v be the velocity of
the hoop at the bottom of the hill so for a rolling hoop we have v = Rw, where
w is the angular velocity of the hoop at this point. Equating the gain in kinetic
energy with the loss in potential energy yields:

2

1 1
—mv? + =Iw

= mgh
2 2 mg

= mv? + mR2(%)2 = 2mgh

= 20% = 2¢h

v = /gh

Comment: note the result only depends on h (and g) and not on the mass or
radius of the hoop. Also the kinetic energy of the hoop is equally shared between

11



rotational energy and its speed. The hoop, with all its mass on the perimeter, is
slower that all the 3D objects of Questions 4-6. An actual race between the four
rolling objects can be viewed at https://en.wikipedia.org/wiki/Moment of inertia

8. This follows at once by changing variables in the integral:

//di://xdmdyz//(rcos@)rdrd@z//TQCOSHdrdH
R R R R

and similarly [ [pydA = [ [,rsin6drdd.

9. First we calculate the area of the cardiod:

jus

a(1l+sin0) z .
A=2 / / rdrdf) = / (25 dg
us 0 —
2

jus
2

:a2/5 (1+281n9+sin29)d9:a2(7r+/7 (%)do)
—_ 0 2

jus
2

s 3ma®
2) 2

Comment Note that the integral involving sin # is 0 because sin 6 is odd and
the limits are symmetric about 0; the period of cos26 is 7 so its integral over
an interval of length 7 is also 0.

By symmetry, T = 0 as r(0) = r(m — 0) so the cardiod is symmetric in the
y-axis. Again by the same symmetry, 7 for the cardiod is the same as for that
portion of the cardiod in the 4th and 1st quadrants, the mass of which is 3”“2

a(1+sin0) z Ltsin )
/ / 72 sin 0 drdf = / sin 3]0 0) gp
3 -3

:—/ 1+s1n9 sin 6 d6

= a2(7r+

Expanding the integrand gives sin @ + 3sin?# + 3sin®# + sin? 6. The first and
third terms are odd functions which integrate to 0. For the second term we have
an even function and so the contribution is:

21— cos26 w 1 =~ 7 1 T+ 1

2 —————df=—-— -[sin20] = - —=(-1-0) = .

/0 2 5 om0l =5 =5 )=
Now

1 —cos26 1
sin @ = (%)2 =1 (1 — 20820 + cos? 20) which contributes:

1,7 ks 2 1+ cos4f 1 1 2r+4+7 3r+4
= ——[sin29]2+/ Al = (=414 ) ~( ) = _
2(2 o 2 ) 2(2 472 4 8



__a® 3m4+4 4 (37 +4)a
YTETR 32T 18w

10. By symmetry we have r(6) = r(5 —0) so we have symmetry with respect
to the line 0 = 7. It follows that 7 = 3. Now

z sin 260 z s o
1 . 1 1
A:/2/ rdrdf = —/2[r2]3‘n29d9: —/2 sin? 20 df — —/2(17cos49)d9:
0 0 2 0 2 0 4 0 8

% sin 29 1 % . 9 1 %
/ / r2 cos @ drdf = = / [r3]5020 cos 0 df = ~ / sin® 26 cos 6 df
0 0 3 0 3 0

§/2 sin® 0 cos* 6 b
3 Jo

Put u = cosf), whence —du = sin0df, and when 0 =0,u=1,0= 3, u=0so0
our integral becomes:

8 [ 8 ! 8 ub  u’
—g/l (1u2)u4du§/0 (u47u6)du:§[€—7]é

8§ 7-5_16
3 35 105
Hence

16 8 128

105 7 1057

8
I
<
I

Problem Set 4

1. The work done in joules is:

W =7A0 = 50 x 60 x 2 = 6007 = 1884 - 96.J.
The mean power in watts is then:

P = W = 600m = 507 = 157 - 08 watts.
t 12

2(a) The torque 7 on the pulley is provided by the tension 7" in the string
so that 7 = TR, where R is the radius of the pulley (which is not given in the
problem, but never mind, press on). Also 7 = I« where the angular acceleration
«a satisfies @ = 4, where a is the magnitude of the acceleration of a point on
the circumference of the pulley, which is the same as that of the falling mass.
Using 7 = I, this all yields:

1 MR? a
TR=-MR*a = :
R 5 R« > I

13

™



1
=T =-Ma.
5 Ma
(b) Applying Newton’s Law to the mass m we obtain:

mg —T =ma

Ma
:>mg—T:ma

M
= a(m+ 7):mg

2mg
a=—.
2m+ M

(c) Since the acceleration is constant we may use the SUVAT equation v? =
u? + 2as: indeed since u = 0 we get immediately that

V2 4dmgh
2m+ M
mgh
SLU = .
2m + M

3. Let v denote the velocity of the mass upon hitting the ground and w the
angular velocity of the pulley at the same moment. Then by conservation of
energy and the fact that the moment of inertia of the pulley is %M R? we obtain:

%va + %Iuﬂ = mgh
= 2mv? + M R?w? = 4mgh. (1)
At the same time we have v = Rw so that (1) may be written as:
2mR*w? + M R?w? = 4mgh
= w?(2m + M)R? = 4mgh

2 mgh q 5 mgh
w=—4/———— andso v= —
YT RVomt M v om + M
4(a) By Newton’s law we have T; = mia and mag — To = maa.

