Mathematics 207 Real Analysis

Professor Peter M. Higgins
November 22, 2018

The purpose of real analysis is to provide a rigorous foundation for the
techniques of calculus, which are based on the notion of limit. The exercises
assume familiarity with the basic ideas of convergence of a sequence of real
numbers and the definition of continuity of a function in terms of the standard
symbols ¢ > 0 and § > 0 along with the definition of derivative. We also assume
the Fundamental theorem of Calculus and take for granted the integrability of
any continuous function. The known nature of the real numbers is assumed,
including the existence of the greatest lower bound of a set bounded below
and similarly the least upper bound of a set bounded above. Set 1 establishes
the elementary properties of convergent sequences of real numbers. Set 2 is
concerned with certain limits that are especially important, particularly those
involving the number e. Set 3 introduces results and examples on continuity
of a function. Throughout we will work mainly with one variable mappings
although we occasionally expand to matters of several variables. Sets 4 and 5
concern series. We introduce and work with the standard tests for convergence
and examples include the binomial series for non-integral powers. We draw on
all this knowledge in the second part of the module.

In Set 6 we study continuous functions on closed intervals (the prototype
of so-called compact sets, which we shall meet in Level 3 modules in a more
general setting). We prove the Intermediate value and Extreme value theorems
for continuous functions on a closed interval and illustrate the ideas involved
with relevant examples. Set 7 introduces the concept of uniform continuity for
individual and for sequences of functions. This condition is key in justifying
many of the techniques of calculus that involve the interchange of limiting op-
erations, such as term-by-term differentiation and integration of series. In Set
8 we study power series where the uniform convergence of the series within its
radius of convergence is a crucial property in calculations involving power series
representation of functions of interest. In particular the Weierstrass M-test is a
tool we first meet here. Set 9 introduces and proves another fundamental result
of calculus, that being the Mean value theorem in various forms and we use the
MVT to prove theorems often used in calculus including Equality of mized par-
tial derivates. Set 9 and all of Set 10 are about Taylor series and we introduce
a study of the Remainder term both in the Lagrange form, based on the Mean
value theorem, and the Integral form. We close with some practical calculations
including a brief visit into the realm of Taylor series of several variables.



Problem Set 1: Convergence of sequences

Let (an)n>1, (bn)n>1, etc. be sequences with limits A, B etc. The symbols
A, p ete stand for constants. The symbol =: means ‘equals by definition’.

1. Prove that if a,, < M for all n > 1 then the same is true of the limit
A = lim,,_, a,, (assuming A exists).

2. Prove that (Aa,, + pb,) = AA + uB.

3. (a) Prove that a convergent sequence (an)n>1 is bounded, meaning that
for some M > 0 we have |a,| < M for all n > 1.

(b) Show that a monotonic increasing (resp. decreasing) sequence converges
if and only if it is bounded above (resp. below).

(c) Show that if a,, — A then |a,| — |A|.

(d) Is the converse to (c) true?

4. Prove that (anbp)n>1 — AB.

5. Show similarly that provided b, # 0 for all n > 1 and B # 0 then
an A
= g

6. Show that any subsequence (ay,);>1 of a convergent sequence (an)n>1

converges to the same limit.

7. A sequence (an)n>1 is said to be Cauchy convergent if for any € > 0 there
exists N such that for all m,n > N, |a, — a;n| < €. Show that any convergent
sequence is Cauchy convergent.

Comment We assume without proof that the converse of the result of Ques-
tion 7 holds for the real numbers (and similarly for C). We say that the numbers
systems (R, +,-) and (C, +, ) are complete.

8. Prove that every bounded sequence (a,),>1 has a convergent subse-
quence.

9. Prove that if (an)n>1 converges to A then so does the sequence defined
by

a1 +az+ - +an
- .

b, =

10. (Cambridge Tripos 1903) The arithmetic mean of the products of all
distinct pairs of positive integers whose sum is n is denoted by S,,. Show that



Problem Set 2: Special Limits

1. Consider e(n) = (1 + 1), Find the general term t; (0 < k < n) in
the binomial expansion of e(n) and hence deduce that e(n) is monotonically
increasing in n.

