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The purpose of real analysis is to provide a rigorous foundation for the

te
hniques of 
al
ulus, whi
h are based on the notion of limit. The exer
ises

assume familiarity with the basi
 ideas of 
onvergen
e of a sequen
e of real

numbers and the de�nition of 
ontinuity of a fun
tion in terms of the standard

symbols ε > 0 and δ > 0 along with the de�nition of derivative. We also assume

the Fundamental theorem of Cal
ulus and take for granted the integrability of

any 
ontinuous fun
tion. The known nature of the real numbers is assumed,

in
luding the existen
e of the greatest lower bound of a set bounded below

and similarly the least upper bound of a set bounded above. Set 1 establishes

the elementary properties of 
onvergent sequen
es of real numbers. Set 2 is


on
erned with 
ertain limits that are espe
ially important, parti
ularly those

involving the number e. Set 3 introdu
es results and examples on 
ontinuity

of a fun
tion. Throughout we will work mainly with one variable mappings

although we o

asionally expand to matters of several variables. Sets 4 and 5


on
ern series. We introdu
e and work with the standard tests for 
onvergen
e

and examples in
lude the binomial series for non-integral powers. We draw on

all this knowledge in the se
ond part of the module.

In Set 6 we study 
ontinuous fun
tions on 
losed intervals (the prototype

of so-
alled 
ompa
t sets, whi
h we shall meet in Level 3 modules in a more

general setting). We prove the Intermediate value and Extreme value theorems

for 
ontinuous fun
tions on a 
losed interval and illustrate the ideas involved

with relevant examples. Set 7 introdu
es the 
on
ept of uniform 
ontinuity for

individual and for sequen
es of fun
tions. This 
ondition is key in justifying

many of the te
hniques of 
al
ulus that involve the inter
hange of limiting op-

erations, su
h as term-by-term di�erentiation and integration of series. In Set

8 we study power series where the uniform 
onvergen
e of the series within its

radius of 
onvergen
e is a 
ru
ial property in 
al
ulations involving power series

representation of fun
tions of interest. In parti
ular the Weierstrass M-test is a

tool we �rst meet here. Set 9 introdu
es and proves another fundamental result

of 
al
ulus, that being the Mean value theorem in various forms and we use the

MVT to prove theorems often used in 
al
ulus in
luding Equality of mixed par-

tial derivates. Set 9 and all of Set 10 are about Taylor series and we introdu
e

a study of the Remainder term both in the Lagrange form, based on the Mean

value theorem, and the Integral form. We 
lose with some pra
ti
al 
al
ulations

in
luding a brief visit into the realm of Taylor series of several variables.
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Problem Set 1: Convergen
e of sequen
es

Let (an)n≥1, (bn)n≥1, et
. be sequen
es with limits A, B et
. The symbols

λ, µ et
 stand for 
onstants. The symbol =: means `equals by de�nition'.

1. Prove that if an ≤ M for all n ≥ 1 then the same is true of the limit

A = limn→∞ an (assuming A exists).

2. Prove that (λan + µbn) → λA+ µB.

3. (a) Prove that a 
onvergent sequen
e (an)n≥1 is bounded, meaning that

for some M ≥ 0 we have |an| < M for all n ≥ 1.
(b) Show that a monotoni
 in
reasing (resp. de
reasing) sequen
e 
onverges

if and only if it is bounded above (resp. below).

(
) Show that if an → A then |an| → |A|.
(d) Is the 
onverse to (
) true?

4. Prove that (anbn)n≥1 → AB.

5. Show similarly that provided bn 6= 0 for all n ≥ 1 and B 6= 0 then

an

bn
→ A

B .

6. Show that any subsequen
e (ani
)i≥1 of a 
onvergent sequen
e (an)n≥1


onverges to the same limit.

7. A sequen
e (an)n≥1 is said to be Cau
hy 
onvergent if for any ε > 0 there
exists N su
h that for all m,n ≥ N , |an − am| < ε. Show that any 
onvergent

sequen
e is Cau
hy 
onvergent.

Comment We assume without proof that the 
onverse of the result of Ques-

tion 7 holds for the real numbers (and similarly for C). We say that the numbers

systems (R,+, ·) and (C,+, ·) are 
omplete.

8. Prove that every bounded sequen
e (an)n≥1 has a 
onvergent subse-

quen
e.

9. Prove that if (an)n≥1 
onverges to A then so does the sequen
e de�ned

by

bn =
a1 + a2 + · · ·+ an

n
.