(b) We apply 7 = I« to the pulley, and this takes the form

1 a MRa
:»(TQ—Tl)R=§MRQ-E= 5
Ma

Substituting from (a) accordingly into (2) then gives:

Ma
maog — Mo — Mi1a = T

14



M
= a(? + mg +m1) = mag

2mag
a = — .
2m1 + 2m2 + M
5(a) We again have maog — To = moa. However Newton’s law applied to my
now gives 79 — m1gsin€ — migucos = mia. Equation (2) holds as before.
Substituting now gives:

. Ma
mag — maa — mia — myigsinf — mygucosf = 5

M
= a(? + ma 4+ m1) = mag — mig(sinf + pcos )

2mgy — 2mq(sin @ + pcosh)
T T Mt 2my + 2ma
(b) The system will be in equilibrium when a = 0, which is to say when
mo = mq(sin 6 + pcosh).
Comment Of course if mo is less than this value then m; will slide down the
slope, pulling m; upwards.

6(a) The retarding force, F,, due to friction is uN = pmgcosf. Hence
F = ma gives
mgsinf — mgu cos = ma

c.a=gsinf — gucosé. (3)

ma

(b) On the other hand 7 = I« again gives that F,, = % whence

ma
mgpcosf = -
a
H 2g cosf )

(c) Substituting from (4) into (3) for u then yields:

= 1 9— 9.
a = gsin g cos 3gcost

2
c.a==gsinf.
a 3 gsin
(d) Substituting this answer back into (4) now gives

2gsinf 1 0
r= 3-2gcosf gtan ’
It follows that the frictional coefficient must be able to attain this value, or in
other words, for a given value of u, the maximum angle that will allow pure
rolling is
Omax = arctan(3pu).

15



7. As the beam is in equilibrium, we may equate the torque about the
suspension point, which we take as the origin, to 0. The endpoints of the beam
then lie at x = —a and © = L — a. The centre of mass of the beam is then at its
midpoint, which lies at

(L—a)+ (—a) L—2a-

2 2
Equating the torque about the origin to 0 we get:
L—2
(L—a)m = (Z5=)M
2m(L — a)
M= —"—""—"==2m(1 .
' L-2a m(l+ 7 5,)

Comment Note that L = 2a is only physically possible if m = 0. However,
although a < L it is certainly possible that L — 2a < 0 and M — 0 as a — L.

8(a) By Newton’s law we have
mg —T =ma

where 7T is the tension in the string. Equally 7 = Ia becomes

_ 1 e g _ma Ryo
TT—QmRT:T— > (7’)
Hence mg = %(%)2 +ma

1, R.\2
éa(1+§(7))—9
29
a=—=.
2+ ()

(b) Clearly a increases with r so the maximum acceleration is realised by
putting 7 = R, in which case a = 2¢.

9. Taking the upward direction as positive, we have the net torque at A is
zero as the system is static. By considering the torques acting at A we obtain:

LRB—mga:0:>RB:%-mg.

By symmetry we get Rq = mg LZ“ = (1 - £)mg.

10. For equilibium the net force on the piston head must be zero. The radius
R of the torque arm satisfies sinf = % so that R = ﬁ. The force F' exerted

by the torque of the arm is perpendicular to the lever arm. Its component in
the direction of the piston shaft is F'cos(§ —6) = F'sinf. Now F'sinf — P =0

so that F' = L. Hence we obtain:

d P Pd

sinf sinf sin?6

M = RF =

16



Comment We shall solve this problem again as Question 6 of Set 6 by the
method of Virtual work.

Problem Set 5

1. In the static case we have F} = usN, where N = 100N, the weight of the
block. Hence we get 40 = 15100 so that pus =0 - 4.

For the coefficient of kinetic friction, the force needed to maintain a constant
velocity was 20N. Hence Fy = pi N so that 20 = 100uy, and so pux = 0- 2.

2(a) Since the vertical forces are in equilibrium the upward force on the car
is R = 1200g. Since the car is skidding F' = pR = 0- 8 x 1200g = 9408N. Now
F = ma = 1200a so that

1200a = —9408 = a = —7 - 84 m/sec?.
(b) Using v? = u? + 2as we obtain

02 = 20% 4+ 2(—7-84)s

400
= =25- £).
= 5= 12 5-5m (3s.f.)
(c) Using v = u + at, we make ¢ the subject and find that:
v—u U 20
= =——=_—=2 £).
t - =l 558 (3 s.f.)

3(a) We have equilibrium equations:
Fy,=Fcos —Np=ma, Fy =N+ Fsin0 —mg=0
= Fcost —mgp+ Fpsing = ma

F(cos® inf) —
o (cos B + psinb) myp

m

(b) In the plane of the surface, the maximum force that may be applied with-
out movement is F' = Npu, = (mg — F'sin)u. Equate this with the component
F cos @ of the applied force in the opposing direction to get:

Fcosl =mgu— (Fsinf)u

= F(cosf + psinf) = mgu
mgp

e = ————.
T cos B + psin

4(a) We have the equations of motion of M and m respectively:

T—uN=T—-uMg=Ma
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mg — T = ma;

substituting T' = mg — ma into the first equation gives:
mg — uMg = Ma+ma=a(M +m)

g m—pM)
' M+m
masses will accelerate when m — My > 0, otherwise the system remains at rest.

