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This module on 
lassi
al me
hani
s follows on and presumes the 
ontent of

MA108 Me
hani
s. The 
entral theme is that of rotating bodies and so we see

in Sets 1 and 2 the fo
us is on problems involving the 
entre of mass and the

moment of inertia of a system of parti
les and of a rigid body in two and three

dimensions, in
luding the Perpendi
ular and Parallel axis theorems. Sets 3 and

4 are based on energy and work 
onsiderations related to moments of inertia and

feature standard problems involving the motion of masses on in
lined planes,

over pulley systems and the torque that results within systems subje
ted to

external for
es. Set 5 features questions involving both the stati
 and kineti



oe�
ient of fri
tion when for
es are in play on obje
ts moving over rough

surfa
es.

In the latter half of the module we introdu
e some new te
hniques apart from

our standard approa
hes of the use of Newton's laws and Conservation of energy.

Set 6 
alls upon the te
hnique of Virtual work to resolve for
es on systems in

equilibrium. Just as for
e is the rate of 
hange of linear momentum, torque is

the time derivative of angular momentum and these 
on
epts are the work of

Set 7. The Euler-Lagrange equation is introdu
ed in Set 8 as an alternative

to the Newtonian s
heme in me
hani
s questions. Sets 9 and 10 have as their

subje
t rotating frames of referen
e. Coriolis for
es are explored in Set 9 while

in Set 10 we return to the topi
 of 
entral for
es.
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Solutions and Comments for the Problems

Problem Set 1

1. We put the weighted averages of the mk(xk − x) to zero and solve for x.
(In doing so, we spe
ify x to be the point M su
h that the torque of the system

about M is 0):
∑

k

mk(xk − x) = 0

⇒
∑

k

mkxk − x
∑

k

mk = 0

∴ x =

∑

k mkxk
∑

k mk

.

Comment If we take the masses as distributed along a see-saw (line) then

x is the position of the ful
rum that leaves the system in balan
e. The idea

extends to two and three 
oordinates. Alternatively the torque (tenden
y to

spin) around the 
entre of mass is 0. The 
al
ulation for this would be as above

with masses repla
ed by for
es that would simply involve the introdu
tion of

the lo
al gravitational 
onstant g in ea
h term, whi
h would 
an
el to give the

same result.

2. Let (x, y) be the required 
oordinates. Then

x =
2 · 0 + 3a+ 6a+ 7 · 0

2 + 3 + 6 + 7
=

9a

18
=

a

2
, y =

2 · 0 + 3 · 0 + 6a+ 7a

18
=

13a

18

so that (x, y) = (12a,
13
18a).

3(a) In dis
rete notation we have

Mx =
∑

i∈A

mixi +
∑

i∈B

mixi = MAxA +MBxB.

⇒ xA =
MAxA +MBxB

M
.

Comment We will extend this to more than two bodies and in the limiting


ase, to integrals, whi
h are then written in the form:

Mx =

∫

x dm =

∫

x
dm

dx
dx =

∫

xδ(x) dx

where δ(x) is the density fun
tion

dm
dx

.

(b) The shape is 
omprised of two re
tangles. The �rst has mass MA =
1 × (11 − 1) = 10 and 
entre of mass at (xa, ya) = (12 ,

11
2 ). The se
ond has
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mass MB = 1 × 5 = 5 with 
entre of mass at (52 ,
1
2 ). The total mass is M =

MA +MB = 10+ 5 = 15. By part (a) the 
entre of mass of the entire body has


oordinates:

(x, y) =
(10(12 ) + 5(52 ), 10(

11
2 ) + 5(12 )

15

)

=
(35

30
,
115

30

)

= (
7

6
,
23

6

)

.

Comment Note that in this 
ase the 
entre of mass lies outside the body. If

the L were tossed into the air it would spin about this point.

4. Pla
e the side of length a on the x-axis with the right angle at (a, 0). The
hypotenuse then has equation y = b

a
x. Taking the density δ(x, y) of the triangle

T to be 1 we then have:

Mx =

∫ a

0

∫ bx

a

0

y dydx =
1

2

∫ a

0

[y2]
bx

a

0 dx =
1

2

∫ a

0

b2x2

a2
dx;

=
1

6

b2

a2
[x3]a0 =

b2a

6
.

M =

∫ a

0

y dx =
b

a

∫ a

0

x dx =
b

2a
[x2]a0 =

ba

2
;

⇒ y =
b2a

6
· 2

ba
=

b

3
.

By symmetry, x = a− a
3 , so that (x, y) = (2a3 , b

3 ), or, if we pla
e the right-angle

at the origin, we have the 
entre of mass of the triangle lies (a3 ,
b
3 ).

5. Alternatively we may use the formula:

My =

∫ a

0

xy dx =
b

a

∫ a

0

x2 dx =
b

3a
[x3]a0 =

ba3

3a
=

ba2

3

⇒ x =
My

M
=

ba2

3
· 2

ba
=

2a

3
,

yielding the same result as before.

And we may �nd y by integrating the limiting 
ontribution from thin re
t-

angular strips ydx to Mx. Ea
h 
ontribution is ỹ = y
2dx as the 
entre of mass

of the strip lies at (x, y
2 ). This gives:

Mx =

∫ a

0

1

2
y2 dy =

b2

2a2

∫ a

0

x2 dx =
b2

6a2
[x3]a0 =

b2

6a2
· a3 =

b2a

6

⇒ y =
Mx

M
=

b2a

6
· 2

ba
=

b

3
.

6. We pla
e the 
entre of the 
ir
le at the origin with the semi
ir
le lying

above. By symmetry we have x = 0. For y we have the boundary equation

y =
√
a2 − x2

. Sin
e y is an even fun
tion of x the integral be
omes:

Mx =
1

2

∫ a

−a

y2 dx =

∫ a

0

(a2 − x2) dx = [a2x− x3

3
]a0 = [a3 − a3

3
] =

2a3

3
.
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M =

∫ a

−a

y dx =

∫ a

−a

√

a2 − x2 dx = 2

∫ a

0

√

a2 − x2dx

Put x = a sin θ so dx = a cos θ dθ,
√
a2 − x2 = a cos θ; x = a 7→ θ = π

2 ,

x = 0 7→ θ = 0,

M = a2
∫ π

2

0

2 cos2 θ dθ = a2
∫ π

2

0

(1 + cos 2θ) dθ =
πa2

2
.

Hen
e

y =
Mx

M
=

2a3

3
· 2

πa2
=

4a

3π
.

Therefore (x, y) = (0, 4a
3π ).

Comment We have essentially solved this problem in MA108 using the The-

orems of Pappus.

7. By symmetry x = 0. To 
al
ulate y we model the mass 
ontribution using

verti
al strips, the 
entre of mass of whi
h 
orresponds to (x̃, ỹ) = (x, 4−x2

2 ).
The moment of the strip about the x-axis is:

Mx =

∫

ỹ dm =

∫ 2

−2

δ

2
(4− x2)2 dx

∫ 2

−2

δ

2
(4−x2)2 dx = δ

∫ 2

0

(16−8x2+x4) = δ[16x− 8

3
x3+

x5

5
]20 = δ[32− 64

3
+
32

5
]

= δ
480− 320 + 96

15
=

256

15
δ.

M =

∫

dm =

∫ 2

−2

δ(4−x2) dx = 2δ

∫ 2

0

(4−x2) dx = 2δ[4x−x3

3
]20 = 2δ[8−8

3
] =

32

3
δ.

⇒ y =
Mx

M
=

256

15
· 3

32
=

8

5
;

∴ (x, y) = (0,
8

5
).

8. Repla
ing δ in the previous problem by δ = 2x2
we obtain:

Mx =

∫ 2

−2

x2(4 − x2)2 dx = 2

∫ 2

0

(16x2 − 8x4 + x6) dx = 2[
16x3

3
− 8x5

5
+

x7

7
]20

= 2(
128

3
− 256

5
+

128

7
) = 2(

128(35 + 15)− 256(21)

105
) = 256(

50− 42

105
) =

2048

105
.

M =

∫ 2

−2

2x2(4− x2) dx = 2

∫ 2

0

(8x2 − 2x4) dx = 4[
4x3

3
− x5

5
]20
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= 4(
32

3
− 32

5
) = 128(

5− 3

15
) =

256

15
.

⇒ y =
Mx

M
=

2048

105
· 15

256
=

8

7

∴ (x, y) = (0,
8

7
).

9.

M =

∫ 1

0

∫ 2x

0

δ(x, y) dydx = 6

∫ 1

0

∫ 2x

0

(x+y+1) dydx = 6

∫ 1

0

[xy+
y2

2
+y]y=2x

0 dx

= 6

∫ 1

0

(2x2 + 2x2 + 2x) dx = 12

∫ 1

0

(2x2 + x) dx = 12[
2x3

3
+

x2

2
]10

= 12(
2

3
+

1

2
) =

12× 7

6
= 14.

Mx =

∫ 1

0

∫ 2x

0

yδ(x, y) dydx =

∫ 1

0

∫ 2x

0

(6xy + 6y2 + 6y) dydx

=

∫ 1

0

[3xy2 + 2y3 + 3y2]y=2x
0 dx =

∫ 1

0

(28x3 + 12x2) dx

= [7x4 + 4x3]10 = 7 + 4 = 11.

My =

∫ 1

0

∫ 2x

0

xδ(x, y) dydx =

∫ 1

0

∫ 2x

0

(6x2 + 6xy + 6x) dydx

=

∫ 1

0

[6x2y + 3xy2 + 6xy]y=2x
0 dx =

∫ 1

0

(24x3 + 12x2) dx

= [6x4 + 4x3]10 = 6 + 4 = 10.

x =
My

M
=

10

14
=

5

7
, y =

Mx

M
=

11

14
.

∴ (x, y) = (
5

7
,
11

14
).

10.