2(a) Replace each bracketed term in t), by 1 and deduce that e(n) < > _; 2.

(b) Use part (a) to compare e(n) with a suitable geometric series to show
that e(n) < 3. Hence we may conclude that lim,,_,o e(n) exists; we denote this
limit by e ~ 2 - 71828 - - -

3. By assuming the convergence of the McLaurin series for e* show that

— 1
6225
n=0
4. Denote Y;_o 7 by sn. Show that if m > n then
1 1 1 1 2 1 1 n—1
1414 (1)t (1)1 =) fef=(1= =) (1— .
lm) > 1414 41— Syp ba- a2 Lo Ly g ont ]

Hence deduce that e > s,, > e(n) for all n > 0 and thereby directly establish
the result of Question 3.

x)—I(a) and taking the derivative

5(a) Let I(x) = log, . By writing [(£) = [
of both sides, show that

(
(log, 2)' =

for some constant .

(b) By finding (log, x){,_; from first principles, show that A = 1 exactly
when b =e.

6. Prove that if h > 0 then (1 + h)™ > 1+ nh for all integers n > 2.

7. Let a, = p*/™ for some p > 0. We show that a, — 1 (clear for p = 1).
For p > 1, write p = 1+ h (h > 0) and a, = 1 + h, for some h,, > 0. Show
using Question 6 that a,, — 1. For 0 < p < 1 show that p has the form
_ 1
1+ h,
and prove that a,, — 1 in this case also.

P hy, >0
Let a, = ¥/n. We show that a,, — 1 with use of the following artifice.

8. Put b, = \/a,,. We may write b, = 1 + h,, for some h,, > 0. Show that
hp < ==,

B

9. By writing a,, = b2, use Question 8 to prove the claim made there.

10. Use the technique of Question 8 to prove that for any o > 1, lim,, o0 o7 =
0. (Use an inequality of the form /o™ > 1+ nh).



Problem Set 3: Continuous functions

1. Show that if (an),>1 — [ and the function f : R — R is continuous at {

then (f(an))nz1 — f(1).
2. Show that the function y = |z| is continuous.

3. Prove that if f(x) is continuous at © = a and g(x) is continuous at
x = f(a) then g(f(z)) is continuous at x = a. In particular, f(x) is continuous
implies that |f(x)| is continuous. Is the converse of this last statement true?

4. Show that if f(x) and g(z) are each continuous at x = a, then so is
h(z) = Af(z) + pg(z) where A\, € R.

5. Assuming that sin z and cos = are both continuous at 0, show that f(z) =
sinx is continuous.

6. Let a > 1 and let p(z) be a polynomial with real coefficients. Show using

Question 10 Set 2 that

im 20 _ g
n—oo qm

7. Prove that if f(z) is differentiable at = a then f(x) is continuous at
the same point.

8. Show that the function defined by the rule:

3

f(:v,y)Zm

has a removable discontinuity at the origin by showing that the limit as (x,y) —
(0,0) exists.

9. Repeat Question 8 for the function defined by the rule:

22— y?

f(z,y):m

this time showing that the limit does not exist by taking limits along the line
y=mz as x — 0.

10(a) Show that
. %y
lim Y]
(z,)—(0,0) 2% + ¥
is 0 as (x,y) — (0,0) along any straight line y = mu.
(b) Show nevertheless that the discontinuity at the origin of the correspond-
ing function is not removable by taking the limit as the origin is approached

along the parabola y = z2.



Problem Set 4: Series
Throughout ¥ = >~ | a,, denotes the sum of a series of real numbers that
may or may not converge; the partial sum Y ,_; ax will be denoted by s,,.
1. Prove that if > 7 | a, converges then a,, — 0.

2. Show that convergence of ¥ is equivalent to the statement that

[e ]
lim g a, = 0.
k—o0

n=~k

3. Show that any absolutely convergent series (meaning that > |a,| con-
verges) is itself convergent.

4. (Alternating signs test) Show that a series of the form » > (—1)"a,
(an > 0) converges if (an)n>0 converges monotonically to 0.