(b) The system is in motion but with 0 acceleration exactly when m — My =
0, which is p = §; = %

5(a) We take the positive direction of motion to the right in the plane for M
and downwards for m. The (frictional drag acting in the plane of the incline)
is then —uN = —puMgcosf and the component of gravity in the plane of the
incline is —Mgsinf. Hence our more general equations for the motions or M
and of m become:

T—puMgcosf — Mgsinf = Ma
mg — T = ma;
= mg —ma— uMgcost — Mgsinf = Ma
m — M(sin € + pcos0)
M +m

(b) On the other hand, if the mass M is slipping down the slope, then the
frictional force reverses direction. If we again we measure the positive direction
in the direction of the motion the equations take the form:

La=g

—T — uMgcosf + Mgsinf = Ma

T —mg =ma

= —mg —ma— uMgcosf + Mgsinf = Ma
M(sinf — pcosf) —m
M+m '
6. There are two possibilities. We may calculate a in each case. However if

the result is a < 0, this contradicts our assumption, so that case is discarded.
We first test Case (a):

=a=4g

2 —4(sin45°+0-1 45°
a=9-81 (sin 4:2 cos ):—1-8m/sec2<0;

so the acceleration is not upwards. Hence M must be sliding down the slope,
as Case (b) confirms:

(sin45° — 0 - 1cos45°) — 2

=9 814
“= 442

=0-9m/sec’.
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7(a) For m; we have 2T'—m1g = mja; while for ms we have T—maog = moas.
Next, if my moves a distance x downwards, then the portion of the string before
the second pulley has decreased by z, so the portions to the left and right of
the first pulley have each decreased by 5. It follows that az = 2a;.

(b) We now solve as follows: T' = maog + maas = mag — 2msa;. Hence we
obtain:

2mog — 4maoay — m1g = miay
= ai(mi +4ma) = g(2ma — mq)
g(2ma —my) _ 2g(2mga — myq)

Lap = az
4m2 =+ mq ’

4m2 =+ mq

2mag(2mg —my)  4m3g 4+ mimag — 4m3g 4 2mymag
T =mag — =
4mg + my 4dmg + my
3mimag
o 4m2 —+ mq '

Comment The main practical use of pulley systems is that they can provide
mechanical advantage, meaning that it is possible for an object to be winced
upwards at a constant speed (but zero acceleration) by a force that is only a
fraction of the object’s weight. This is possible by virtue of the work formula
W = Fd so that, for instance, the same work can be done (which may correspond
to lifting a weight to a specific height against gravity) by a force of half that
weight at the expense of moving twice the distance against the lesser force.

8(a) We have three equations:
mig — T1 =mia1, Mmag — T2 = maag, Mmsg — T2 = ma3as.

Since the movable pulley has no (or at least negligible) mass we have T) — 275 =
0, which is to say that 17 = 2T5. The acceleration of P is —a;. Let the

acceleration of msy relative to P, be a. Then as = a — a1 and a3 = —a — aq,
whence
a1 +ax =a=—az—a
= a3 = —2a1 — as.
(b)

mi 0 2 aj mq

0 mey 1| |az| =g |ma

727’)@3 —ms 1 TQ ms

9(a) The determinant D of the coefficient matrix is:
D= mq (m2 + mg) + 2(0 - (—2m2m3)) =mims + mims + 4m2m3.

(b) Applying Cramer’s rule to the system now gives:

mi 0 2

g|ma mo 1
= msg —mg 1 _ gm1m2 + mimsz — 4m2m3_
D mimso + mims + 4m2m3 ’
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my my 2
g 0 mo 1
—2m3 m3 1 mims — 3mims + 4dmoms
as = = .
? D mimsg + mims + dmaoms ’
mims — 3mims + 4dmoms
a3 = —2a1 —as =g ;
mimso + mims + 4m2m3
mi 0 mi
gl O mo My
T 727’)@3 —ms3 Mms 4gm1m2m3 4g
h = =
D mimse + mimsa + 4mams 4 4 mLz + mLS
8g
T, =215 1 0 T
mi T mz T ma

g g
a1 =—=. ao=qQa==.T) = —
1 3; 2 3 37 1

10(a) We have

F — (my +mg +m3)ug = (m1 +ma + m3)a

F —(my+mo +m3)ug F B
m1 + ma +ms3 my + ma +mg 1o

(b) The tensions that arise in the equations of motion for msy and mg satisfy:

= a=

Ty —T1 — moug = mea; 11 — miug = mia.
From the final equation and the answer to (a) we obtain:

my F
Ty = mq(pg + !

1)

- - -
mi1 + mo + ms3 m1 + mo + ms3

e T

mlF
mi + mo + ms

mgF
mi + mo + M3

=Ty =

(m1 + mg)F

',TQZ .
mi + mo + ms3
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Problem Set 6

1. Let us move the point B upward by dy. The point A remains stationary.
The virtual work done by the active force Rp is Rpdy. By similar triangles,
the mass m moves upwards ¢,, where % = %‘ so that d,, = 7dy. Hence the
virtual work done by the weight is —mg - #Jy. By the Principle of virtual work

we equate their sum to 0:
a
Rpdy —mg - Zéy =0

a
L
and, also as before, we obtain R4 = (1 — £)myg.

= Rp=—-myg

2. The rotational work done by Rp is now RpLdf while that done by the
weight is —mg - adf. Equating the sum of the work done by the torques of the
active forces then gives:

RpLé0 = mgadl

:Rgz%-mg

and similarly R4 = (1 — £)my.
3(a) Let y denote the vertical coordinate of the joint P where F' acts and let
x = AB. Then
= Lcosf = d _ —Lsind
V= o~

d
2 =2Lsing = d—‘; — 9L cos 0.

(b) By ?, 57 etc. we mean the vectors with the corresponding (non-
negative) magnitudes F', dx, etc. in the direction of the force or displacement
as the case may be. Consider the virtual work done when a small displacement
00 occurs in the angle 6, which may represent the single degree of freedom of

the system. Then acts in the direction of dy but Bx acts in the opposite
direction to dz. We may write the virtual work equation as:

- = =
?oéy—i—BXO(S:E:O.

Since the resistance force is in the opposite direction to the virtual displacement
we obtain:
= F'Lsinf50 — 2LBx cos856 = 0

F
c. BX = E tan@.
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4. The efficiency e is the ratio of the (unsigned magnitudes) of the output
and input work done by the active forces.