10. (Cambridge Tripos 1903) The arithmeti
 mean of the produ
ts of all

distin
t pairs of positive integers whose sum is n is denoted by Sn. Show that

lim
n→∞

Sn

n2
=

1

6
.
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Problem Set 2: Spe
ial Limits

1. Consider e(n) = (1 + 1
n )

n
. Find the general term tk (0 ≤ k ≤ n) in

the binomial expansion of e(n) and hen
e dedu
e that e(n) is monotoni
ally

in
reasing in n.

2(a) Repla
e ea
h bra
keted term in tk by 1 and dedu
e that e(n) <
∑n

k=0
1
k! .

(b) Use part (a) to 
ompare e(n) with a suitable geometri
 series to show

that e(n) < 3. Hen
e we may 
on
lude that limn→∞ e(n) exists; we denote this
limit by e ≈ 2 · 71828 · · ·.

3. By assuming the 
onvergen
e of the M
Laurin series for ex show that

e =

∞
∑

n=0

1

n!
.

4. Denote

∑n
k=0

1
k! by sn. Show that if m > n then

e(m) > 1+1+
1

2!
(1− 1

m
)+

1

3!
(1− 1

m
)(1− 2

m
)+ · · ·+ 1

n!
(1− 1

m
) · · · (1− n− 1

m
).

Hen
e dedu
e that e ≥ sn ≥ e(n) for all n ≥ 0 and thereby dire
tly establish

the result of Question 3.

5(a) Let l(x) = logb x. By writing l(
x
a ) = l(x)−l(a) and taking the derivative

of both sides, show that

(logb x)
′ =

λ

x
for some 
onstant λ.

(b) By �nding (logb x)
′
|x=1 from �rst prin
iples, show that λ = 1 exa
tly

when b = e.

6. Prove that if h > 0 then (1 + h)n > 1 + nh for all integers n ≥ 2.

7. Let an = p1/n for some p > 0. We show that an → 1 (
lear for p = 1).
For p > 1, write p = 1 + h (h > 0) and an = 1 + hn for some hn > 0. Show

using Question 6 that an → 1. For 0 < p < 1 show that p has the form

p =
1

1 + hn
, hn > 0

and prove that an → 1 in this 
ase also.

Let an = n
√
n. We show that an → 1 with use of the following arti�
e.

8. Put bn =
√
an. We may write bn = 1 + hn for some hn > 0. Show that

hn ≤ 1√
n
.

9. By writing an = b2n, use Question 8 to prove the 
laim made there.

10. Use the te
hnique of Question 8 to prove that for any α > 1, limn→∞
n
αn =

0. (Use an inequality of the form

√
αn > 1 + nh).
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Problem Set 3: Continuous fun
tions

1. Show that if (an)n≥1 → l and the fun
tion f : R → R is 
ontinuous at l

then (f(an))n≥1 → f(l).

2. Show that the fun
tion y = |x| is 
ontinuous.

3. Prove that if f(x) is 
ontinuous at x = a and g(x) is 
ontinuous at

x = f(a) then g(f(x)) is 
ontinuous at x = a. In parti
ular, f(x) is 
ontinuous
implies that |f(x)| is 
ontinuous. Is the 
onverse of this last statement true?

4. Show that if f(x) and g(x) are ea
h 
ontinuous at x = a, then so is

h(x) = λf(x) + µg(x) where λ, µ ∈ R.

5. Assuming that sinx and cosx are both 
ontinuous at 0, show that f(x) =
sinx is 
ontinuous.

6. Let a > 1 and let p(x) be a polynomial with real 
oe�
ients. Show using

Question 10 Set 2 that

lim
n→∞

p(n)

an
= 0.

7. Prove that if f(x) is di�erentiable at x = a then f(x) is 
ontinuous at
the same point.

8. Show that the fun
tion de�ned by the rule:

f(x, y) =
x3

x2 + y2

has a removable dis
ontinuity at the origin by showing that the limit as (x, y) →
(0, 0) exists.

9. Repeat Question 8 for the fun
tion de�ned by the rule:

f(x, y) =
x2 − y2

x2 + y2

this time showing that the limit does not exist by taking limits along the line

y = mx as x → 0.

10(a) Show that

lim
(x,y)→(0,0)

x2y

x4 + y2

is 0 as (x, y) → (0, 0) along any straight line y = mx.

(b) Show nevertheless that the dis
ontinuity at the origin of the 
orrespond-

ing fun
tion is not removable by taking the limit as the origin is approa
hed

along the parabola y = x2
.
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Problem Set 4: Series

Throughout Σ =
∑∞

n=1 an denotes the sum of a series of real numbers that

may or may not 
onverge; the partial sum

∑n
k=1 ak will be denoted by sn.

1. Prove that if

∑∞
n=1 an 
onverges then an → 0.