5. Show by the integral test that > - | n~? convergesif and only if 0 < p < 1.

6. Ratio test Suppose that lim,_, |[*2=| = r exists. Show X converges if
r < 1 and diverges if r > 1.

7. Show using the Ratio test that the standard McLaurin series (Taylor
series about 0) for e”, sinz, and cosz converge for all real x.

8. Comparison test Suppose that 0 < a, < b, for all n > 1. Show that
> ay, converges if > b, converges, and that > b, diverges if > a,, diverges.

9. By using a suitable test, decide on the convergence of the following series.

n:l

23n+1 n

Inn

111

Mg

n

3
Il
-

10. The root test If lim,, ¥/|a,| = L < 1 then 220:1 a, converges abso-
lutely (and diverges if L > 1). Apply the root test for these series:

n" 2

0o 1+ 0o 0o .
Z 1_; 7;1 24-3n 111 Z(nil) '

n:l n=1




Problem Set 5: Further problems on sequences and series

1. Cauchy condensation technique Let (an)n>1 be a decreasing sequence
of non-negative real numbers. Show that >~ a, converges if and only if
> reo 2¥agk converges.

2. Use Question 1 to prove the result of Question 5 of Set 4.

3. For which values of p does the following series converge?

o0

Z log‘n

4. Does this series diverge?

o0

> ol
= nlogn(log(logn))

5(a) Suppose that f is a function defined on some subset S C R. Let
u € S and suppose that for every sequence (up)n>1 in S such that u,, — u that
f(un) = f(u) then f is continuous at w.

(b) Is the converse of this implication true?

6(a) Find the value of the sum 77 by showing that

n=1 (ot 1!

a n 1
2T W

(b) Alternatively, answer part (a) through finding the series for

1—e* +ze®
- .

7(a) Binomial series For f(z) = (1 + 2)* (o € R) show that

1+ 2)f'(z) = zf(x).

(b) Hence show that the series expansion of f(x) is given by

fla) = i (Z) 2" where

n=0

<a> _(a—n+l)(@—n+2)-(a -1

n n!

8. Show that the Binomial series converges for |z| < 1 and diverges for
|z| > 1.



Our series certainly represents a function that satisfies the equation (1 +
x)f'(x) = af(x) with f(0) = 1. We now prove what our formal manipulation
has suggested, which is that f(z) = (14 x)°.

9. Let fa)
€T
Show that ¢(x) = 1 and hence conclude that

oo

(1+x)az<3)x”,V1<z<1.

n=0

10. Find the form of the expansion for /1 + x, writing out the expansion
explicitly for term up to z* and use it to estimate v/2.

Comment If « is a non-negative integer, of course the binomial function is
a finite series that converges for all x. For all other values of «, the series is
absolutely convergent for |z| < 1 and divergent for |z| > 1. For z = 1 the
series converges absolutely if a > 0, converges conditionally if —1 < a < 0, and
diverges if @« < —1. Finally, at x = —1 the series is absolutely convergent if
«a > 0, and divergent if o < 0.



Problem Set 6: Continuity theorems

1. Suppose that lim,_,,+ f(z) = f(a) > 0. Then there exists § > 0 such
that f(z) >0forall 0 <z —a <é.

2. Intermediate value theorem Let f(x) by continuous on [a, b] with f(a) <0
and f(b) > 0. There there exists « such that a < o < b and f(a) = 0.

3. Show that each of the following equations have solutions:
(i) = cosx; (ii) sinz = x — 1; (iii) p(z) = 0, where p(x) is a polynomial
of odd degree.

4. Let f : R* — R™ be a function from Euclidean n-space to Euclidean
m-space. Prove that f is continuous if and only if for any open subset U C R™,
f~Y(U) is open in R™.

(b) Does this theorem hold if the word ‘open’ is replaced by ‘closed’?

5. Prove that the mapping f(x) = x? is continuous on the real line but that
there exists an open interval of R that is not mapped onto an open set by f(z).