_ Bxér £ tan 6(2L cos 056)

Foy 71 5in 050 =tanf-cotf = 1.

€

5(a) By symmetry, the normal reaction force to F at both points A and B

is N = £. Hence the frictional resistance force at the point B is R = % (in

the negative x direction).
(b) The virtual work equation above, which was drawn up under the as-
sumption that p = 0, now becomes:

Febat (Bx +Rjedy=0

F
= FLsin050 — 2L(Bx + 7“) cos 050 = 0
= F'sinf — 2Bx cosf — Fcosf =0
F
..Bx = E(tané' — ).
(c) Hence the efficiency ratio is given by:

Bxdx L (tan 0 — p)2L cos 060 B B
Foy 7T s 090 = (tanf — p)cot @ =1 — pcot 6.

(d) Since the efficiency cannot be negative we seek to interpret the inequality
1
1—pcotf <0< coth>—.
I

For fixed non-zero coefficient of friction p this will be satisfied for all sufficiently
small angles. For such small angles, no matter how large the force F, the
frictional resistance will hold the strut in place, acting in effect like a second

fixed point and so the notion of a virtual displacement in those circumstances is

invalid. In other words our efficiency ratio calculation only applies if cot § < pu~1.

6(a) The angle at B is also 6 so that
d
tanf = — = y = dcot 6.
Y

By differentiation we find the virtual y-displacement as

@ L d
dd  sin?6’

§U = — Py — M46.
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(c) Putting 6U = 0 we obtain:

Pd
———5—-00 — Mé0 =0
sin® 6
Pd
sin® 6

7(a) Again there is a single degree of freedom, represented either by the angle
0 between the rods, or the coordinate x measuring the displacement from A to C'.
Taking the y direction to be positive in the downward direction, remembering
that P lies at the midpoint of the rod BC, we have that

—icosg
yP—2 5
=0 ~ o Ln?

yp = 4Sln2.

IR U
rp = Sln2 2Sln2—281n2

3 0
= dr = Zlcos 5(59.

O0U = Péz + 2mgdy =0
3 0 [l .0
:>P11COS§59*2WLQ§SIH§59—O

o 0 3P
an— = —
2  2mg

.0 = 2arctan i
mg
8(a) We see that yo = 2lsinf and yp = 1yc.
(b) The elongation of the spring is yo — h = 2lsinf — h. Hence the spring
force I is given by:
F = 2klsin0 — kh. (5)

(c) From (a)
0U = Péyp — Foyc =0

1
:P-géyc:Féc
S =

2

Substituting in (5) now gives:

P = 4klsin g — 2kh
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P +2kh

sinf = 1A
P+ 2kh
0= arsin (22240
arcsm( 9Ty

9. Let [ denote the length of the supporting jack. Then
1> =b*+ L? — 2bL cos 0 = 2161 = 2bL sin 056

h = 2bsinf = §h = 2bcos 040.
The virtual work done by the two active forces (the weight and the jack) are
given by:
—mgdh + Fél =0
mgdh _ mg - 2bcos 066
S 2bLsin0s560/21

2lmg cot 6 2mg cot 0
b2
L L \/

= F=

4+ L2 — 2bL cos@

b 2b
. F =2mgcot 9\/1 + (Z)2 -7 cos .

10. Write P’ for the image of each named point P under the rotation 6.
Rotating about A, the angular displacements @ are in each case:

BB’ =560, CC'" =360, EE' = 646.

Applying 6U = 0 where U is the sum of the moments about A of the sum of the
active forces we obtain, upon cancelling the common factor of 66, the equation
for the vertical reaction Rp at B:

Rp - BB’ — (20sin60°)CC’ + (8 cos 45°)EE’ = 0

0
:SRB—Tf 3+4v2x6=0

24
:,RB:(sf—Tf = 3-6041N (4d.p).

Next, by Newton’s law we have:

R4+ Rp = 20sin60° — 8sin45°

= Ry = (245f 6v/3) + 10v/3 — 4\/_—4\/_+£—8 0596N (4d.p.).
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Problem Set 7

1. We apply the chain rule in vector notation across each component. We
have F = m‘fl—;’ and dr = vdt. Formally changing limits as we change the
variable of integration gives:

f @& g @ g
Wi,f:/ Fodr:/ me2 evdt =m ves dt
i iw At iy At
f(v) 1
=m vedv = —m(vfc —v?);

i(v)
as, by Pythagoras, the sum of the squares of the component velocities equals
the square of velocity of the particle.

2. Using the fact that the product rule is valid across vector products and
that p = mv we get:

L=rxXp+rxp=rxmv+rxp

=mr Xr+rxF=rxF =D.

Comment In words, the rate of change of angular momentum equals the
torque acting on the body. The law of the conservation of angular momentum
is then that L = 0 when there is no torque acting.

3(a)
T = rxmg = lir x mg(cos 0 — sin 00) = —mgl(sin 0)k.

(b) We equate the magnitude of the torque vector to Iaw = I6. Now I = mi?
so we obtain: )
—mglsin @ = ml*0

o0+ %sin@ =0.
(c) Since 7 = 0, the transverse component of the equation F' = ma gives:

10 = —gsinf
O+ %sin@ =0.
4(a) From = = rcos 6 we get

T =17cost —rfsinb

= i =7icosf —r0sinf — r0sind — rf sin O — rf> cos O

o @ = (F —r6?%) cos 0 — (rf + 270) sin 6.
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Putting # = 0 and 0 = 37” respectively then gives the radial and transverse

components of velocity, namely, 7 and 7’9, and for acceleration # — r62 and
76 + 270. This follows as when § = 0 the z- component of these derivatives
is in the same direction as the radial component, and the same applies to the
transverse component when 6 = 3¢

(b) .
L (%0) = —(2ri0 4 20) = 200 + 1f

5(a) Approximating sin 6 by 6 yields the second order linear differential equa-
tion of simple harmonic motion:

é+%9=0,

the auxiliary equation of which is A2 = —9 so that A = iﬂi. Hence the
general solution to the equation of motion is given by 7(t) =1 and

0(t) = Cy cos \/%t + Cysin \/%t.