Ix =

∫ 1

0

∫ 2x

0

y2δ(x, y) dydx =

∫ 1

0

∫ 2x

0

(6xy2 + 6y3 + 6y2) dydx

=

∫ 1

0

[2xy3+
3

2
y4+2y3]y=2x

0 dx =

∫ 1

0

(40x4+16x3) dx = [8x5+4x4]10 = 8+4 = 12.

Iy =

∫ 1

0

∫ 2x

0

x2δ(x, y) dydx =

∫ 1

0

∫ 2x

0

(6x3 + 6x2y + 6x2) dydx
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=

∫ 1

0

[6x3y + 3x2y2 + 6x2y]y=2x
0 dx =

∫ 1

0

(24x4 + 12x3) dx

= [24
x5

5
+ 3x4]10 =

24

5
+ 3 =

39

5
.

I0 = Ix + Iy = 12 +
39

5
=

99

5
.

Rx =

√

Ix
M

=

√

12

14
=

√

6

7
, Ry =

√

Iy
M

=

√

39/5

14
=

√

39

70
, R0 =

√

I0
M

=

√

99/5

14
=

√

99

70
.

Problem Set 2

1.

M =

∫ 1

0

∫ x

x2

dydx =

∫ 1

0

(x− x2) dx = [
x2

2
− x3

3
]10 =

1

2
− 1

3
=

1

6
.

My =

∫ 1

0

∫ x

x2

y dydx =

∫ 1

0

[
y2

2
]xx2 dx =

∫ 1

0

(
x2

2
− x4

2
) dx = [

x3

6
− x5

10
]10

=
1

6
− 1

10
=

5− 3

30
=

2

30
=

1

15
,

Mx =

∫ 1

0

∫ x

x2

x dydx =

∫ 1

0

[xy]y=x

y=x2 dx =

∫ 1

0

(x2−x3) dx = [
x3

3
−x4

4
]10 =

1

3
−1

4
=

1

12
.

(x, y) = (
1/12

1/6
,
1/15

1/6
) = (

1

2
,
1

5
).

2. Sin
e y2 + z2 is an even fun
tion in all three variables we have:

Ix =

∫ c

2

− c

2

∫ b

2

− b

2

∫ a

2

− a

2

(y2 + z2)δ dxdydz = 8δ

∫ c

2

0

∫ b

2

0

∫ a

2

0

(y2 + z2) dxdydz

= 4aδ

∫ c

2

0

∫ b

2

0

(y2 + z2) dydz = 4aδ

∫ c

2

0

[
y3

3
+ z2y]

b

2

0 dz = 4aδ

∫ c

2

0

(
b3

24
+

z2b

2
) dz

= 4aδ[
b3z

24
+

z3b

6
]
c

2

0 = 4aδ(
b3c

48
+

c3b

48
) =

abcδ

12
(b2 + c2) =

M

12
(b2 + c2).

Comment By symmetry, the values of Iy and Iz 
an ea
h written down as

the above 
al
ulation solves all three problems up to the naming of the variables.

3. By symmetry x = y = 0. To �nd z we may put δ = 1 and �rst �nd M ,

whi
h will equal the volume of the solid:

M =

∫ ∫

D

∫ z=4−x2−y2

0

dzdydx =

∫ ∫

D

(4− x2 − y2) dydx.
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Swit
h to polar 
oordinates:

=

∫ 2π

0

∫ 2

0

(4− r2)r dθdr = 2π

∫ 2

0

(4r − r3) dr

= 2π[2r2 − r4

4
]20 = 2π(8− 4) = 8π.

Mxy =

∫ ∫

D

∫ 4−x2−y2

0

z dzdydx =

∫ ∫

D

[
z2

2
]4−x2−y2

0 dydx

=
1

2

∫ ∫

D

(4 − x2 − y2)2 dydx

=
1

2

∫ 2π

0

∫ 2

0

(4− r2)2r dθdr = π

∫ 2

0

(4− r2)2r dr,

put u = 4− r2 so that du = −2rdr and rdr = − 1
2du and we obtain

−π

2

∫ 0

4

u2 du =
π

2
[
u3

3
]u=4
0 =

π

2
· 64
3

=
32π

3
.

⇒ z =
Mxy

M
=

32π

3(8π)
=

4

3
.

∴ (x, y, z) = (0, 0,
4

3
).

4. We simply note that

Iz =

∫

r2 dm =

∫

(x2 + y2) dm =

∫

x2 dm+

∫

y2 dm = Ix + Iy .

5. We may assume that the perpendi
ular distan
e between the axes lies

along the x-axis and that the 
entre of mass lies at the origin. The moment of

inertia relative to the z-axis is

Icm =

∫

r2 dm =

∫

(x2 + y2) dm

On the other hand the moment of inertia relative to the z′ axis is

I =

∫

((x + d)2 + y2) dm =

∫

(x2 + y2) dm+ d2
∫

dm+ 2d

∫

x dm.

The �rst term is Icm, the moment of inertia about the 
entre of mass, while the

se
ond equals md2. The �nal term is a multiple (2d) of the x-
oordinate of the

entre of mass, whi
h is 0 as the 
entre of mass lies at the origin.

Therefore we obtain the Parallel axis theorem:

I = Icm +md2.
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6(a) Let Q denote the spa
e o

upied by the obje
t (as R often denotes a

relevant radius). Then we have:

I =

∫ ∫ ∫

Q

ρx2 dV =

∫ l

2

− l

2

ρx2s dx = 2ρs

∫ l

2

0

x2 dx = 2ρs[
x3

3
]
l

2

0 = 2ρs
l3

24
=

ρsl

12
l2

I =
ml2

12
.

(b) By part (a) we have:

I =
ml2

12
+m(

l

2
)2 =

m

12
(l2 + 3l2) =

4ml2

12
=

ml2

3
.

7(a) The volume element of the integration is dV = lrdrdθ

I =

∫ ∫ ∫

Q

ρr2 dV = lρ

∫ 2π

0

∫ R

0

r3 drdθ = 2πlρ[
R4

4
]r=R
0

=
2πlρR4

4
=

R2

2
(ρπR2l) =

1

2
mR2.

7(b) By Questions 5 and part (a) we obtain by symmetry that:

Iz = Ix + Iy = 2Ix

⇒ Ix =
1

2
(
1

2
mR2) =

1

4
mR2.

(
) The 
ontribution from a thin dis
 of height dz is by part (b) and the

Parallel axis theorem equal to mdz
h
(R

2

4 + z2). Hen
e

I =
m

4h

∫ h

2

−h

2

(R2 + 4z2) dz =
m

4h
(R2h+ 8

∫ h

2

0

z2 dz)

=
mR2

4
+

2m

3h
[z3]

h

2

0 =
mR2

4
+

2m

3h
· h

3

8
=

m

12
(3R2 + h2).

8(a)

Ix =

∫ ∫

A

y2 dA =

∫ b

2

− b

2

∫ a

2

− a

2

y2 dxdy = a

∫ b

2

− b

2

y2 dy = 2a

∫ b

2

0

y2 dy =
2a

3
[y3]

b

2

0 =
2ab3

24
=

mb2

12
,

as ab = m.

(b) By the Parallel axis theorem and part (a) we obtain:

I =
mb2

12
+m

( b

2

)2
= mb2(

1

12
+

1

4
) =

mb2

3
.
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9(a) By the Perpendi
ular axis theorem and Question 8(a) we obtain:

Iz =
m

12
(a2 + b2).

(b) By the Perpendi
ular axis theorem and part (a) we obtain:

I = Iz +m
(

(
a

2
)2 + (

b

2
)2
)

= m
(a2

12
+

b2

12
+

a2

4
+

b2

4
) =

m

3
(a2 + b2).

Comment : Alternatively the answer is

1
4 of the moment of inertia about an

axis perpendi
ular to the 
entre of a plate of double the dimensions, whi
h by

part (a) is:

1

4
· (2a)(2b)

12
((2a)2 + (2b)2) =

m

12
· 4(a2 + b2) =

m

3
(a2 + b2).

(
) Again by the Perpendi
ular axis theorem and part (a) we obtain:

I = Iz +m(
a

2
)2 = m(

a2

12
+

b2

12
+

a2

4
) =

m

12
(4a2 + b2).

Comment Alternatively the answer is

1
2 of the moment of inertia about an

axis perpendi
ular to the 
entre of a plate of double the dimension in the x
dire
tion, whi
h by part (a) is:

1

2
· 2ab
12

(

(2a)2 + b2) =
m

12
(4a2 + b2).

10. We have

dm
dz

= ρπr2 so dm = ρπr2dz. The mass m of our 
one is then

given by m = ρV =πρ
3 ρR2h so that ρ = 3m

πR2h
. Hen
e

dm =
3M

πR2h
· πr2dz =

3Mr2

R2h
dz.

However, by similar triangles we have

r
R

= z
h
. Substituting a

ordingly gives:

dm =
3Mz2

h3
dz.

The moment I about the z-axis then satis�es:

dI

dm
=

1

2
r2 ⇒ dI =

1

2
r2dm =

1

2
r2 · 3Mz2

h3
dz =

3mz2

2h3
· R

2z2

h2
dz

⇒ I =
3mR2

2h5

∫ h

0

z4 dz =
3mR2

10h5
[z5]h0 =

3mR2

10h5
· h5 =

3

10
mR2.
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Problem Set 3

1(a)

dI =
1

2
r2dm =

1

2
r2(ρπr2)dx =

1

2
ρπr4dx =

1

2
ρπ(R2 − x2)2dx

⇒ I =
1

2
ρπ

∫ R

−R

(R2 − x2)2dx = ρπ

∫ R

0

(R4 − 2x2R2 + x4) dx

= ρπ[R4x− 2

3
R2x3 +

x5

5
]R0 = ρπR5[1− 2

3
+

1

5
] =

8

15
ρπR5.

Now m = 4
3πR

3ρ so we obtain

I = (
4

3
πρR3) · 2

5
R2 =

2

5
mR2.

(b) Let m be the mass of the hollow sphere of density ρ with respe
tive radii

R1 and R2. We obtain

I =
8

15
ρπR5

1 −
8

15
ρπR5

2 =
8

15
ρπ(R5

1 −R5
2).