2. Show that 
onvergen
e of Σ is equivalent to the statement that

lim
k→∞

∞
∑

n=k

an = 0.

3. Show that any absolutely 
onvergent series (meaning that

∑ |an| 
on-
verges) is itself 
onvergent.

4. (Alternating signs test) Show that a series of the form

∑∞
n=0(−1)nan

(an ≥ 0) 
onverges if (an)n≥0 
onverges monotoni
ally to 0.

5. Show by the integral test that

∑∞
n=1 n

−p

onverges if and only if 0 < p < 1.

6. Ratio test Suppose that limn→ |an+1

an
| = r exists. Show Σ 
onverges if

r < 1 and diverges if r > 1.

7. Show using the Ratio test that the standard M
Laurin series (Taylor

series about 0) for ex, sinx, and cosx 
onverge for all real x.

8. Comparison test Suppose that 0 ≤ an ≤ bn for all n ≥ 1. Show that

∑

an 
onverges if

∑

bn 
onverges, and that

∑

bn diverges if

∑

an diverges.

9. By using a suitable test, de
ide on the 
onvergen
e of the following series.

(i)

∞
∑

n=1

23n+1

n!
(ii)

∞
∑

n=1

2n
2

(2n)!
(iii)

∞
∑

n=1

lnn

n
.

10. The root test If limn→
n

√

|an| = L < 1 then

∑∞
n=1 an 
onverges abso-

lutely (and diverges if L > 1). Apply the root test for these series:

(i)

∞
∑

n=1

(1 + n2)2n

(1− 2n2)n
(ii)

∞
∑

n=1

nn

52+3n
(iii)

∞
∑

n=1

( n

n+ 1

)n2

.

5



Problem Set 5: Further problems on sequen
es and series

1. Cau
hy 
ondensation te
hnique Let (an)n≥1 be a de
reasing sequen
e

of non-negative real numbers. Show that

∑∞
n=1 an 
onverges if and only if

∑∞
k=0 2

ka2k 
onverges.

2. Use Question 1 to prove the result of Question 5 of Set 4.

3. For whi
h values of p does the following series 
onverge?

∞
∑

n=2

1

n(logn)p
.

4. Does this series diverge?

∞
∑

n=2

1

n logn(log(logn))
.

5(a) Suppose that f is a fun
tion de�ned on some subset S ⊆ R. Let

u ∈ S and suppose that for every sequen
e (un)n≥1 in S su
h that un → u that

f(un) → f(u) then f is 
ontinuous at u.

(b) Is the 
onverse of this impli
ation true?

6(a) Find the value of the sum

∑∞
n=1

n
(n+1)! by showing that

N
∑

n=1

n

(n+ 1)!
= 1− 1

(N + 1)!

(b) Alternatively, answer part (a) through �nding the series for

1− ex + xex

x
.

7(a) Binomial series For f(x) = (1 + x)α (α ∈ R) show that

(1 + x)f ′(x) = xf(x).

(b) Hen
e show that the series expansion of f(x) is given by

f(x) =

∞
∑

n=0

(

α

n

)

xn
where

(

α

n

)

=
(α− n+ 1)(α− n+ 2) · · · (α− 1)α

n!
.

8. Show that the Binomial series 
onverges for |x| < 1 and diverges for

|x| > 1.
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Our series 
ertainly represents a fun
tion that satis�es the equation (1 +
x)f ′(x) = αf(x) with f(0) = 1. We now prove what our formal manipulation

has suggested, whi
h is that f(x) = (1 + x)α.

9. Let

φ(x) =
f(x)

(1 + x)α
.

Show that φ(x) ≡ 1 and hen
e 
on
lude that

(1 + x)α =

∞
∑

n=0

(

α

n

)

xn, ∀ − 1 < x < 1.

10. Find the form of the expansion for

√
1 + x, writing out the expansion

expli
itly for term up to x4
and use it to estimate

√
2.

Comment If α is a non-negative integer, of 
ourse the binomial fun
tion is

a �nite series that 
onverges for all x. For all other values of α, the series is

absolutely 
onvergent for |x| < 1 and divergent for |x| > 1. For x = 1 the

series 
onverges absolutely if α > 0, 
onverges 
onditionally if −1 < α < 0, and
diverges if α ≤ −1. Finally, at x = −1 the series is absolutely 
onvergent if

α > 0, and divergent if α < 0.
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Problem Set 6: Continuity theorems

1. Suppose that limx→a+ f(x) = f(a) > 0. Then there exists δ > 0 su
h

that f(x) > 0 for all 0 ≤ x− a < δ.

2. Intermediate value theorem Let f(x) by 
ontinuous on [a, b] with f(a) < 0
and f(b) > 0. There there exists α su
h that a < α < b and f(α) = 0.