(b) We are given the initial conditions that (0) = 0 and 6(0) = 6. The
latter gives g = C1. Then we have:

o(t) = —90\/%Sin \/%t + Cz\/%cos \/%t.

Putting ¢ = 0 in this latter equation then gives:

0= C’g\/%cos(()),

whence Cy = 0 and so our particular solution is:

0(t) = Oy cos \/%t, t>0.

(c) The period T of our solution is then:

2 2T
T="==2VL
Vi Ve

L=rXxp=rx(mwxr)

=m((rer)w— (rew)r=mr’w = Iuk.

7(a) Let v = lw denote the magnitude of the velocity of the bob as it swings.
Equating the loss of kinetic energy as the bob swings from the bottom of the

26



circle, with initial velocity vy = lwg, to the gain in potential energy we obtain
the equation:
1 1
—mui — =mwv? = mgl(1 — cos b))
2 2
= v? = v} — 2¢gl(1 — cosb).
By Newton’s law we have the tension 7' in the string satisfies:

va

T —mgcosf = -

2 2

=T = % +mgc059 = @ —2mg(1 —COS@) +mgcos9

2
muvg

=T = + mg(3cosf —2) >0 V0

& vi > gl(2 — 3cosh) V0,
the maximum value of the right hand side is 59l (when 6 = 180°) so the minimum
value of vy that will keep the string taut is y/5gl. Since lwg = vy we see that
the minimum angular velocity at the bottom of the swing is therefore
59
wo = T
7(b) Unlike the string, the rod may support a negative tension, so T < 0 is
allowed. However, the system has to have enough energy for the bob to reach
the top of the circle. Hence we require that v > 0 for all angles, which, since
the maximum of 1 — cosf is 2, we require that

v? = v —2lg(1 —cosh) >0

@v% > 4lg

/4
wo > Tg

We do require strict inequality as equality here would see the bob stopping right
at the top in (unstable) equilibrium.

so that vy > y/4lg and

8(a) Conservation of energy here takes the form %192 = mgasin@, so that,
since I = 3ma? (as the length of the rod is 2a) we obtain:

1 4 .
= Zma?6?

53 = mgasinf

= af? = ggsiDG

= 2000 = gg(cos 0)0
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3
af = chos@.

(b) Let X and Y denote the respective forces applied by the hinge to the
rod in the directions BA and perpendicular to the rod at A. Then since the
centre of mass lies a distance a from A and af? and af are the components of
acceleration in the directions of X and of Y respectively we have from Newton’s
law:

X —mgsinf = mab?

—Y 4 mgcos® = mal

whence 5
X = mgsin 6 + mab? = 5™ sin 6

.1
Y = mgcosf —mal = —mgcosb.

9. Let F' and R denote the friction and the reactive forces respectively and
let 6 be the displacement angle of the rod from the vertical at a time before
slipping occurs. Denote the length of the rod by 2a. Then Conservation of
energy gives:

ma®6? + mga cosf = mga

ol

1

2
o 3

= ab’ = 59(1 — cosf)

= af = ngin@.

Hence as in the previous question, we have by Newton’s law applied to the
centre of mass of the toppling rod that:

F = maf cos 0 — mab? sin 0, (6)
R — mg = —maf sin @ — mab? cos 0 (7)

(6) = F = gmg sinf cosf — ;mg(l — cos ) sin 6
3 .
= F= ngsm@(i}cos@ -2)
3 3
(7)== R=mg— ngsin2 0 — §mg(1 — cosf) cosf
1
= ng(él —3sin?0 — 6 cos 0 + 6 cos® 0)

1
=R= ng(l — 3cosh)>.
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At the slipping point when ¢ = ¢, we have F' = Ry so that

_F %sin%(Scos% -2) %(%g— ) 3(3\/574)
H=R ™ 1(1-3cosZ)2 11— %5)2 N (273\/5)2

_63v3-4)
C31-12V3

10. Let the door be swinging with angular velocity wg when it hits the stop
and rebound with angular velocity w;. Upon collision there will be a rebound
impulse P perpendicular to the door and an impulse J at the hinge A also
perpendicular to the door. Again let the width of the door AB be 2a and let x
denote the distance of the stop from A. The moment imparted by the impulse
equals the change in angular momentum of the door. Taking the direction of
rebound as positive rotation, and taking the change in angular momentum about
A we may express that as an equation:

=0-3513.

4
Pz = gma2w1 - (fgmaQwo) = gma2(w1 + wo)
N 3Pz
w1 = —— — wo.
T dma? 0

The velocities of the centre of mass of the door before and after impact are
respectively —awg and awi. We now equating the total moment of impulse
about the centre of mass with the change in angular momentum. We have P
acting in the positive sense along with w; while wy acts in the negative direction
of rotation. The perpendicular direction of J (clockwise or anti-clockwise about
the centre of mass, which corresponds to up or down at A) is not clear; indeed
the question is asking for when J = 0. In order to be definite we write J in the
positive sense. This gives:

3Pz
J + P = maw; — (—mawp) = ma(4ma2 — wo + wo)
3Px 3x

It follows that J = 0 exactly when 1 = Z—i, which is to say that = = %a. Since
the width of the door was 2a, this means that the stop should be placed at %
the width of the door, measured from A, to avoid any jarring at the hinge when
the door strikes the stop.