Now

ρ =
m

V
=

m
4
3π(R

3
1 −R3

2)

⇒ I =
8π

15
· 3
4

m(R5
1 −R5

2)

π(R3
1 −R3

2)
=

2m

5
· R

5
1 −R5

2

R3
1 −R3

2

.

2. Write R1 = R = R2 + r. Then we require

2m

5
lim
r→0

(R2 + r)5 −R5
2

(R2 + r)3 −R3
2

=
2m

5
lim
r→0

5R4
2r + o(r)

3R2
2r + o(r)

=
2m

5
lim
r→0

5R4
2 +

o(r)
r

3R2
2 +

o(r)
r

=
2m

5
· 5R

4 + 0

3R2 + 0

=
2m

5
· 5R

2

3
=

2

3
mR2.

3(a) The velo
ity of a single point parti
le rotating at a distan
e r with

angular ω is rω. Hen
e the kineti
 energy of that parti
le of mass m is

1
2mv2 =

1
2mr2ω2

. Hen
e if we sum this over a dis
rete set of parti
les of mass mi at a

distan
e ri from the axis of rotation we obtain:

E =
∑

i

1

2
mir

2
i ω

2 =
1

2
ω2

∑

i

mir
2
i =

1

2
Iω2.

10



(b) In the 
ontinuous 
ase the sum takes the form of the integral:

1

2
ω2

∫

V

r2 dm =
1

2
Iω2.

4 & 5. In ea
h 
ase we have the energy equation:

mgh =
1

2
Iω2 +

1

2
mv2 =

1

2
I(

v

R
)2 +

1

2
mv2.

For a solid sphere, I = 2
5mR2

so we obtain:

mgh =
m

5
v2 +

1

2
mv2

⇒ gh = (
1

5
+

1

2
)v2 =

7v2

10

∴ v =

√

10gh

7
.

For a thin spheri
al shell of the same mass the 
al
ulation is identi
al ex
ept

that the 
oe�
ient of

2
5 is repla
ed by

2
3 , hen
e we get

gh = (
1

3
+

1

2
)v2 =

5

6
v2

∴ v =

√

6gh

5
.

6(a) We have I = 1
2mR2

. Hen
e the 
oe�
ient of v2 is

1
4 + 1

2 = 3
4 giving

v2 = 4
3gh and so v =

√

4gh
3 .

(b) Sin
e

6
5 < 4

3 < 10
7 (as 18 < 20 and 28 < 30) it follows that v is greater

for the solid sphere as 
ompared to the 
ylinder, whi
h in turn will beat the

spheri
al shell.

7. Let m be the mass of the hoop, so that I = mR2
. Let v be the velo
ity of

the hoop at the bottom of the hill so for a rolling hoop we have v = Rω, where
ω is the angular velo
ity of the hoop at this point. Equating the gain in kineti


energy with the loss in potential energy yields:

1

2
mv2 +

1

2
Iω2 = mgh

⇒ mv2 +mR2
( v

R

)2
= 2mgh

⇒ 2v2 = 2gh

∴ v =
√

gh.

Comment : note the result only depends on h (and g) and not on the mass or

radius of the hoop. Also the kineti
 energy of the hoop is equally shared between

11



rotational energy and its speed. The hoop, with all its mass on the perimeter, is

slower that all the 3D obje
ts of Questions 4-6. An a
tual ra
e between the four

rolling obje
ts 
an be viewed at https://en.wikipedia.org/wiki/Moment_of_inertia

8. This follows at on
e by 
hanging variables in the integral:

∫ ∫

R

x dA =

∫ ∫

R

x dxdy =

∫ ∫

R

(r cos θ)r drdθ =

∫ ∫

R

r2 cos θ drdθ

and similarly

∫ ∫

R
y dA =

∫ ∫

R
r sin θ drdθ.

9. First we 
al
ulate the area of the 
ardiod:

A = 2

∫ π

2

−π

2

∫ a(1+sin θ)

0

r drdθ =

∫ π

2

−π

2

[r2]
a(1+sin θ)
0 dθ

= a2
∫ π

2

−π

2

(1 + 2 sin θ + sin2 θ) dθ = a2
(

π +

∫ π

2

0−π

2

(1− cos 2θ

2

)

dθ
)

= a2
(

π +
π

2
) =

3πa2

2
.

Comment Note that the integral involving sin θ is 0 be
ause sin θ is odd and

the limits are symmetri
 about 0; the period of cos 2θ is π so its integral over

an interval of length π is also 0.
By symmetry, x = 0 as r(θ) = r(π − θ) so the 
ardiod is symmetri
 in the

y-axis. Again by the same symmetry, y for the 
ardiod is the same as for that

portion of the 
ardiod in the 4th and 1st quadrants, the mass of whi
h is

3πa2

4 .

∫ π

2

−π

2

∫ a(1+sin θ)

0

r2 sin θ drdθ =
1

3

∫ π

2

−π

2

sin θ[r3]
a(1+sin θ)
0 dθ

=
a3

3

∫ π

2

−π

2

(1 + sin θ)3 sin θ dθ

Expanding the integrand gives sin θ + 3 sin2 θ + 3 sin3 θ + sin4 θ. The �rst and

third terms are odd fun
tions whi
h integrate to 0. For the se
ond term we have

an even fun
tion and so the 
ontribution is:

2

∫ π

2

0

1− cos 2θ

2
dθ =

π

2
− 1

2
[sin 2θ]

π

2

0 =
π

2
− 1

2
(−1− 0) =

π + 1

2
.

Now

sin4 θ =
(1− cos 2θ

2

)2
=

1

4

(

1− 2 cos 2θ + cos2 2θ) whi
h 
ontributes:

1

2

(π

2
−[sin 2θ]

π

2

0 +

∫ π

2

0

1 + cos 4θ

2
dθ

)

=
1

2

(π

2
+1+

π

4
) =

1

2
(
2π + 4 + π

4
) =

3π + 4

8
.

12



∴ y =
a3

3
· 3π + 4

8
· 4

3πa2
=

(3π + 4)a

18π
.

10. By symmetry we have r(θ) = r(π2 −θ) so we have symmetry with respe
t

to the line θ = π
4 . It follows that x = y. Now

A =

∫ π

2

0

∫ sin 2θ

0

r drdθ =
1

2

∫ π

2

0

[r2]sin 2θ
0 dθ =

1

2

∫ π

2

0

sin2 2θ dθ =
1

4

∫ π

2

0

(1−cos 4θ) dθ =
π

8
.

∫ π

2

0

∫ sin 2θ

0

r2 cos θ drdθ =
1

3

∫ π

2

0

[r3]sin 2θ
0 cos θ dθ =

1

3

∫ π

2

0

sin3 2θ cos θ dθ

=
8

3

∫ π

2

0

sin3 θ cos4 θ dθ

Put u = cos θ, when
e −du = sin θ dθ, and when θ = 0, u = 1, θ = π
2 , u = 0 so

our integral be
omes:

−8

3

∫ 0

1

(1− u2)u4 du =
8

3

∫ 1

0

(u4 − u6) du =
8

3
[
u5

5
− u7

7
]10

=
8

3
(
1

5
− 1

7
) =

8

3
· 7− 5

35
=

16

105
.

Hen
e

x = y =
16

105
· 8
π
=

128

105π
.

Problem Set 4

1. The work done in joules is:

W = τ∆θ = 50× 60× 2π = 600π = 1884 · 96J.

The mean power in watts is then:

P =
W

t
=

600π

12
= 50π = 157 · 08watts.

2(a) The torque τ on the pulley is provided by the tension T in the string

so that τ = TR, where R is the radius of the pulley (whi
h is not given in the

problem, but never mind, press on). Also τ = Iα where the angular a

eleration

α satis�es α = a
R
, where a is the magnitude of the a

eleration of a point on

the 
ir
umferen
e of the pulley, whi
h is the same as that of the falling mass.

Using τ = Iα, this all yields:

TR =
1

2
MR2α =

MR2

2
· a
R

13



⇒ T =
1

2
Ma.

(b) Applying Newton's Law to the mass m we obtain:

mg − T = ma

⇒ mg − Ma

2
= ma

⇒ a(m+
M

2
) = mg

∴ a =
2mg

2m+M
.

(
) Sin
e the a

eleration is 
onstant we may use the SUVAT equation v2 =
u2 + 2as: indeed sin
e u = 0 we get immediately that

v2 =
4mgh

2m+M

∴ v = 2

√

mgh

2m+M
.

3. Let v denote the velo
ity of the mass upon hitting the ground and ω the

angular velo
ity of the pulley at the same moment. Then by 
onservation of

energy and the fa
t that the moment of inertia of the pulley is

1
2MR2

we obtain:

1

2
mv2 +

1

2
Iω2 = mgh

⇒ 2mv2 +MR2ω2 = 4mgh. (1)

At the same time we have v = Rω so that (1) may be written as:

2mR2ω2 +MR2ω2 = 4mgh

⇒ ω2(2m+M)R2 = 4mgh

∴ ω =
2

R

√

mgh

2m+M
and so v = 2

√

mgh

2m+M
.

4(a) By Newton's law we have T1 = m1a and m2g − T2 = m2a.
(b) We apply τ = Iα to the pulley, and this takes the form

⇒ (T2 − T1)R =
1

2
MR2 · a

R
=

MRa

2

∴ T2 − T1 =
Ma

2
(2)

Substituting from (a) a

ordingly into (2) then gives:

m2g −m2a−m1a =
Ma

2

14



⇒ a(
M

2
+m2 +m1) = m2g

∴ a =
2m2g

2m1 + 2m2 +M
.

5(a) We again have m2g − T2 = m2a. However Newton's law applied to m1

now gives T1 − m1g sin θ − m1gµ cos θ = m1a. Equation (2) holds as before.

Substituting now gives:

m2g −m2a−m1a−m1g sin θ −m1gµ cos θ =
Ma

2

⇒ a(
M

2
+m2 +m1) = m2g −m1g(sin θ + µ cos θ)

∴ a =
2m2 − 2m1(sin θ + µ cos θ)

M + 2m1 + 2m2
g.