3. Show that ea
h of the following equations have solutions:

(i) x = cosx; (ii) sinx = x − 1; (iii) p(x) = 0, where p(x) is a polynomial

of odd degree.

4. Let f : Rn → Rm
be a fun
tion from Eu
lidean n-spa
e to Eu
lidean

m-spa
e. Prove that f is 
ontinuous if and only if for any open subset U ⊆ R
n
,

f−1(U) is open in Rm
.

(b) Does this theorem hold if the word `open' is repla
ed by `
losed'?

5. Prove that the mapping f(x) = x2
is 
ontinuous on the real line but that

there exists an open interval of R that is not mapped onto an open set by f(x).

6. Show that if f(x) is 
ontinuous at a there there exists δ > 0 su
h that

f(x) is bounded on the interval (a− δ, a+ δ).

7. Prove that if f is 
ontinuous on [a, b], then f is bounded on [a, b].

8. Maximum theorem Let f be a 
ontinuous fun
tion on the 
losed interval

[a, b]. Then there exists y ∈ [a, b] su
h that f(x) ≤ f(y) for all x ∈ [a, b]. Show
this as follows. From Question 7 we have a least upper bound M for f(x) on
[a, b]. Take a sequen
e of values xn su
h that f(xn) > M− 1

n . Take a 
onvergent

subsequen
e (why does one exist?) and show that its limit x lies in [a, b] and,
by 
ontradi
tion, show that f(x) = M .

9. Minimum theorem By 
onsidering −f(x), use the the result of Question
7 to show that there exists z ∈ [a, b] su
h that f(z) ≤ f(x) for all x ∈ [a, b].

10. Complete the proof of the Maximum theorem as follows: suppose that

M 6= f(y) for all y ∈ [a, b]. Consider

g(x) =
1

M − f(x)
, x ∈ [a, b].

Derive a 
ontradi
tion by showing that g(x) is 
ontinuous on [a, b] but is not
bounded.
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Problem Set 7: Uniform 
ontinuity

A fun
tion f on some domain of the real line is uniformly 
ontinuous if for

all ε > 0 there exists δ > 0 su
h that |x− y| < δ implies that |f(x)− f(y)| < ε.

1. How does this de�nition di�er from that of 
ontinuous fun
tion and whi
h


ondition is stronger?

2. Show that the fun
tion f(x) = 1
x on the interval (0, 1] is 
ontinuous but

not uniformly 
ontinuous.

3. Prove that if f(x) is a 
ontinuous real-valued fun
tion on the 
losed

interval [a, b] then f(x) is uniformly 
ontinuous.

Let (fn(x))n≥1 be a sequen
e of fun
tions ea
h de�ned on the same real

domain S. We say that the fn(x) 
onverge pointwise to a fun
tion f(x) on S if

limn→∞ fn(x) = f(x) for all x ∈ S. We say that fn → f uniformly if for any

ε > 0 there exists N su
h that for all n ≥ N |fn(x) − f(x)| < ε for all x ∈ S.

(Again, note that this is a stronger 
ondition than pointwise 
onvergen
e where

the value of N not only depends on ε but also on x.)

4. Prove that the sequen
e fn(x) =
1−xn

1−x (n = 1, 2, · · ·) 
onverges uniformly

to f(x) = 1
1−x on the set S = {x : |x| ≤ a} for ea
h a su
h that 0 < a < 1.

5. Let fn(x) = (n+ 1)(n+ 2)x(1− x)n n = 1, 2, · · · .
(a) Show that the fn(x) 
onverge pointwise to the zero fun
tion on the

domain interval 0 ≤ x ≤ 1.
(b) Is it true that

ˆ 1

0

lim
n→

fn(x) dx = lim
n→

ˆ 1

0

fn(x) dx?

(
) Show that the sequen
e (fn)n≥1 does not 
onverge uniformly.

6. Suppose that fn → f and gn → g uniformly on some set S. Prove that:

(a) afn + bgn → af + bg uniformly on S;

(b) Suppose further that |f(x)| and |g(x)| are both bounded above on S.

Show that fn(x)gn(x) → f(x)g(x) uniformly on S.

7(a) Suppose that the fun
tions f(x) and |f(x)| are both integrable on [a, b].
Show that

ˆ b

a

|f(x)| dx ≥ |
ˆ b

a

f(x) dx|.