6. Show that if f(x) is continuous at a there there exists § > 0 such that
f(x) is bounded on the interval (a — 0, a + 9).

7. Prove that if f is continuous on [a, b], then f is bounded on [a, b].

8. Mazimum theorem Let f be a continuous function on the closed interval
[a,b]. Then there exists y € [a, b] such that f(x) < f(y) for all = € [a,b]. Show
this as follows. From Question 7 we have a least upper bound M for f(z) on
[a,b]. Take a sequence of values x,, such that f(z,) > M — L. Take a convergent
subsequence (why does one exist?) and show that its limit = lies in [a,b] and,
by contradiction, show that f(z) = M.

9. Minimum theorem By considering — f(z), use the the result of Question
7 to show that there exists z € [a,b] such that f(z) < f(z) for all = € [a, b].

10. Complete the proof of the Maximum theorem as follows: suppose that
M # f(y) for all y € [a,b]. Consider

1

== m, S [a,b].

g(z)

Derive a contradiction by showing that g(z) is continuous on [a,b] but is not
bounded.



Problem Set 7: Uniform continuity

A function f on some domain of the real line is uniformly continuous if for
all € > 0 there exists d > 0 such that |z — y| < ¢ implies that |f(z) — f(y)| < e.

1. How does this definition differ from that of continuous function and which
condition is stronger?

2. Show that the function f(z) = I on the interval (0, 1] is continuous but
not uniformly continuous.

3. Prove that if f(z) is a continuous real-valued function on the closed
interval [a, b] then f(x) is uniformly continuous.

Let (fn(x))n>1 be a sequence of functions each defined on the same real
domain S. We say that the f,(z) converge pointwise to a function f(z) on S if
lim, 00 fr(z) = f(x) for all x € S. We say that f, — f uniformly if for any
e > 0 there exists N such that for all n > N |f,(z) — f(z)] < e for all x € S.
(Again, note that this is a stronger condition than pointwise convergence where
the value of N not only depends on ¢ but also on x.)

4. Prove that the sequence f,(z) = 11’7””:' (n=1,2,---) converges uniformly

to f(z) = ;== on the set S = {x : |z < a} for each a such that 0 < a < 1.
5. Let fpo(z) =(n+1)(n+2)z(1-2)" n=1,2,---.
(a) Show that the f,(z) converge pointwise to the zero function on the

domain interval 0 < x < 1.
(b) Is it true that

n—

1 1
/ lim fp,(x)dx = lim/ fu(z)dx?
0 = Jo
(c) Show that the sequence (f,)n>1 does not converge uniformly.

6. Suppose that f,, — f and g, — g uniformly on some set S. Prove that:

(a) afn + bgn, — af + bg uniformly on S;

(b) Suppose further that |f(x)| and |g(z)| are both bounded above on S.
Show that fy,(z)gn(x) — f(x)g(z) uniformly on S.

7(a) Suppose that the functions f(x) and |f(z)| are both integrable on [a, b].

Show that
b b
/ (@) dz > | / f(@) dal.

[Hint: you may assume that the integral of a non-negative integrable function
is non-negative, a fact that follows from the definition of integral ]

(b) Left f.(z) be a sequence of integrable functions on [a, b] that converge
uniformly to the integrable function f(x). Prove that

b b
lim fn(@) d:z::/ 1i_>m fu(z) d.

n—oo a



8. By interpreting infinite sums as the limit of initial partial sums, explain
what it means for a sum of the form ) ;- ,ui(z) to converge uniformly to a
limiting function u(x) on some interval [a, b]. Show that, in these circumstances

i/ﬂbun(z) de = /biun(x)d:c

k=0 @ k=0

9. Suppose that {f,},>1 is a sequence of differentiable functions on [a, b]
and that f,, — f pointwise. Suppose further that {f)} converge uniformly on
[a, b] to some continuous function g. Show that f is differentiable and

f'(x) = fu(@).

lim
n— oo

[Hint: integrate g from a to = (z € [a,b]) and apply the result of Question
7.