(b) The system will be in equilibrium when a = 0, whi
h is to say when

m2 = m1(sin θ + µ cos θ).
Comment Of 
ourse if m2 is less than this value then m1 will slide down the

slope, pulling m1 upwards.

6(a) The retarding for
e, Fµ due to fri
tion is µN = µmg cos θ. Hen
e

F = ma gives

mg sin θ −mgµ cos θ = ma

∴ a = g sin θ − gµ cos θ. (3)

(b) On the other hand τ = Iα again gives that Fµ = ma
2 when
e

mgµ cos θ =
ma

2

∴ µ =
a

2g cos θ
. (4)

(
) Substituting from (4) into (3) for µ then yields:

a = g sin θ − g cos θ · a

2g cos θ

∴ a =
2

3
g sin θ.

(d) Substituting this answer ba
k into (4) now gives

µ =
2g sin θ

3 · 2g cos θ =
1

3
tan θ.

It follows that the fri
tional 
oe�
ient must be able to attain this value, or in

other words, for a given value of µ, the maximum angle that will allow pure

rolling is

θ
max

= arctan(3µ).

15



7. As the beam is in equilibrium, we may equate the torque about the

suspension point, whi
h we take as the origin, to 0. The endpoints of the beam
then lie at x = −a and x = L− a. The 
entre of mass of the beam is then at its

midpoint, whi
h lies at

x =
(L− a) + (−a)

2
=

L− 2a

2
.

Equating the torque about the origin to 0 we get:

(L− a)m = (
L− 2a

2
)M

∴ M =
2m(L− a)

L− 2a
= 2m

(

1 +
a

L− 2a
).

Comment Note that L = 2a is only physi
ally possible if m = 0. However,
although a < L it is 
ertainly possible that L− 2a < 0 and M → 0 as a → L.

8(a) By Newton's law we have

mg − T = ma

where T is the tension in the string. Equally τ = Iα be
omes

Tr =
1

2
mR2 a

r
⇒ T =

ma

2

(R

r

)2

Hen
e mg =
ma

2
(
R

r

)2
+ma

⇒ a(1 +
1

2

(R

r

)2
) = g

∴ a =
2g

2 +
(

R
r

)2 .

(b) Clearly a in
reases with r so the maximum a

eleration is realised by

putting r = R, in whi
h 
ase a = 2
3g.

9. Taking the upward dire
tion as positive, we have the net torque at A is

zero as the system is stati
. By 
onsidering the torques a
ting at A we obtain:

LRB −mga = 0 ⇒ RB =
a

L
·mg.

By symmetry we get RA = mgL−a
L

= (1− a
L
)mg.

10. For equilibium the net for
e on the piston head must be zero. The radius

R of the torque arm satis�es sin θ = d
R
so that R = d

sin θ
. The for
e F exerted

by the torque of the arm is perpendi
ular to the lever arm. Its 
omponent in

the dire
tion of the piston shaft is F cos(π2 − θ) = F sin θ. Now F sin θ − P = 0

so that F = P
sin θ

. Hen
e we obtain:

M = RF =
d

sin θ
· P

sin θ
=

Pd

sin2 θ
.
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Comment We shall solve this problem again as Question 6 of Set 6 by the

method of Virtual work.

Problem Set 5

1. In the stati
 
ase we have F1 = µsN , where N = 100N, the weight of the
blo
k. Hen
e we get 40 = µs100 so that µs = 0 · 4.

For the 
oe�
ient of kineti
 fri
tion, the for
e needed to maintain a 
onstant

velo
ity was 20N . Hen
e F2 = µkN so that 20 = 100µk and so µk = 0 · 2.
2(a) Sin
e the verti
al for
es are in equilibrium the upward for
e on the 
ar

is R = 1200g. Sin
e the 
ar is skidding F = µR = 0 · 8× 1200g = 9408N. Now
F = ma = 1200a so that

1200a = −9408⇒ a = −7 · 84m/se


2.

(b) Using v2 = u2 + 2as we obtain

02 = 202 + 2(−7 · 84)s

⇒ s =
400

15 · 68 = 25 · 5m(3 s.f.).

(
) Using v = u+ at, we make t the subje
t and �nd that:

t =
v − u

a
= −u

a
=

20

7 · 84 = 2 · 55 s (3 s.f.).

3(a) We have equilibrium equations:

Fx = F cos θ −Nµ = ma, Fy = N + F sin θ −mg = 0

⇒ F cos θ −mgµ+ Fµ sin θ = ma

⇒ a =
F (cos θ + µ sin θ)−mgµ

m
.

(b) In the plane of the surfa
e, the maximum for
e that may be applied with-

out movement is F = Nµs = (mg − F sin θ)µ. Equate this with the 
omponent

F cos θ of the applied for
e in the opposing dire
tion to get:

F cos θ = mgµ− (F sin θ)µ

⇒ F (cos θ + µ sin θ) = mgµ

∴ Fmax =
mgµ

cos θ + µ sin θ
.

4(a) We have the equations of motion of M and m respe
tively:

T − µN = T − µMg = Ma

17



mg − T = ma;

substituting T = mg −ma into the �rst equation gives:

mg − µMg = Ma+ma = a(M +m)

∴ a =
g(m− µM)

M +m
;

masses will a

elerate when m−Mµ > 0, otherwise the system remains at rest.

(b) The system is in motion but with 0 a

eleration exa
tly when m−Mµ =
0, whi
h is µ = m

M
= 1

5 .

5(a) We take the positive dire
tion of motion to the right in the plane for M
and downwards for m. The (fri
tional drag a
ting in the plane of the in
line)

is then −µN = −µMg cos θ and the 
omponent of gravity in the plane of the

in
line is −Mg sin θ. Hen
e our more general equations for the motions or M
and of m be
ome:

T − µMg cos θ −Mg sin θ = Ma

mg − T = ma;

⇒ mg −ma− µMg cos θ −Mg sin θ = Ma

∴ a = g
m−M(sin θ + µ cos θ)

M +m
.

(b) On the other hand, if the mass M is slipping down the slope, then the

fri
tional for
e reverses dire
tion. If we again we measure the positive dire
tion

in the dire
tion of the motion the equations take the form:

−T − µMg cos θ +Mg sin θ = Ma

T −mg = ma

⇒ −mg −ma− µMg cos θ +Mg sin θ = Ma

⇒ a = g
M(sin θ − µ cos θ)−m

M +m
.

6. There are two possibilities. We may 
al
ulate a in ea
h 
ase. However if

the result is a < 0, this 
ontradi
ts our assumption, so that 
ase is dis
arded.

We �rst test Case (a):

a = 9 · 812− 4(sin 45◦ + 0 · 1 cos 45◦)
4 + 2

= −1 · 8m/se


2 < 0;

so the a

eleration is not upwards. Hen
e M must be sliding down the slope,

as Case (b) 
on�rms:

a = 9 · 814(sin 45
◦ − 0 · 1 cos 45◦)− 2

4 + 2
= 0 · 9m/se


2.
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7(a) Form1 we have 2T−m1g = m1a1 while form2 we have T−m2g = m2a2.
Next, if m2 moves a distan
e x downwards, then the portion of the string before

the se
ond pulley has de
reased by x, so the portions to the left and right of

the �rst pulley have ea
h de
reased by

x
2 . It follows that a2 = 2a1.

(b) We now solve as follows: T = m2g +m2a2 = m2g − 2m2a1. Hen
e we

obtain:

2m2g − 4m2a1 −m1g = m1a1

⇒ a1(m1 + 4m2) = g(2m2 −m1)

∴ a1 =
g(2m2 −m1)

4m2 +m1
, a2 =

2g(2m2 −m1)

4m2 +m1

T = m2g −
2m2g(2m2 −m1)

4m2 +m1
=

4m2
2g +m1m2g − 4m2

2g + 2m1m2g

4m2 +m1

∴ T =
3m1m2g

4m2 +m1
.

Comment The main pra
ti
al use of pulley systems is that they 
an provide

me
hani
al advantage, meaning that it is possible for an obje
t to be win
ed

upwards at a 
onstant speed (but zero a

eleration) by a for
e that is only a

fra
tion of the obje
t's weight. This is possible by virtue of the work formula

W = Fd so that, for instan
e, the same work 
an be done (whi
h may 
orrespond

to lifting a weight to a spe
i�
 height against gravity) by a for
e of half that

weight at the expense of moving twi
e the distan
e against the lesser for
e.

8(a) We have three equations:

m1g − T1 = m1a1, m2g − T2 = m2a2, m3g − T2 = m3a3.

Sin
e the movable pulley has no (or at least negligible) mass we have T1−2T2 =
0, whi
h is to say that T1 = 2T2. The a

eleration of P2 is −a1. Let the

a

eleration of m2 relative to P2 be a. Then a2 = a − a1 and a3 = −a − a1,
when
e

a1 + a2 = a = −a3 − a1

⇒ a3 = −2a1 − a2.

(b)





m1 0 2
0 m2 1

−2m3 −m3 1









a1
a2
T2



 = g





m1

m2

m3





9(a) The determinant D of the 
oe�
ient matrix is:

D = m1(m2 +m3) + 2(0− (−2m2m3)) = m1m2 +m1m3 + 4m2m3.

(b) Applying Cramer's rule to the system now gives:

a1 =

g

∣

∣

∣

∣

∣

∣

m1 0 2
m2 m2 1
m3 −m3 1

∣

∣

∣

∣

∣

∣

D
= g

m1m2 +m1m3 − 4m2m3

m1m2 +m1m3 + 4m2m3
;
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a2 =

g

∣

∣

∣

∣

∣

∣

m1 m1 2
0 m2 1

−2m3 m3 1

∣

∣

∣

∣

∣

∣

D
= g

m1m2 − 3m1m3 + 4m2m3

m1m2 +m1m3 + 4m2m3
;

a3 = −2a1 − a2 = g
m1m3 − 3m1m2 + 4m2m3

m1m2 +m1m3 + 4m2m3
;

T2 =

g

∣

∣

∣

∣

∣

∣

m1 0 m1

0 m2 m2

−2m3 −m3 m3

∣

∣

∣

∣

∣

∣

D
=

4gm1m2m3

m1m2 +m1m3 + 4m2m3
=

4g
4
m1

+ 1
m2

+ 1
m3

.