[Hint: you may assume that the integral of a non-negative integrable fun
tion

is non-negative, a fa
t that follows from the de�nition of integral.℄

(b) Left fn(x) be a sequen
e of integrable fun
tions on [a, b] that 
onverge
uniformly to the integrable fun
tion f(x). Prove that

lim
n→∞

ˆ b

a

fn(x) dx =

ˆ b

a

lim
n→∞

fn(x) dx.
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8. By interpreting in�nite sums as the limit of initial partial sums, explain

what it means for a sum of the form

∑∞
k=0 uk(x) to 
onverge uniformly to a

limiting fun
tion u(x) on some interval [a, b]. Show that, in these 
ir
umstan
es

∞
∑

k=0

ˆ b

a

un(x) dx =

ˆ b

a

∞
∑

k=0

un(x) dx.

9. Suppose that {fn}n≥1 is a sequen
e of di�erentiable fun
tions on [a, b]
and that fn → f pointwise. Suppose further that {f ′

n} 
onverge uniformly on

[a, b] to some 
ontinuous fun
tion g. Show that f is di�erentiable and

f ′(x) = lim
n→∞

f ′
n(x).

[Hint: integrate g from a to x (x ∈ [a, b]) and apply the result of Question

7.℄

10. Show that if

∑∞
k=0 uk(x) 
onverges pointwise to u(x) and

∑∞
k=0 u

′
k(x)


onverges to some 
ontinuous fun
tion then u′(x) =
∑∞

k=0 u
′
n(x) for all x ∈ [a, b].
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Problem Set 8: Power series

1. Weierstrass M-test Suppose that ea
h member of the sequen
e of fun
tions

un(x) is de�ned for all x ∈ S. Suppose further that

∑∞
n=0 vn is a 
onvergent

series of non-negative 
onstants su
h that |un(x)| ≤ vn for all x ∈ S. Then

∑∞
n=0 uk(x) 
onverges uniformly and absolutely to some fun
tion u(x) on S.

2(a) Demonstrate the 
onvergen
e, for any a ∈ R, of the series

∞
∑

k=0

a2k+1

k!
.

(b) Show that

ˆ x

0

e−t2 dt =

∞
∑

k=0

(−1)k

k!
· x2k+1

2k + 1
.

Consider a general power series

f(x) =

∞
∑

n=0

an(x− a)n a, an(n ≥ 0) ∈ R (1)

Here we prove that f(x) either 
onverges only for x = a, or 
onverges for all

real x, or there is a postive number R, the radius of 
onvergen
e, su
h that f(x)

onverges absolutely and uniformly for all x su
h that |x− a| < R and diverges

for all x su
h that |x − a| > R. We say that R = 0 or R = ∞ respe
tively in

the �rst and third 
ases. It is 
onvenient to �rst derive these fa
ts for a = 0 as

follows.

3. Show that if f(r) 
onverges for some r ≥ 0 then f(x) 
onverges absolutely
on (−r, r).

4. Hen
e show that f(x) has a radius of 
onvergen
e as des
ribed above.

5. Suppose that an 6= 0 for all but �nitely many subs
ripts n. Then if the

limit

R = lim
n→∞

|an+1

an
|

exists or is +∞, then R is radius of 
onvergen
e of f(x).

6. Show using the Weierstrass M-test that for any r < R, f(r) 
onverges

uniformly on [−r, r].

7. Show that f(x) as given in (1) has an interval of 
onvergen
e |x− a| < R

and f(x) 
onverges uniformly on ea
h interval [−r + a, r + a] for all r < R.

8. Prove that a series

∑∞
n=0 anx

n
and it series of term-by-term derivatives

∑∞
n=1 nanx

n−1
have a 
ommon radius of 
onvergen
e.
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9(a) Use the geometri
 series that 
onverges to

1
1+x to �nd the series for

log(1 + x) 
entred about 0 and give its radius of 
onvergen
e.

(b) From this also �nd the series expansion for − log(1− x), |x| < 1.

10. Find the sum of the series:

f(x) =
x2

2
− x3

3 · 2 +
x4

4 · 3 − x5

5 · 4 + · · · |x| < 1
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Problem Set 9: Mean Value Theorem and appli
ations

1. Rolle's theorem: if a real-valued fun
tion f is 
ontinuous on a 
losed

interval [a, b] and di�erentiable on the open interval (a, b) and f(a) = f(b) then
there exists c ∈ [a, b] su
h that f ′(c) = 0. Prove this via the Maximum prin
iple

of Question 8 Set 6.

2. Give an example that shows that Rolle's theorem does not ne
essarily

hold if there is one point in (a, b) where f is not di�erentiable.

Mean value theorem: if f is a 
ontinuous fun
tion on [a, b] and di�erentiable

on (a, b) then there exists c ∈ (a, b) su
h that

f ′(c) =
f(b)− f(a)

b− a
.

3(a) Let g(x) = f(x) − rx where r is a 
onstant. Determine r so that g(x)
satis�es the 
onditions of Rolle's theorem.