10. Show that if Y, ;uk(z) converges pointwise to u(z) and Y oo, uj(z)
converges to some continuous function then v'(z) = Y7, ul,(x) for all = € [a, b].

10



Problem Set 8: Power series

1. Weierstrass M-test Suppose that each member of the sequence of functions
uy(z) is defined for all z € S. Suppose further that >~ v, is a convergent
series of non-negative constants such that |u,(z)| < v, for all « € S. Then
Yoo o uk(x) converges uniformly and absolutely to some function u(x) on S.

2(a) Demonstrate the convergence, for any a € R, of the series

[eS)
a2k+1

k!

k=0

(b) Show that
> (_1)k x2k+1

gt = : .
/Oe D

k=0

Consider a general power series

f(:z:):Zan(:E—a)" a,an(n>0)eR (1)

n=0

Here we prove that f(x) either converges only for = a, or converges for all
real z, or there is a postive number R, the radius of convergence, such that f(x)
converges absolutely and uniformly for all z such that | — a| < R and diverges
for all x such that |z — a| > R. We say that R = 0 or R = oo respectively in
the first and third cases. It is convenient to first derive these facts for a = 0 as
follows.

3. Show that if f(r) converges for some r > 0 then f(z) converges absolutely
on (—r,r).

4. Hence show that f(x) has a radius of convergence as described above.

5. Suppose that a,, # 0 for all but finitely many subscripts n. Then if the
limit a
R= lim |

n—o00 Qp

exists or is +oo, then R is radius of convergence of f(z).

6. Show using the Weierstrass M-test that for any r < R, f(r) converges
uniformly on [—r, r].

7. Show that f(x) as given in (1) has an interval of convergence |z —a| < R
and f(x) converges uniformly on each interval [—r + a,r + a] for all » < R.

8. Prove that a series Y ° ;a,2" and it series of term-by-term derivatives
> na,z" ! have a common radius of convergence.

11



9(a) Use the geometric series that converges to H%I to find the series for
log(1 + z) centred about 0 and give its radius of convergence.
(b) From this also find the series expansion for —log(1l — ), |z| < 1.

10. Find the sum of the series:

z? 3 x? z°

o) =5 -s5tr3 5at k<

12



Problem Set 9: Mean Value Theorem and applications

1. Rolle’s theorem: if a real-valued function f is continuous on a closed
interval [a, b] and differentiable on the open interval (a,b) and f(a) = f(b) then
there exists ¢ € [a, b] such that f’(¢) = 0. Prove this via the Maximum principle
of Question 8 Set 6.

2. Give an example that shows that Rolle’s theorem does not necessarily
hold if there is one point in (a,b) where f is not differentiable.

Mean value theorem: if f is a continuous function on [a, b] and differentiable
on (a,b) then there exists ¢ € (a,b) such that

—a

3(a) Let g(x) = f(x) — ro where r is a constant. Determine r so that g(x)
satisfies the conditions of Rolle’s theorem.
(b) Prove the MVT by applying Rolle’s theorem to g(x).

4(a) Let f(x) be a function that is n times differentiable at x = a. Show
that the polyonmial:

/" (a)
2!

f"(a)

(x_a/)2++ '
n.

Py(x) = f(a) + f'(a)(z — a) +

(x —a)"

has the properties that p (a) = f*)(0) for all k = 0,1, ---,n.

Taylor’s theorem: Let f : [a,b] — R with f(*)(x) continuous on [a,b] (0 <
k < n —1) and suppose further that f(™(z) exists on [a,b]. Then there exists
¢ € (a,b) such that

() (¢
£(8) = Pa ) + LD -y
(b) Show that the function
@) (o (n=1) (5
F(z) = f(b)—f(x)—f'(x)(b—x)—f 2!( )(b—x)Q—- - -—f(nil()!)(b—:z:)"_1 satisfies

FO @) — =t
(n—1)! '

(c) Show that Rolle’s theorem may be applied to

F(x)=—

o) = () - (1) "Fla)

and hence deduce Taylor’s theorem.