T1 = 2T2 =
8g

4
m1

+ 1
m2

+ 1
m3

.

(
) If m1 = m2 = m3 = m then the above formulas simplify to:

a1 = −g

3
, a2 = a3 =

g

3
, T1 =

4gm

3
, T2 =

2gm

3
.

10(a) We have

F − (m1 +m2 +m3)µg = (m1 +m2 +m3)a

⇒ a =
F − (m1 +m2 +m3)µg

m1 +m2 +m3
=

F

m1 +m2 +m3
− µg

(b) The tensions that arise in the equations of motion for m2 and m3 satisfy:

T2 − T1 −m2µg = m2a; T1 −m1µg = m1a.

From the �nal equation and the answer to (a) we obtain:

T1 = m1(µg +
F

m1 +m2 +m3
− µg) =

m1F

m1 +m2 +m3
;

T2 = T1 +m2µg +m2(
F

m1 +m2 +m3
− µg)

⇒ T2 =
m1F

m1 +m2 +m3
+

m2F

m1 +m2 +m3

∴ T2 =
(m1 +m2)F

m1 +m2 +m3
.
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Problem Set 6

1. Let us move the point B upward by δy. The point A remains stationary.

The virtual work done by the a
tive for
e RB is RBδy. By similar triangles,

the mass m moves upwards δm where

δm
a

= δy
L

so that δm = a
L
δy. Hen
e the

virtual work done by the weight is −mg · a
L
δy. By the Prin
iple of virtual work

we equate their sum to 0:

RBδy −mg · a
L
δy = 0

⇒ RB =
a

L
·mg

and, also as before, we obtain RA = (1− a
L
)mg.

2. The rotational work done by RB is now RBLδθ while that done by the

weight is −mg · aδθ. Equating the sum of the work done by the torques of the

a
tive for
es then gives:

RBLδθ = mgaδθ

⇒ RB =
a

L
·mg

and similarly RA = (1− a
L
)mg.

3(a) Let y denote the verti
al 
oordinate of the joint P where F a
ts and let

x = AB. Then

y = L cos θ ⇒ dy

dθ
= −L sin θ

x = 2L sin θ ⇒ dx

dθ
= 2L cos θ.

(b) By

−→
F ,

−→
δx et
. we mean the ve
tors with the 
orresponding (non-

negative) magnitudes F , δx, et
. in the dire
tion of the for
e or displa
ement

as the 
ase may be. Consider the virtual work done when a small displa
ement

δθ o

urs in the angle θ, whi
h may represent the single degree of freedom of

the system. Then

−→
F a
ts in the dire
tion of

−→
δy but

−→
BX a
ts in the opposite

dire
tion to

−→
δx. We may write the virtual work equation as:

−→
F • −→δy +

−→
BX • −→δx = 0.

Sin
e the resistan
e for
e is in the opposite dire
tion to the virtual displa
ement

we obtain:

⇒ FL sin θδθ − 2LBX cos θδθ = 0

∴ BX =
F

2
tan θ.
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4. The e�
ien
y e is the ratio of the (unsigned magnitudes) of the output

and input work done by the a
tive for
es.

e =
BXδx

Fδy
=

F
2 tan θ(2L cos θδθ)

FL sin θδθ
= tan θ · cot θ = 1.

5(a) By symmetry, the normal rea
tion for
e to F at both points A and B
is N = F

2 . Hen
e the fri
tional resistan
e for
e at the point B is R = Fµ
2 (in

the negative x dire
tion).

(b) The virtual work equation above, whi
h was drawn up under the as-

sumption that µ = 0, now be
omes:

−→
F • −→δx+

−−−−−−→
(BX +R) • −→δy = 0

⇒ FL sin θδθ − 2L(BX +
Fµ

2
) cos θδθ = 0

⇒ F sin θ − 2BX cos θ − Fµ cos θ = 0

∴ BX =
F

2

(

tan θ − µ).

(
) Hen
e the e�
ien
y ratio is given by:

BXδx

Fδy
=

F
2 (tan θ − µ)2L cos θδθ

FL sin θδθ
= (tan θ − µ) cot θ = 1− µ cot θ.

(d) Sin
e the e�
ien
y 
annot be negative we seek to interpret the inequality

1− µ cot θ ≤ 0 ⇔ cot θ >
1

µ
.

For �xed non-zero 
oe�
ient of fri
tion µ this will be satis�ed for all su�
iently

small angles. For su
h small angles, no matter how large the for
e F , the
fri
tional resistan
e will hold the strut in pla
e, a
ting in e�e
t like a se
ond

�xed point and so the notion of a virtual displa
ement in those 
ir
umstan
es is

invalid. In other words our e�
ien
y ratio 
al
ulation only applies if cot θ ≤ µ−1
.

6(a) The angle at B is also θ so that

tan θ =
d

y
⇒ y = d cot θ.

By di�erentiation we �nd the virtual y-displa
ement as

⇒ dy

dθ
= − d

sin2 θ
.

(b)

δU = −Pδy −Mδθ.
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(
) Putting δU = 0 we obtain:

− Pd

sin2 θ
δθ −Mδθ = 0

⇒ M =
Pd

sin2 θ
.

7(a) Again there is a single degree of freedom, represented either by the angle

θ between the rods, or the 
oordinate xmeasuring the displa
ement from A to C.
Taking the y dire
tion to be positive in the downward dire
tion, remembering

that P lies at the midpoint of the rod BC, we have that

yP =
l

2
cos

θ

2

⇒ δyP = − l

4
sin

θ

2
.

(b)

xP = l sin
θ

2
+

l

2
sin

θ

2
=

3

2
l sin

θ

2

⇒ δx =
3

4
l cos

θ

2
δθ.

(
)

δU = Pδx+ 2mgδy = 0

⇒ P · 3
4
l cos

θ

2
δθ − 2mg · l

2
sin

θ

2
δθ = 0

⇒ tan
θ

2
=

3P

2mg

∴ θ = 2 arctan
3P

2mg
.

8(a) We see that yC = 2l sin θ and yB = 1
2yC .

(b) The elongation of the spring is yC − h = 2l sin θ − h. Hen
e the spring
for
e F is given by:

F = 2kl sin θ − kh. (5)

(
) From (a)

δU = PδyB − FδyC = 0

⇒ P · 1
2
δyC = FδC

∴ F =
P

2
.

Substituting in (5) now gives:

P = 4kl sin θ − 2kh
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sin θ =
P + 2kh

4kl

∴ θ = arcsin
(P + 2kh

4kl

)

.

9. Let l denote the length of the supporting ja
k. Then

l2 = b2 + L2 − 2bL cosθ ⇒ 2lδl = 2bL sin θδθ

h = 2b sin θ ⇒ δh = 2b cos θδθ.

The virtual work done by the two a
tive for
es (the weight and the ja
k) are

given by:

−mgδh+ Fδl = 0

⇒ F =
mgδh

δl
=

mg · 2b cos θδθ
2bL sin θδθ/2l

=
2lmg cot θ

L
=

2mg cot θ

L

√

b2 + L2 − 2bL cos θ

∴ F = 2mg cot θ

√

1 + (
b

L
)2 − 2b

L
cos θ.

10. Write P ′
for the image of ea
h named point P under the rotation δθ.

Rotating about A, the angular displa
ements rδθ are in ea
h 
ase:

BB′ = 5δθ, CC′ = 3δθ, EE′ = 6δθ.

Applying δU = 0 where δU is the sum of the moments about A of the sum of the

a
tive for
es we obtain, upon 
an
elling the 
ommon fa
tor of δθ, the equation
for the verti
al rea
tion RB at B:

RB · BB′ − (20 sin 60◦)CC′ + (8 cos 45◦)EE′ = 0

⇒ 5RB − 20
√
3

2
· 3 + 4

√
2× 6 = 0

⇒ RB = 6
√
3− 24

√
2

5
= 3 · 6041N (4d.p).

Next, by Newton's law we have:

RA +RB = 20 sin60◦ − 8 sin 45◦

⇒ RA = (
24

√
2

5
− 6

√
3) + 10

√
3− 4

√
2 = 4

√
3 +

4
√
2

5
= 8 · 0596N (4 d.p.).
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Problem Set 7

1. We apply the 
hain rule in ve
tor notation a
ross ea
h 
omponent. We

have F = mdv
dt

and dr = vdt. Formally 
hanging limits as we 
hange the

variable of integration gives:

Wi,f =

∫ f

i

F • dr =

∫ f(t)

i(t)

m
dv

dt
• v dt = m

∫ f(t)

i(t)

v•
dv

dt
dt

= m

∫ f(v)

i(v)

v•dv =
1

2
m(v2f − v2i );

as, by Pythagoras, the sum of the squares of the 
omponent velo
ities equals

the square of velo
ity of the parti
le.

2. Using the fa
t that the produ
t rule is valid a
ross ve
tor produ
ts and

that p = mv we get:

L̇ = ṙ × p+ r × ṗ = ṙ ×mv + r × ṗ

= mṙ × ṙ + r× F = r × F = D.

Comment In words, the rate of 
hange of angular momentum equals the

torque a
ting on the body. The law of the 
onservation of angular momentum

is then that L̇ = 0 when there is no torque a
ting.

3(a)

τ = r×mg = lr̂ ×mg(cos θr̂ − sin θθ̂) = −mgl(sin θ)k.

(b) We equate the magnitude of the torque ve
tor to Iα = Iθ̈. Now I = ml2

so we obtain:

−mgl sin θ = ml2θ̈

∴ θ̈ +
g

l
sin θ = 0.