Comment This problem is often represented as finding the centre of percus-
sion or sweet spot on a baseball or cricket bat (treating the bat as a simple rod).
When the ball strikes the sweet spot, the batter feels no jarring of the hands
and maximum energy is imparted to the ball. Note that the impulse J may be
either positive or negative depending on whether or not x > %a or x < %a. A
right-handed batter will feel the bat pushed into their left hand if the impact
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is near the toe end of the bat but will feel the bat pushed back into their right
hand if the impact is close to the bat handle.

Problem Set 8

1(a) In general the number of constraints is 3N — s where N is the number
of particles and s the number of holomonic constraints. Here N = 1 and s = 2,
the two constraints being z = 0 and x and y are linked by the equation

Y
==t t).
. an(wt)

Hence there is 3 x 1 — 2 = 1 degree of freedom.
(b) Here we have V' = 0 so that

1
L=T=m? = %(:i:Q—i—y'Q)

where m is the mass of the sphere.
(c) We have

r =rcoswt, y=rsinwt

= & =71coswt — rwsinwt, y = rsinwt + rw coswt

:U2:i2+92:7g2+r2w2

L) = 207 4 %),
2. We now solve

d OL oL
E(W) o = (8)
In our case we have
d oL, d, . . OL )
E(E) = E(mr) =mi, == =M,

so that, upon cancelling m, (8) becomes:
P —w?r =0.

Putting r(t) = e* we obtain the auxiliary equation A? —w? = 0 so our general
solution to the problem is:

r(t) = Cre¥t + Cre .

Comment Ast — oo the solution is dominated by the term C;e*?, indicating
that the sphere will eventually by flung out of the tube by the centrifugal force.
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T=-mv® = %m(iQ + %) = %m((aé(l —cos0))? + (—afsin 0)?)

T =ma?6*(1 — cos )
Since V = mgy = mga(1l + cos ) we get:

L=T-V =ma?6*(1 — cos) — mga(1 + cosb).

(b)

oL .
0 = ma?6? sin @ + mgasin 6
8_L' = 2ma®0(1 — cos0)
00
d OL . .
= %(Z_e) = 2ma?(0(1 — cos ) + 6% sin ).
d OL L . . .
%(Z_e> — g—e =2ma®*(0(1 — cos ) + 0*sin)) — ma?0*sinf — mgasind = 0
s 1.2 . g . -
,,9(170059)+29 81n972asm9f0 9)

4. Dividing (9) throughout by 1 — cos @ gives:

62 sin 0 g sinf

O T cosd 2aT—cos0
Now sin @ 2sin £ cos ¢
1_cost 2(3?)5% 2 = cot 3 and so we obtain for (9):
. 6 9
9+9200t572%lcot5:0 (10)
5. To solve (10) we put u = cos § so that & = —10sin g and ii = —L10sin & —

%92 cos g. We then multiply (10) throughout by sing to give:

S0 ., 0 g 0
951n§+9 cos§—%cos§—0
.. g
= —u = 0.
u—|—4au

The auxiliary equation to this differential equation is r? -+ & = 0 and since
g,a > 0 we have roots r = 4i,/4L. Hence we recover our solution:

u(t) = cos(g) = C1cos 4/ %t + Cy sin /%t.
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6(a) Resolving forces tangentially we have:
—mgsinf = m(rf + 27-0) = mlf
O+ %sin@ =0.

(b) We may take 0, the angle between the pendulum line and the vertical,
as the generalized coordinate for the one degree of freedom of the problem. We
then get:

Lo 1 2 _ Lo
T =-—mv* = —m(l0)° = —ml“6%;
2 2 2
y=1—1lcosd =V =mgl(l — cosb)

1 .
L=T-V= 5m1292 —mgl(1 — cos )

= 8_L = mi?6, i(a—L) = mi?4,
00 dt* 90
g—s = —mygl sin 6,

= ml*0 — mglsind =0
.'_é+%sin9:0.
Comment Often, for simple problems such as this one, the scheme based
on Newton’s laws is simpler than the Euler-Lagrange equation based on en-

ergy. However, the latter method is strategically simple and so is more easily
translated into software for the purpose of computation.

7(a) We have the constraints 2% + y? + 22 = R? for the coordinates of the
mass and also ¢ = wt, where ¢ is the angle the plane of the hoop makes with
the z-axis. Since there is 1 particle and 2 constraints there is 3 x 1 —2 =1
degree of freedom. We take as our generalized coordinate the angle § between
the z-axis and the radius of the hoop to the bead.

(b) Projecting the radius of the hoop on to the xy-plane we see that:

= Rsinfcoswt, y = Rsinfsinwt, z = Rcosf

= & = R0 cos b cos wi— Rw sin f sin wt, y = R0 cos 0 sin wi+Rw sin 6 cos wt, 2= —Rfsiné.

()

1
T = 5m(g'c2 + 2+ 2, V=mgz
1 . . .
=L=T-V-= §mR2 (62 cos? 0 cos® wt + 02 cos® O sin” wt + 0% sin” )
1
+§R2w2(sin2 0 sin? wt + sin? 0 cos® wt) — mgR cos 6,

1 )
L= §mR2(92 + w?sin? @) — mgR cos .
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L . 0L L ..
% = mR?0, 2—9 = mR2w?sin 0 cos § + mgR sin 6, %(2—9) = mR20;

= mR%0 = mR*w?sinf cosf + mgR sin 6

.1
0= 5&12 sin 26 + }% sin 6.