(b) Prove the MVT by applying Rolle's theorem to g(x).

4(a) Let f(x) be a fun
tion that is n times di�erentiable at x = a. Show

that the polyonmial:

Pn(x) = f(a) + f ′(a)(x− a) +
f

′′

(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

has the properties that P
(k)
n (a) = f (k)(0) for all k = 0, 1, · · · , n.

Taylor's theorem: Let f : [a, b] → R with f (k)(x) 
ontinuous on [a, b] (0 ≤
k ≤ n − 1) and suppose further that f (n)(x) exists on [a, b]. Then there exists

c ∈ (a, b) su
h that

f(b) = Pn−1(b) +
f (n)(c)

n!
(b − a)n.

(b) Show that the fun
tion

F (x) = f(b)−f(x)−f ′(x)(b−x)−f (2)(x)

2!
(b−x)2−· · ·−f (n−1)(x)

(n− 1)!
(b−x)n−1

satis�es

F ′(x) = −f (n)(x)(b − x)n−1

(n− 1)!
.

(
) Show that Rolle's theorem may be applied to

g(x) = F (x) −
(b− x

b− a

)n

F (a)

and hen
e dedu
e Taylor's theorem.

13



5. Use Taylor's theorem to show that

1− 1

2
x2 ≤ cosx ∀x ∈ R.

6(a) Let x0 ∈ (a, b) and suppose n ≥ 2 and f (k)(x0) = 0 for k = 1, 2, · · ·n−1,
with f (k)(x) 
ontinuous on (a, b) for all 0 ≤ k ≤ n. For any x ∈ (a, b) show that

for some c between x and x0 we have:

f(x) = f(x0) +
f (n)(c)

n!
(x− x0)

n.

(b) Hen
e dedu
e in these 
ir
umstan
es that if n is even and f (n)(x0) > 0,
then f has a lo
al minimum at x0.

7. Show that for any positive integer k and positive x:

x− 1

2
x2 + · · ·+ x2k−1

2k − 1
− x2k

2k
< log(1 + x) < x− x2

2
+ · · ·+ x2k+1

2k + 1
.

8. Mean value theorem for integrals If f and g are 
ontinuous on [a, b] and
g does not 
hange sign on the interval then there exists c ∈ [a, b] su
h that

ˆ b

a

f(x)g(x) dx = f(c)

ˆ b

a

g(x) dx.

(a) To prove this, �rst apply the Extreme value theorem to f(x) to show

either

´ b

a g(x) dx = 0 or we my write

m ≤
´ b

a f(x)g(x) dx
´ b

a
g(x) dx

≤ M.

(b) Now dedu
e the theorem by applying the Intermediate value theorem to

f .

9. Symmetry of partial derivatives : fxy = fyx. Let f : R2 → R2
be a

fun
tion with 
ontinous se
ond partial derivatives fxy and fyx on some open

domain R. Consider the fun
tion of x

A = φ(x + h)− φ(x), where φ(x) = f(x, y + k)− f(x, y).

(a) By applying the MVT show that A may be written as A = hφ′(x+ θh)
for some 0 < θ < 1.

(b) Using that φ′(x) = fx(x, y + k)− fx(x, y), apply the MVT to show that

we may write A is the form:

A = hkfyx(x+ θh, y + θ′k),

where 0 < θ, θ′ < 1.

14



(
) Show that we may also write A in the form:

A = hkfxy(x + θ1h, y + θ′1k)

where 0 < θ1, θ2 < 1. Hen
e dedu
e that fxy(x, y) = fyx(x, y).

10. Let

f(x, y) = xy
x2 − y2

x2 + y2
, f(0, 0) = 0.

(a) Show, from �rst prin
iples, that fx(0, y) = −y and fy(x, 0) = x.

(b) Now show that fxy(0, 0) 6= fyx(0, 0) although both sides are de�ned.

Comment This example does not 
ontradi
t the theorem of Question 9 as

here fxy has a dis
ontinuity at the origin. It 
an be shown by a little more

analysis that equality of mixed partial derivatives holds as long as fx, fy, and

at least one of fxy and fyx is 
ontinuous at the point (x, y) in question.

15



Problem Set 10: Lagrange and Integral remainder for Taylor series

1. Uniqueness of series expansion Suppose that f(x) may be di�erentiated

any number of times in some interval I = (−r, r) and that f(x) =
∑∞

n=0 anx
n
.

Show that an = f(n)(0)
n! .