(
) Sin
e ṙ = 0, the transverse 
omponent of the equation F = ma gives:

lθ̈ = −g sin θ

∴ θ̈ +
g

l
sin θ = 0.

4(a) From x = r cos θ we get

ẋ = ṙ cos θ − rθ̇ sin θ

⇒ ẍ = r̈ cos θ − ṙθ̇ sin θ − ṙθ̇ sin θ − rθ̈ sin θ − rθ̇2 cos θ

∴ ẍ = (r̈ − rθ̇2) cos θ − (rθ̈ + 2ṙθ̇) sin θ.
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Putting θ = 0 and θ = 3π
2 respe
tively then gives the radial and transverse


omponents of velo
ity, namely, ṙ and rθ̇, and for a

eleration r̈ − rθ̇2 and

rθ̈ + 2ṙθ̇. This follows as when θ = 0 the x- 
omponent of these derivatives

is in the same dire
tion as the radial 
omponent, and the same applies to the

transverse 
omponent when θ = 3π
2 .

(b)

1

r

d

dt

(

r2θ̇) =
1

r

(

2rṙθ̇ + r2θ̈
)

= 2ṙθ̇ + rθ̈.

5(a) Approximating sin θ by θ yields the se
ond order linear di�erential equa-
tion of simple harmoni
 motion:

θ̈ +
g

l
θ = 0,

the auxiliary equation of whi
h is λ2 = − g
l
so that λ = ±

√

g
l
i. Hen
e the

general solution to the equation of motion is given by r(t) = l and

θ(t) = C1 cos

√

g

l
t+ C2 sin

√

g

l
t.

(b) We are given the initial 
onditions that θ̇(0) = 0 and θ(0) = θ0. The

latter gives θ0 = C1. Then we have:

θ̇(t) = −θ0

√

g

l
sin

√

g

l
t+ C2

√

g

l
cos

√

g

l
t.

Putting t = 0 in this latter equation then gives:

0 = C2

√

g

l
cos(0),

when
e C2 = 0 and so our parti
ular solution is:

θ(t) = θ0 cos

√

g

l
t, t ≥ 0.

(
) The period T of our solution is then:

T =
2π
√

g
l

=
2π√
g

√
l.

6.

L = r × p = r×(mω × r)

= m
(

(r • r) ω− (r • ω)r = mr2 ω = Iωk.

7(a) Let v = lω denote the magnitude of the velo
ity of the bob as it swings.

Equating the loss of kineti
 energy as the bob swings from the bottom of the
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ir
le, with initial velo
ity v0 = lω0, to the gain in potential energy we obtain

the equation:

1

2
mv20 −

1

2
mv2 = mgl(1− cos θ)

⇒ v2 = v20 − 2gl(1− cos θ).

By Newton's law we have the tension T in the string satis�es:

T −mg cos θ =
mv2

l

⇒ T =
mv2

l
+mg cos θ =

mv20
l

− 2mg(1− cos θ) +mg cos θ

⇒ T =
mv20
l

+mg(3 cos θ − 2) ≥ 0 ∀θ

⇔ v20 ≥ gl(2− 3 cos θ) ∀θ;
the maximum value of the right hand side is 5gl (when θ = 180◦) so the minimum

value of v0 that will keep the string taut is

√
5gl. Sin
e lω0 = v0 we see that

the minimum angular velo
ity at the bottom of the swing is therefore

ω0 =

√

5g

l
.

7(b) Unlike the string, the rod may support a negative tension, so T < 0 is

allowed. However, the system has to have enough energy for the bob to rea
h

the top of the 
ir
le. Hen
e we require that v ≥ 0 for all angles, whi
h, sin
e

the maximum of 1− cos θ is 2, we require that

v2 = v20 − 2lg(1− cos θ) ≥ 0

⇔ v20 ≥ 4lg

so that v0 >
√
4lg and

ω0 >

√

4g

l
.

We do require stri
t inequality as equality here would see the bob stopping right

at the top in (unstable) equilibrium.

8(a) Conservation of energy here takes the form

1
2Iθ̇

2 = mga sin θ, so that,

sin
e I = 4
3ma2 (as the length of the rod is 2a) we obtain:

1

2
· 4
3
ma2θ̇2 = mga sin θ

⇒ aθ̇2 =
3

2
g sin θ

⇒ 2aθ̇θ̈ =
3

2
g(cos θ)θ̇
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∴ aθ̈ =
3

4
g cos θ.

(b) Let X and Y denote the respe
tive for
es applied by the hinge to the

rod in the dire
tions BA and perpendi
ular to the rod at A. Then sin
e the


entre of mass lies a distan
e a from A and aθ̇2 and aθ̈ are the 
omponents of

a

eleration in the dire
tions of X and of Y respe
tively we have from Newton's

law:

X −mg sin θ = maθ̇2

−Y +mg cos θ = maθ̈

when
e

X = mg sin θ +maθ̇2 =
5

2
mg sin θ

Y = mg cos θ −maθ̈ =
1

4
mg cos θ.

9. Let F and R denote the fri
tion and the rea
tive for
es respe
tively and

let θ be the displa
ement angle of the rod from the verti
al at a time before

slipping o

urs. Denote the length of the rod by 2a. Then Conservation of

energy gives:

1

2
· 4
3
ma2θ̇2 +mga cos θ = mga

⇒ aθ̇2 =
3

2
g(1− cos θ)

⇒ aθ̈ =
3

4
g sin θ.

Hen
e as in the previous question, we have by Newton's law applied to the


entre of mass of the toppling rod that:

F = maθ̈ cos θ −maθ̇2 sin θ; (6)

R−mg = −maθ̈ sin θ −maθ̇2 cos θ (7)

(6) ⇒ F =
3

4
mg sin θ cos θ − 3

2
mg(1− cos θ) sin θ

⇒ F =
3

4
mg sin θ(3 cos θ − 2)

(7) ⇒ R = mg − 3

4
mg sin2 θ − 3

2
mg(1− cos θ) cos θ

=
1

4
mg(4− 3 sin2 θ − 6 cos θ + 6 cos2 θ)

⇒ R =
1

4
mg(1− 3 cos θ)2.
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At the slipping point when θ = π
6 , we have F = Rµ so that

µ =
F

R
=

3
4 sin

π
6 (3 cos

π
6 − 2)

1
4 (1− 3 cos π

6 )
2

=
3
8 (

3
√
3

2 − 2)

1
4 (1− 3

√
3

2 )2
=

3(3
√
3−4
2 )

(2−3
√
3

2 )2

=
6(3

√
3− 4)

31− 12
√
3

= 0 · 3513.

10. Let the door be swinging with angular velo
ity ω0 when it hits the stop

and rebound with angular velo
ity ω1. Upon 
ollision there will be a rebound

impulse P perpendi
ular to the door and an impulse J at the hinge A also

perpendi
ular to the door. Again let the width of the door AB be 2a and let x
denote the distan
e of the stop from A. The moment imparted by the impulse

equals the 
hange in angular momentum of the door. Taking the dire
tion of

rebound as positive rotation, and taking the 
hange in angular momentum about

A we may express that as an equation:

Px =
4

3
ma2ω1 − (−4

3
ma2ω0) =

4

3
ma2(ω1 + ω0)

⇒ ω1 =
3Px

4ma2
− ω0.

The velo
ities of the 
entre of mass of the door before and after impa
t are

respe
tively −aω0 and aω1. We now equating the total moment of impulse

about the 
entre of mass with the 
hange in angular momentum. We have P
a
ting in the positive sense along with ω1 while ω0 a
ts in the negative dire
tion

of rotation. The perpendi
ular dire
tion of J (
lo
kwise or anti-
lo
kwise about

the 
entre of mass, whi
h 
orresponds to up or down at A) is not 
lear; indeed
the question is asking for when J = 0. In order to be de�nite we write J in the

positive sense. This gives:

J + P = maω1 − (−maω0) = ma(
3Px

4ma2
− ω0 + ω0)

⇒ J = ma(
3Px

4ma2
)− P = P (

3x

4a
− 1).

It follows that J = 0 exa
tly when 1 = 3x
4a , whi
h is to say that x = 4

3a. Sin
e
the width of the door was 2a, this means that the stop should be pla
ed at

2
3

the width of the door, measured from A, to avoid any jarring at the hinge when
the door strikes the stop.

Comment This problem is often represented as �nding the 
entre of per
us-

sion or sweet spot on a baseball or 
ri
ket bat (treating the bat as a simple rod).

When the ball strikes the sweet spot, the batter feels no jarring of the hands

and maximum energy is imparted to the ball. Note that the impulse J may be

either positive or negative depending on whether or not x > 4
3a or x < 4

3a. A
right-handed batter will feel the bat pushed into their left hand if the impa
t
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is near the toe end of the bat but will feel the bat pushed ba
k into their right

hand if the impa
t is 
lose to the bat handle.

Problem Set 8

1(a) In general the number of 
onstraints is 3N − s where N is the number

of parti
les and s the number of holomoni
 
onstraints. Here N = 1 and s = 2,
the two 
onstraints being z = 0 and x and y are linked by the equation

y

x
= tan(ωt).

Hen
e there is 3× 1− 2 = 1 degree of freedom.

(b) Here we have V = 0 so that

L = T =
1

2
mv2 =

m

2
(ẋ2 + ẏ2)

where m is the mass of the sphere.

(
) We have

x = r cosωt, y = r sinωt

⇒ ẋ = ṙ cosωt− rω sinωt, ẏ = ṙ sinωt+ rω cosωt

⇒ v2 = ẋ2 + ẏ2 = ṙ2 + r2ω2

∴ L(r, ṙ, t) =
m

2
(ṙ2 + r2ω2).

2. We now solve

d

dt
(
∂L

∂ṙ
)− ∂L

∂r
= 0 (8)

In our 
ase we have

d

dt
(
∂L

∂ṙ
) =

d

dt
(m

˙
ṙ) = mr̈,

∂L

∂r
= mω2r,

so that, upon 
an
elling m, (8) be
omes:

r̈ − ω2r = 0.