9(a) There are 4 constraints, which may be expressed as z, = 0 = 2z,
ym =0, Ih__y;’;{ = tan . There are 2 particles, so that there are 3 x 2 —4 =2
degrees of freedom. The coordinates (., Y ) determine the position of m and
of the wedge, using the constraints. Now

Tm =Xy +qcosa, Y, =h —gsina
= Ty = Ty + Cosa, Ym = —¢sina.
so we may take ¢ and xp; as our generalized coodinates.
(b) . .
T= im(xfn +92) + EM:E?W, V = mgym
=L=T-V= %m(w?w + ¢ + +2iprgcosa) + %M:E?w —mg(h — gsina).

10(a) Write down the Euler-Lagrange equation for each generalized coordinate:

d
g(mx'M +mqgcosa+ Miy) =0

= (m+ M)Zpy +micosa =0 (11)
E(mq + mdpr cos ) = mgsin «

= {+ Iy cosa=gsina. (12)
(b) Substituting from (12) into (11) now gives:

(m+ M)Zy +m(gsina — & cosa)cosa =0

= iy (M +m —mecos®a) = —mgsina
mgsina

M +msin® o’
mg sin a

M +msin®a’

éfC.Mif

g =gsina +

Finally
Tm =4+ xp = gsina.

Comment We note that both accelerations are constant and the acceleration
of m is independent of M and m. If m is small compared to M then &), is small
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and § approaches the acceleration we would see with a fixed wedge. However,
if m is very large compared to M and « is small then both #;; and § become
arbitrarily large in magnitude as the wedge is fired out from underneath the
heavy weight pressing down on it.

Problem Set 9

1(a) L = mrvg, where v is the tangential component of the velocity of the

mass. Hence

L =mr(rw) = mriw.

(b) From 7 = L we obtain:

d
T = 2mwr—r =rF,

dt

d
s = 2mw—T = 2mwu,..
dt
2(a)
VB = VA + wr.

(b) The centrifugal acceleration on the circumference is

2 2 2
v VA +wr v
—BZQZ—A—FQWUA—FWQT.
T T T

3. By inspection we see that we require the standard rotation matrix:

e { cos ¢ sinqﬁ}

—sing cos¢

4.
a=ayi +a,j +ak
= aj(icos ¢ + jsinp) + ay (—ising + jcos¢) + alk
= (a}, cos ¢ — ay, sin ¢)i + (ai, sin ¢ + aj, cos ¢)j + ak.
5.

da S .
E:azz—i—ayg—i—azk:

= (a, cos ¢ - aj, sin ¢)i + (af, sin ¢ + a;'cos P+ alk
= (a, cos ¢ — a’, sin g — a,, sin ¢ — ay, cos bP)i+
(', sin ¢ + a’, cos pd + a,, cos ¢ — aj, sin bP)j + alk
= a;,(cos ¢i + sin ¢F) + ay, (— sin ¢s + cos ¢g) + a’k+
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ay,@(— sin ¢i + cos ¢ ) + ay,¢(— cos ¢ — sin ¢3)
=a,'{ +a,§ +a. 'k + ¢a,j — pa,i
Da

=D Pagg’ — ayi').

6. Now
Qxa = ok x (a,i' +a,j’ + a,k') = d(a,j' — a,i)
da Da

.'.Ezﬁ—i—ﬂxa. (13)
7(a) Putting @ = 7 in (13) we obtain:
Cng:%(%+er):l)2t(%+ﬂxr)+ﬂx(%qLer)
:g—:—l—%?xr—i—ﬂx%—i—ﬂx%—i—ﬂx(ﬂxr)
:g—er%?err%'lx%Jrﬂx(er).

ince in the inertial frame S we have F = mi;“ it follows from (a) that
b) S h 11 S have F Cfit

D? D D
mD—tZ:F—mE ><r—2mﬂ><d—:—mﬂx(ﬂ><r).

Comment The equation of motion of the particle in the rotating frame in-
volves three components, the second of which is the Coriolis force and the third

is related to the centrifugal force. 1If, as is the case with a rotating planet,
we have that ¢ is constant then DD—? = 0 and the previous equation simplifies

accordingly (as in the next question).

. . 2
8(a) In the given scenario we have 22 = 22 = 0 = 252

Dr Dz the latter because
the Earth rotates with constant angular velocity. The external force F = —mg
SO we obtain:

—-mg—mOQX (Q X r)=—mg,.

(b) The vector 2 = k¢ is in the direction of axis of rotation. Hence € x r
is directed due East (the direction of rotation of the Earth) so that Q@x(Q X r)
is directed towards the axis of rotation. Since this is substracted from g to get
g., the effective gravitational acceleration, it follows that g. < ¢ and g, is least
at the equator.

9.

Qxr= QRsin(g —Mn
where 7 is the unit vector directed due East. Hence

QX (2 x 7)=Q?Rcos \d/
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where 7’ is the unit vector directed towards the axis of rotation. Since g, =
g — OX(2 X ) we obtain from the vector triangle together with the Cosine
rule that:
g% = g°> + Q*R? cos® A — 2990’ R cos® A
92 = g* + Q*Rcos®’ \(Q*R — 2g).

10. The minimum value for g. occurs at the equator for there we hae A =0
and so cos A = 1 and the previous equation becomes:

9> = 9>+ Q'R* — 29Q*R = (g — O*R)?
= g. =g — (QR)%
Now R = 6-371 x 10°m and 24 hours equals 24 x 60 x 60 = 8 - 64 x 10%s. Hence

21

Q=—"  =7972%x107°
861X 101 (2T2x10

= ge=g— (7-272° x 6-371) x (107'% x 10°)
=g —3.369 x 1072

= 95 _1_0.003434 = 0 - 9966.
g

Which is to say that equatorial effective weight is 99.66% that of the poles.