Re
all Taylor's theorem as given in Question 4 of Set 9: Let f : [a, b] → R

with f (k)(x) 
ontinuous on [a, x] (0 ≤ k ≤ n) and suppose further that f (n+1)(x)
exists on [a, x]. Then there exists c ∈ (a, x) su
h that

f(x) = Pn(x) +Rn(x) where

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

The term Rn(x) is known as the Lagrange remainder term. The integral form

of Rn(x) is given by

Rn(x) =
1

n!

ˆ x

a

(x− t)nf (n+1)(t) dt (2)

2. Use integration by parts to verify that (2) holds for n = 1.

3. Prove the integral remainder formula by indu
tion on n.

4. Apply the integral form of the remainder to show that for f(x) = sinx
expanded around a = 0 we get:

|Rn(x)| ≤
|x|n+1

(n+ 1)!

and thus show the M
Laurin series for sinx 
onverges for all real x. (Note the


ases where x > 0 and x < 0 are similar but should be handled separately.)

5(a) Find the Taylor polynomial P2(x) for f(x) = 3
√
x 
entred at a = 8.

(b) Use the Lagrange form of the remainder to �nd bounds on the a

ura
y

of P2(7).

6(a) By substituting into the exponential series, �nd the M
Laurin series

(Taylor series 
entred at the origin) for f(x) = e−x2

.

(b) Hen
e estimate

ˆ 1

0

e−x2

dx

by integrating the �rst three non-zero terms of the series from (a) and obtain a

bound on the error.

7. Find the �rst three terms of the Taylor series for y(x) given that

x2 + y2 = y, y(0) = 1

16



Taylor series for fun
tion of two variables f(x, y) with 
entre (a, b)
8. Suppose that

f(x, y) =

∞
∑

m,n=0

am,n(x − a)m(y − b)n

Extend the approa
h of Question 1 to partial derivatives to �nd an expression

for the 
oe�
ient am,n.

9(a) Write down expli
itly the form of the approximating linear polynomial

of the Taylor series for f(x, y) and interpret this equation geometri
ally.

(b) Write down the quadrati
 approximating (terms up to degree 2) Taylor
polynomial for f(x, y).

10. Find the Taylor series 
entred at the origin for the fun
tion of two

variables

f(x, y) =
1

1− x− y
.

17



Hints for Problems

Problem Set 1

Some general hints that apply to analysis problems. An inequality of the

form |a− b| < ε is equivalent to −ε < a− b < ε, a form that is sometimes easier

to manipulate. When more than one variable term is involved, for example,

|(A− an) + (B − bn)| make use of the triangle inequality (· · · ≤ |A− an|+ |B−
bn| · · ·) and deal with the limiting behaviour of ea
h term separately.

4. Use Question 3 and that |anbn −AB| = |anbn −Abn +Abn −AB| ≤ · · · .
5. Make use of Question 3 and explain why it is enough to prove the result

in the 
ase where an is the 
onstant sequen
e an = 1 for all n.

8. The sequen
e is 
ontained in an interval [−M,M ]. One half of this

interval 
ontains in�nitely many terms. Take that subinterval and repeat the

argument; then use the sequen
e of intervals so 
reated to de�ne a 
onvergent

subsequen
e.

10. Sn = 1
⌊n

2 ⌋
∑⌊n

2 ⌋
k=1 k(n − k); examine the 
ases where n is even and odd

separately.

Problem Set 2

2. Repla
e ea
h bra
keted term of t(k) by 1 to get a series bounding e(n)
above. Then observe that 2m−1 < m! for all m ≥ 1 so that

1
m! <

1
2m−1 .

4. Sin
e m > n, e(m) 
onsists of all these terms together with more.

5(a) After di�erentiating take x = a.

5(b) You may need to take a limit inside of the log fun
tion, whi
h is justi�ed

as log is 
ontinuous. (Establishing this fa
t is essentially Question 1 Set 3.)

7. For p < 1 write p
1
n = 1− rn and write p

1
n
in the form

1
1+hn

.

10. Write an =
√
n

(
√
α)n

and then write

√
α = 1 + h for some h > 0.

Problem Set 3

6. Pro
eed by indu
tion on k.

7. Show that we may write f(a + h) − f(a) = hf ′(a) + hε(h), where the

fun
tion ε(h) → 0 as h → 0.
8. Re
ast the problem in polar 
o-ordinates.
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Problem Set 4

1 & 2. The idea of Cau
hy 
onvergen
e among the sequen
e of partial sums

is helpful here.

3. Follows using Cau
hy 
onvergen
e on the partial sums together with the

Triangle inequality.

4. Show the sums of an even number of terms, and an odd number of terms,

are respe
tively de
reasing and in
reasing. Then show the 
orresponding limits

of these series must be equal.