Putting r(t) = eAt
we obtain the auxiliary equation A2 −ω2 = 0 so our general

solution to the problem is:

r(t) = C1e
ωt + C2e

−ωt.

Comment As t → ∞ the solution is dominated by the term C1e
ωt
, indi
ating

that the sphere will eventually by �ung out of the tube by the 
entrifugal for
e.
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3(a)

T =
1

2
mv2 =

1

2
m(ẋ2 + ẏ2) =

1

2
m((aθ̇(1− cos θ))2 + (−aθ̇ sin θ)2)

∴ T = ma2θ̇2(1− cos θ)

Sin
e V = mgy = mga(1 + cos θ) we get:

L = T − V = ma2θ̇2(1− cos θ)−mga(1 + cos θ).

(b)

∂L

∂θ
= ma2θ̇2 sin θ +mga sin θ

∂L

∂θ̇
= 2ma2θ̇(1 − cos θ)

⇒ d

dt
(
∂L

∂θ̇
) = 2ma2(θ̈(1− cos θ) + θ̇2 sin θ).

d

dt
(
∂L

∂θ̇
)− ∂L

∂θ
= 2ma2(θ̈(1 − cos θ) + θ̇2 sin θ))−ma2θ̇2 sin θ −mga sin θ = 0

∴ θ̈(1− cos θ) +
1

2
θ̇2 sin θ − g

2a
sin θ = 0 (9)

4. Dividing (9) throughout by 1− cos θ gives:

θ̈ +
θ̇2 sin θ

1− cos θ
− g

2a

sin θ

1− cos θ
= 0.

Now

sin θ

1− cos θ
=

2 sin θ
2 cos

θ
2

2 cos θ
2

= cot
θ

2
and so we obtain for (9):

θ̈ + θ̇2 cot
θ

2
− g

2a
cot

θ

2
= 0 (10)

5. To solve (10) we put u = cos θ
2 so that u̇ = − 1

2 θ̇ sin
θ
2 and ü = − 1

2 θ̈ sin
θ
2 −

1
2 θ̇

2 cos θ
2 . We then multiply (10) throughout by sin θ

2 to give:

θ̈ sin
θ

2
+ θ̇2 cos

θ

2
− g

2a
cos

θ

2
= 0

⇒ ü+
g

4a
u = 0.

The auxiliary equation to this di�erential equation is r2 + g
4a = 0 and sin
e

g, a > 0 we have roots r = ±i
√

g
4a . Hen
e we re
over our solution:

u(t) = cos(
θ

2
) = C1 cos

√

g

4a
t+ C2 sin

√

g

4a
t.

31



6(a) Resolving for
es tangentially we have:

−mg sin θ = m(rθ̈ + 2ṙθ̇) = mlθ̈

∴ θ̈ +
g

l
sin θ = 0.

(b) We may take θ, the angle between the pendulum line and the verti
al,

as the generalized 
oordinate for the one degree of freedom of the problem. We

then get:

T =
1

2
mv2 =

1

2
m(lθ̇)2 =

1

2
ml2θ̇2;

y = l − l cos θ ⇒ V = mgl(1− cos θ)

L = T − V =
1

2
ml2θ̇2 −mgl(1− cos θ)

⇒ ∂L

∂θ̇
= ml2θ̇,

d

dt

(∂L

∂θ̇

)

= ml2θ̈,

∂L

∂θ
= −mgl sin θ;

⇒ ml2θ̈ −mgl sin θ = 0

∴ θ̈ +
g

l
sin θ = 0.

Comment Often, for simple problems su
h as this one, the s
heme based

on Newton's laws is simpler than the Euler-Lagrange equation based on en-

ergy. However, the latter method is strategi
ally simple and so is more easily

translated into software for the purpose of 
omputation.

7(a) We have the 
onstraints x2 + y2 + z2 = R2
for the 
oordinates of the

mass and also φ = ωt, where φ is the angle the plane of the hoop makes with

the x-axis. Sin
e there is 1 parti
le and 2 
onstraints there is 3 × 1 − 2 = 1
degree of freedom. We take as our generalized 
oordinate the angle θ between

the z-axis and the radius of the hoop to the bead.

(b) Proje
ting the radius of the hoop on to the xy-plane we see that:

x = R sin θ cosωt, y = R sin θ sinωt, z = R cos θ

⇒ ẋ = Rθ̇ cos θ cosωt−Rω sin θ sinωt, ẏ = Rθ̇ cos θ sinωt+Rω sin θ cosωt, ż = −Rθ̇ sin θ.

(
)

T =
1

2
m(ẋ2 + ẏ2 + ż2), V = mgz

⇒ L = T − V =
1

2
mR2(θ̇2 cos2 θ cos2 ωt+ θ̇2 cos2 θ sin2 ωt+ θ̇2 sin2 θ)

+
1

2
R2ω2(sin2 θ sin2 ωt+ sin2 θ cos2 ωt)−mgR cos θ;

∴ L =
1

2
mR2(θ̇2 + ω2 sin2 θ)−mgR cos θ.
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8.

∂L

∂θ̇
= mR2θ̇,

∂L

∂θ
= mR2ω2 sin θ cos θ +mgR sin θ,

d

dt
(
∂L

∂θ̇
) = mR2θ̈;

⇒ mR2θ̈ = mR2ω2 sin θ cos θ +mgR sin θ

∴ θ̈ =
1

2
ω2 sin 2θ +

g

R
sin θ.

9(a) There are 4 
onstraints, whi
h may be expressed as zm = 0 = zM ,

yM = 0, h−ym

xm−xM

= tanα. There are 2 parti
les, so that there are 3× 2− 4 = 2
degrees of freedom. The 
oordinates (xm, ym) determine the position of m and

of the wedge, using the 
onstraints. Now

xm = xM + q cosα, ym = h− q sinα

⇒ ẋm = ẋm + q̇ cosα, ẏm = −q̇ sinα.

so we may take q and xM as our generalized 
oodinates.

(b)

T =
1

2
m(ẋ2

m + ẏ2m) +
1

2
Mẋ2

M , V = mgym

⇒ L = T − V =
1

2
m(ẋ2

M + q̇2 ++2ẋM q̇ cosα) +
1

2
Mẋ2

M −mg(h− q sinα).

10(a) Write down the Euler-Lagrange equation for ea
h generalized 
oordinate:

d

dt
(mẋM +mq̇ cosα+MẋM ) = 0

⇒ (m+M)ẍM +mq̈ cosα = 0 (11)

d

dt
(mq̇ +mẋM cosα) = mg sinα

⇒ q̈ + ẍM cosα = g sinα. (12)

(b) Substituting from (12) into (11) now gives:

(m+M)ẍM +m(g sinα− ẍM cosα) cosα = 0

⇒ ẍM (M +m−m cos2 α) = −mg sinα

⇒ ẍM = − mg sinα

M +m sin2 α
;

q̈ = g sinα+
mg sinα

M +m sin2 α
.

Finally

ẍm = q̈ + xM = g sinα.

Comment We note that both a

elerations are 
onstant and the a

eleration

of m is independent of M and m. If m is small 
ompared to M then ẍM is small
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and q̈ approa
hes the a

eleration we would see with a �xed wedge. However,

if m is very large 
ompared to M and α is small then both ẍM and q̈ be
ome

arbitrarily large in magnitude as the wedge is �red out from underneath the

heavy weight pressing down on it.

Problem Set 9

1(a) L = mrvt, where vt is the tangential 
omponent of the velo
ity of the

mass. Hen
e

L = mr(rω) = mr2ω.

(b) From τ = L̇ we obtain:

τ = 2mωr
dr

dt
= rFc

∴ Fc = 2mω
dr

dt
= 2mωvr.

2(a)

vB = vA + ωr.

(b) The 
entrifugal a

eleration on the 
ir
umferen
e is

v2B
r

=
(vA + ωr)2

r
=

v2A
r

+ 2ωvA + ω2r.

3. By inspe
tion we see that we require the standard rotation matrix:

A =

[

cosφ sinφ
− sinφ cosφ

]

.

4.

a = a′xi
′ + a′yj

′ + a′zk
′

= a′x(i cosφ+ j sinφ) + a′y(−i sinφ+ j cosφ) + a′zk

= (a′x cosφ− a′y sinφ)i + (a′x sinφ+ a′y cosφ)j + a′zk.

5.

da

dt
= ȧxi+ ȧyj + ȧzk

=
˙

(a′x cosφ− a′y sinφ)i+
˙

(a′x sinφ+ a′y cosφ)j + a′zk

= (ȧx
′ cosφ− a′x sinφφ̇ − ȧ′y sinφ− a′y cosφφ̇)i+

(ȧ′x sinφ+ a′x cosφφ̇ + ȧ′y cosφ− a′y sinφφ̇)j + ˙a′zk

= ȧ′x(cosφi + sinφj) + ȧ′y(− sinφi + cosφj) + ȧ′zk+
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a′xφ̇(− sinφi+ cosφj) + a′yφ̇(− cosφi − sinφj)

= ȧx
′i′ + ȧy

′j ′ + ȧz
′k′ + φ̇a′xj

′ − φ̇ayi
′

=
Da

Dt
+ φ̇(a′xj

′ − a′yi
′).

6. Now

Ω×a = φ̇k × (a′xi
′ + a′yj

′ + a′zk
′) = φ̇(a′xj

′ − a′yi
′)

∴

da

dt
=

Da

Dt
+Ω× a. (13)

7(a) Putting a = r in (13) we obtain:

d2r

at2
=

d

dt
(
Dr

dt
+Ω× r) =

D

Dt
(
Dr

dt
+Ω× r) +Ω× (

Dr

dt
+Ω× r)

=
D2r

Dt2
+

DΩ

Dt
× r +Ω× Dr

dt
+Ω× Dr

dt
+Ω× (Ω× r)

=
D2r

Dt2
+

DΩ

Dt
× r + 2Ω× Dr

dt
+Ω× (Ω× r).