Problem Set 10

1(a) We begin with a @ a = |a|? = a?. Differentiating with respect to time:

aod—a + d_a. a= 2|a|M
dt  dt dt
da dla

as o =l
(b) Taking @ = = v in part (a) we obtain:

d 1
m/é;Oi“dt:m/|v|%dt:m/|v|d|v| :§m|v|2+c.

2(a) From m# = F(r)7 we take the dot product with # and use Question
1(b) and 1(a) in turn to find:

1 9 . dr F(r) dr /F(r) dr

— = F — = A — = N e

2m|v| / (r)r e g dt / Te dt i dt
:/F(T) dr;
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hence the energy equation has the form:

1
§m|v|2 — /F(T) dr =E,

the value of the arbitrary constant E depending on the zero level set for the
potential energy — [ F(r) dr of the system in question.
(b) Putting F(r) = r=2 we get [F(r)dr = [ % = —21 + ¢ so that V(r) =
% +c.
3(a) We have i = a, & = 0;y = 2bt, §j = 2b, 2 = 3ct?, 7 = 6ct. Hence
F =m # =m(0, 2b, 6¢t).

(b)

i J k
M=rXxF=at b> cf
0 2bm 6emt

= m(4bct®, —6act?, 2abt).

i ik
L=rxp=m(rxv)=mlat bt*> ct3
a 2bt 3ct?

= m(bet*, —2act®, abt?).

L = m(4bet®, —6act?, 2abt) = M.

M:er:rx@r:@(rxﬂzFr)

0=0.

(b) We have in general that L = M and since M = 0, it follows that L is
constant.

5(a) Since L = r X p, where p = m#* is the linear momentum of P we get
reL=re(rxp)=0

as any triple product (scalar or vector) with a repeated vector is zero. Since
L is constant, 7 @ L = 0 is the equation of the plane through the origin with
normal vector L.

(b) The area 0 A swept out in time ¢ by the radial vector » = OP satisfies

0A = |%r>< or|

dt  eiso ot eis0'2 " Bt
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Jrxi =1
=—|r X7 =—;
2m’

2
since L and m are each constants, it follows that % is also constant. This in

turn implies that the change in area swept out by the radial vector is the same
for any two time intervals of equal duration, which is Kepler’s second law when

applied to the inverse square law of planetary motion.

6(a) Since L = mr x 7 it follows that
P x L=7x ((mrx )+ (mrxi) =mrx(rxi)=0
as 7 and r are assumed to be parallel vectors. Hence

d ,
E(mfo):mf*xLamexL

d
=m—(FxL)=mi#xL+0

dt
F(r)

r X (rx7T)

é%(%xL):m%x(rxﬂ:

= %(r x L) = @((rof)r— (rer)r)

(b) We have r @ » = 2, and differentiating this gives 2 r ® 7* = 27 so that
r o 7 = ri. Continuing we obtain:

LT 7@ (rir — r27) = F(r)ir — F(r)ri.

dt
7. We equate
d d d
—(a(r) = d—j‘r ad—: = F(r)ir — F(r)ri
da dr
o F(T)a & a=—F(r)r
do __adr
dt  rdt
da dr d
ot = ﬁ(roz) 0
=>a==
r
where \ is an arbitrary constant. From the equation « = —F(r)r we finally
conclude that N
@
Flry=——=—-——.
(r) r r2
8. By Question 7, for an inverse square law, we have
d d d, . r
Z(hxL)= — - Z(\=
S % L) = S (al)r) = £(O5)
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wixL-)A —-K
T

where K is then a constant vector.
Comment The vector K (often denoted as a lower case k) is known as the
Lenz-Runge vector.

(b) Since L = mr X 7 and L is constant, it follows that the particle moves
in a plane 7 through the origin determined by the fixed vector L acting as a
normal to 7, and each of r and 7 are perpendicular to L. Since each of r and
7 lie in 7, it follows that K also lies in m and K is perpendicular to L as

KeL—(ixLeL—2(reL)=0-0=0,
r

as 7 X L is perpendicular to L and L = r X p is perpendicular to r.
We conclude that, if non-zero, the trio of vectors (L,K,L X K) form an
orthogonal basis at each point P of the path of the particle.

9(a) We have

7'"'+ﬁ7":0,
m

which has solution
r = asinwt + bcoswt

for arbitrary constant vectors a and b and where w = /£ .

(b) "

7 = aw cos wt — bw sin wt
L =mrx 7 =m(sinwta + coswtb) X (wcoswta — w sinwtb)
= m(wsin® wt + wcos® wt)(b x a)
S L=mw(bx a).
(©) 1
E= §m|7'°|2 — /F(r) dr.

1 1
5m|7"|2 = §mwQ(|a|2 cos? wt + |b|? sin” wt — 2a e bsinwt cos wt) (14)
mw?
/F(T)drz—u/rdrzf 5"
1
= fimw2(|a|2 sin? wt + |b|? cos® wt + 2a e bsinwt cos wt) (15)

Taking the required difference of (14) and (15) gives:
F= 1 o9 2 bl2) = o2 bl2
= 2o (fal + b) = & (af? +[b/?).

10.



rr —rr

K=#xL+7xL-\ 5

,
Now by (16), L = 0 and as for the first term in (17) we find:

A
%xL:m%x(rxf):——gx(rxf)
T

A . A . .
= r_3(T x (rxr))= r_3((T o) — (r e7)r)
and since r ® r = 72 implies that r e ©* = r#* we obtain:

A

A
=3 (r21'“ —7r7r) = T—Q(M'“ —7r)

and so we obtain that the terms in (17) do indeed cancel to give 0.
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