6. Write 2ε = 1 − r, put s = r + ε < 1, show |an+1| < s|an| for su�
iently

large n and then work with the geometri
 series that arise.

Problem Set 5

1. Let sn = a1 + a2 + · · · + an, tk = a1 + 2a2 + · · · + 2ka2k and show that

sn ≤ tk for n ≤ 2k but for n ≥ 2k, 2sn ≥ tk .

3. Look to the 
ondensed series instead.

4. Integral test works well here.

6(a) Partial fra
tions leads to a teles
oping series.

6(b) Begin with the series for ex, subtra
t 1, divide by x, di�erentiate term-

by-term, and �naly multiply by x.

7(b) Substitute the series into the equation, di�erentiate term-by-term and

equate 
oe�
ients.

8. Ratio test.

9. Show that φ′(x) = 0.

Problem Set 6

2. Let A = {x : a ≤ x ≤ b, f(y) < 0 ∀ a ≤ y ≤ x}. Show that the least upper

bound α of A exists and show by 
ontradi
tion that f(α) = 0.
3. Apply the IVF.

7. Let A = {x : a ≤ x ≤ b and f is bounded on [a, x]}. Use Question 6 to

show that the least upper bound of A is b. Dedu
e that f is bounded on all

intervals of the form [a, b−δ] (δ > 0). Use symmetry to gain the same 
on
lusion

for [a+ δ, b], from where the result follows easily.

8. Let M be the least upper bound for f on [a, b] and take a sequen
e of

points in [a, b] whose images under f be
ome arbitrarily 
lose to M . Take the

limit x of a 
onvergent subsequen
e and 
onsider the value of f(x).
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9. Apply the result of Question 8 to −f(x). Then show that−f has a

maximum value of m if and only if f has a minimum of −m.

10. This tri
k is often useful: by assuming that M is never attained by f

it follows that g is 
ontinuous on [a, b] and therefore bounded, but this qui
kly

leads to 
ontradi
tion.

Problem Set 7

3. Suppose f(x) were not uniformly 
ontinous. Let (δn)n≥1 de
rease mono-

toni
ally to 0. Then for ea
h δn there exists xn, yn ∈ [a, b] su
h that |xn− yn| <
δn but |f(xn) − f(yn)| > ε. Take a 
onvergent subsequen
e of the xn that

approa
hes some limit x ∈ [a, b]. The use the 
ontinuity of f to gain a 
ontra-

di
tion.

6(b) Consider |fn(x)gn(x)−f(x)g(x)| = |fn(x)gn(x)−fn(x)g(x)+fn(x)g(x)−
f(x)g(x)|.

8. The fun
tion de�ned by the in�nite sum is the limit of the fun
tions

de�ned by the partial sums.

10(b) Begin by substituting in the standard exponential series.

Problem Set 8

1. Use the dominating series to show that the tail of the sum of the sequen
e

of fun
tions may be made arbitrarily small, independently of x.

2(b) Justify taking the in�nite sum inside the integral by uniform 
ontinuity,

veri�ed through the M-test making use of the series in (a).

Problem Set 9

1. Either f is 
onstant or it has a lo
al maximum or minimum, c. What is

f ′(c)?
2. Try the absolute value fun
tion.

5. Treat the interval [−π, π] and its 
omplement separately.
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Problem Set 10

2. & 3. Integration by parts.

5. This is an alternating series with terms of monotoni
ally de
reasing mag-

nitude so that the absolute value of ea
h term is itself an error bound.

7. Use impli
it di�erentiation.

8. Look at

∂fm+n

∂fm∂n |(x,y)=(a,b).

9. Subs
ript notation for partials is easier to use here.
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Answers to the Problems

Problem Set 4

9(i) 
onvergent; (ii) divergent; (iii) divergent. 10(i) divergent; (ii) divergent;

(iii) 
onvergent.

Problem Set 5

3. p > 1. 4. Yes. 6. 1. 10. 1 + 1
2x − 1

2·4x
2 + 1·3

2·4·6x
3 − 1·3·5

2·4·6·8x
4 + · · ·;√

2 ≈ 1 51
128 = 1 · 40 (2 d.p).

Problem Set 7

5(b) No, LHS = 0, RHS = 1 (by integration by parts)

Problem Set 8

9(a)

∑∞
n=1(−1)n+1 xn

n , ∀ |x| < 1; (b) x + x2

2 + x3

3 + x4

4 + · · · . 10. f(x) =
(1 + x) log(1 + x)− x.

Problem Set 10

8. 1−x2
. 9. ∴ am,n = 1

m!n!
∂fm+n

∂mx∂ny |(x,y)=(a,b). 10.
∑∞

m=0

∑∞
n=0

(m+n)!
m!n! xmyn.
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