(b) Sin
e in the inertial frame S we have F = md2
r

dt2
it follows from (a) that

m
D2r

Dt2
= F −m

DΩ

Dt
× r − 2mΩ× Dr

dt
−mΩ× (Ω × r).

Comment The equation of motion of the parti
le in the rotating frame in-

volves three 
omponents, the se
ond of whi
h is the Coriolis for
e and the third

is related to the 
entrifugal for
e. If, as is the 
ase with a rotating planet,

we have that φ̇ is 
onstant then

DΩ
Dt

= 0 and the previous equation simpli�es

a

ordingly (as in the next question).

8(a) In the given s
enario we have

Dr

Dt
= D2

r

Dt2
= 0 = DΩ

Dt
, the latter be
ause

the Earth rotates with 
onstant angular velo
ity. The external for
e F = −mg

so we obtain:

−mg −mΩ× (Ω × r) = −mge.

(b) The ve
tor Ω = kφ̇ is in the dire
tion of axis of rotation. Hen
e Ω× r

is dire
ted due East (the dire
tion of rotation of the Earth) so that Ω×(Ω × r)
is dire
ted towards the axis of rotation. Sin
e this is substra
ted from g to get

ge, the e�e
tive gravitational a

eleration, it follows that ge < g and ge is least
at the equator.

9.

Ω × r = ΩR sin(
π

2
− λ)n̂

where n̂ is the unit ve
tor dire
ted due East. Hen
e

Ω×(Ω × r) = Ω2R cosλn̂′
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where n̂′
is the unit ve
tor dire
ted towards the axis of rotation. Sin
e ge =

g − Ω×(Ω × r) we obtain from the ve
tor triangle together with the Cosine

rule that:

g2e = g2 +Ω4R2 cos2 λ− 2gΩ2R cos2 λ

∴ g2e = g2 +Ω2R cos2 λ(Ω2R− 2g).

10. The minimum value for ge o

urs at the equator for there we hae λ = 0
and so cosλ = 1 and the previous equation be
omes:

g2e = g2 +Ω4R2 − 2gΩ2R = (g − Ω2R)2

⇒ ge = g − (ΩR)2.

Now R = 6 · 371× 106m and 24 hours equals 24× 60× 60 = 8 · 64× 104s. Hen
e

Ω =
2π

8.64× 104
= 7.272× 10−5

⇒ ge = g − (7 · 2722 × 6 · 371)× (10−10 × 106)

= g − 3.369× 10−2

⇒ ge
g

= 1− 0 · 003434 = 0 · 9966.

Whi
h is to say that equatorial e�e
tive weight is 99.66% that of the poles.

Problem Set 10

1(a) We begin with a • a = |a|2 = a2. Di�erentiating with respe
t to time:

a•
da

dt
+

da

dt
• a = 2|a|d|a|

dt

∴ a • da

dt
= |a|d|a|

dt
.

(b) Taking a = ṙ = v in part (a) we obtain:

m

∫

r̈ • ṙ dt = m

∫

|v|d|v|
dt

dt = m

∫

|v| d|v| = 1

2
m|v|2 + c.

2(a) From mr̈ = F (r)r̂ we take the dot produ
t with ṙ and use Question

1(b) and 1(a) in turn to �nd:

1

2
m|v|2 =

∫

F (r)r̂ • dr

dt
dt =

∫

F (r)

r
r • dr

dt
dt =

∫

F (r)

r
r
dr

dt
dt

=

∫

F (r) dr;
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hen
e the energy equation has the form:

1

2
m|v|2 −

∫

F (r) dr = E,

the value of the arbitrary 
onstant E depending on the zero level set for the

potential energy −
∫

F (r) dr of the system in question.

(b) Putting F (r) = r−2
we get

∫

F (r) dr =
∫

dr
r2

= − 1
r
+ c so that V (r) =

1
r
+ c.

3(a) We have ẋ = a, ẍ = 0;ẏ = 2bt, ÿ = 2b, ż = 3ct2, z̈ = 6ct. Hen
e

F = m r̈ = m(0, 2b, 6ct).

(b)

M = r × F =

∣

∣

∣

∣

∣

∣

i j k

at bt2 ct3

0 2bm 6cmt

∣

∣

∣

∣

∣

∣

= m(4bct3, −6act2, 2abt).

(
)

L = r × p = m(r × v) = m

∣

∣

∣

∣

∣

∣

i j k

at bt2 ct3

a 2bt 3ct2

∣

∣

∣

∣

∣

∣

= m(bct4, −2act3, abt2).

(d)

L̇ = m(4bct3, −6act2, 2abt) = M .

4(a)

M = r × F = r×
F (r)

r
r =

F (r)

r
(r × r) =

F (r)

r
0 = 0.

(b) We have in general that L̇ = M and sin
e M = 0, it follows that L is


onstant.

5(a) Sin
e L = r × p, where p = mṙ is the linear momentum of P we get

r • L = r • (r × p) = 0

as any triple produ
t (s
alar or ve
tor) with a repeated ve
tor is zero. Sin
e

L is 
onstant, r • L = 0 is the equation of the plane through the origin with

normal ve
tor L.

(b) The area δA swept out in time δt by the radial ve
tor r = OP satis�es

δA = |1
2
r× δr|

⇒ dA

dt
= lim

δt→0

δA

δt
= lim

δt→0
|1
2
r×

δr

δt
|
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=
1

2
| r × ṙ| =

|L|
2m

;

sin
e L and m are ea
h 
onstants, it follows that

dA
dt

is also 
onstant. This in

turn implies that the 
hange in area swept out by the radial ve
tor is the same

for any two time intervals of equal duration, whi
h is Kepler's se
ond law when

applied to the inverse square law of planetary motion.

6(a) Sin
e L = mr × ṙ it follows that

ṙ × L̇ = ṙ ×
(

(mṙ × ṙ) + (mr × r̈)
)

= mṙ × (r × r̈) = 0

as r̈ and r are assumed to be parallel ve
tors. Hen
e

d

dt
(mṙ ×L) = mr̈ ×L+mṙ × L̇

⇒ m
d

dt
(r̈ ×L) = mr̈ ×L+ 0

⇒ d

dt
(r̈ ×L) = mr̈ × (r × ṙ) =

F (r)

r
r × (r × ṙ)

⇒ d

dt
(ṙ ×L) =

F (r)

r

(

(r • ṙ)r − (r • r)ṙ
)

(b) We have r • r = r2, and di�erentiating this gives 2 r • ṙ = 2rṙ so that

r • ṙ = rṙ. Continuing we obtain:

d

dt
(ṙ ×L) =

F (r)

r
(rṙr − r2ṙ) = F (r)ṙr − F (r)rṙ.

7. We equate

d

dt
(α(r)r) =

dα

dt
r + α

dr

dt
= F (r)ṙr − F (r)rṙ

⇒ dα

dt
= F (r)

dr

dt
& α = −F (r)r

⇒ dα

dt
= −α

r

dr

dt

⇒ r
dα

dt
+ α

dr

dt
=

d

dt
(rα) = 0

⇒ α =
λ

r

where λ is an arbitrary 
onstant. From the equation α = −F (r)r we �nally


on
lude that

F (r) = −α

r
= − λ

r2
.

8. By Question 7, for an inverse square law, we have

d

dt
(ṙ ×L) =

d

dt
(α(r)r) =

d

dt
(λ

r

r
)

38



⇒ ṙ ×L− λ
r

r
= K

where K is then a 
onstant ve
tor.

Comment The ve
tor K (often denoted as a lower 
ase k) is known as the

Lenz-Runge ve
tor.

(b) Sin
e L = mr × ṙ and L is 
onstant, it follows that the parti
le moves

in a plane π through the origin determined by the �xed ve
tor L a
ting as a

normal to π, and ea
h of r and ṙ are perpendi
ular to L. Sin
e ea
h of r and

ṙ lie in π, it follows that K also lies in π and K is perpendi
ular to L as

K • L = (ṙ ×L) •L− λ

r
(r •L) = 0− 0 = 0,

as ṙ ×L is perpendi
ular to L and L = r × p is perpendi
ular to r.

We 
on
lude that, if non-zero, the trio of ve
tors (L,K,L× K) form an

orthogonal basis at ea
h point P of the path of the parti
le.

9(a) We have

r̈ +
µ

m
r = 0,

whi
h has solution

r = a sinωt+ b cosωt

for arbitrary 
onstant ve
tors a and b and where ω =
√

µ
m

.

(b)

ṙ = aω cosωt− bω sinωt

L = m r× ṙ = m(sinωta+ cosωtb)× (ω cosωta− ω sinωtb)

= m(ω sin2 ωt+ ω cos2 ωt)(b× a)

∴ L = mω(b× a).

(
)

E =
1

2
m|ṙ|2 −

∫

F (r) dr.

1

2
m|ṙ|2 =

1

2
mω2(|a|2 cos2 ωt+ |b|2 sin2 ωt− 2a • b sinωt cosωt) (14)

∫

F (r) dr = −µ

∫

r dr = −mω2

2
r2

= −1

2
mω2(|a|2 sin2 ωt+ |b|2 cos2 ωt+ 2a • b sinωt cosωt) (15)

Taking the required di�eren
e of (14) and (15) gives:

E =
1

2
mω2(|a|2 + |b|2) = µ

2
(|a|2 + |b|2).

10.

L̇ = mr̈ × r = −mλ

r3
(r × r) = 0. (16)
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K̇ = r̈ ×L+ ṙ × L̇− λ
ṙr − ṙr

r2
(17)

Now by (16), L̇ = 0 and as for the �rst term in (17) we �nd:

r̈ ×L = mr̈ × (r × ṙ) = −λr

r3
× (r × ṙ)

=
λ

r3
(r × (ṙ × r)) =

λ

r3
(

(r • r)ṙ − (r • ṙ)r
)

and sin
e r • r = r2 implies that r • ṙ = rṙ we obtain:

=
λ

r3
(

r2ṙ − rṙr) =
λ

r2
(rṙ − ṙr)

and so we obtain that the terms in (17) do indeed 
an
el to give 0.
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