13



5. Use Taylor’s theorem to show that

1
lf§z2 <cosx VzeR.

6(a) Let xo € (a,b) and suppose n > 2 and f*F)(zo) =0fork =1,2,---n—1,
with f(*)(z) continuous on (a,b) for all 0 < k < n. For any x € (a, b) show that
for some ¢ between x and xg we have:

FM(e)

n!

f(x) = f(xo) +

(x — x0)".

(b) Hence deduce in these circumstances that if n is even and f()(xq) > 0,
then f has a local minimum at xg.

7. Show that for any positive integer k and positive x:
2k—1 2k 2 p2k+1

L clog(l4a)<a— et
ok —1 2k LT ST 2k +1°

L
xf—x ..
2

8. Mean value theorem for integrals If f and g are continuous on [a,b] and
g does not change sign on the interval then there exists ¢ € [a, b] such that

/be<x>gcr>dx f(C)/Cbg(w)dw-

(a) To prove this, first apply the Extreme value theorem to f(x) to show
. b .
either [ g(x)dx = 0 or we my write

b
d
e I
[, 9(x) dx
(b) Now deduce the theorem by applying the Intermediate value theorem to
f.

9. Symmetry of partial derivatives: fr, = fyz. Let f : R? — R? be a
function with continous second partial derivatives f;, and f,, on some open
domain R. Consider the function of x

A=z +h) = ¢(x), where ¢(z) = f(z,y + k) — f(z,y).

(a) By applying the MVT show that A may be written as A = h¢'(z + 0h)
for some 0 < 6 < 1.

(b) Using that ¢'(z) = fo(z,y + k) — fz(z,y), apply the MVT to show that
we may write A is the form:

A = hkfyo(a + 0h,y + 0'k),

where 0 < 0,60" < 1.

14



(c) Show that we may also write A in the form:
A = hkfpy(x+ 601,y + 01k)

where 0 < 61,0 < 1. Hence deduce that fu,(z,y) = fy(z,y).

10. Let
2 2

flwy) = xy;—;; £(0,0) = 0.

(a) Show, from first principles, that f,(0,y) = —y and f,(z,0) = z.
(b) Now show that fu,(0,0) # f,(0,0) although both sides are defined.

Comment This example does not contradict the theorem of Question 9 as
here f;, has a discontinuity at the origin. It can be shown by a little more
analysis that equality of mixed partial derivatives holds as long as f;, f,, and
at least one of fyy, and fy, is continuous at the point (z,y) in question.

15



Problem Set 10: Lagrange and Integral remainder for Taylor series

1. Uniqueness of series expansion Suppose that f(x) may be differentiated
any number of times in some interval I = (—r,r) and that f(z) = >"  anz™.

Show that a, = L.

Recall Taylor’s theorem as given in Question 4 of Set 9: Let f : [a,b] — R
with f(*)(x) continuous on [a,2] (0 < k < n) and suppose further that £+ (z)
exists on [a, z]. Then there exists ¢ € (a, ) such that

f(z) = P,(x) + Ry (z) where

f(n+1) c
Bnlz) = 05 1()!)

The term R, (z) is known as the Lagrange remainder term. The integral form
of R,(x) is given by

(x —a)"t.

Ra(e) = = / S — 0 () (2)

2. Use integration by parts to verify that (2) holds for n = 1.
3. Prove the integral remainder formula by induction on n.

4. Apply the integral form of the remainder to show that for f(z) = sinx
expanded around a = 0 we get:

|$|n+1

)l < 3y

and thus show the McLaurin series for sinz converges for all real z. (Note the
cases where x > 0 and = < 0 are similar but should be handled separately.)

5(a) Find the Taylor polynomial Ps(z) for f(x) = /z centred at a = 8.

(b) Use the Lagrange form of the remainder to find bounds on the accuracy
of P2 (7)

6(a) By substituting into the exponential series, find the McLaurin series

(Taylor series centred at the origin) for f(z) = e~

(b) Hence estimate
1
/ e dx
0

by integrating the first three non-zero terms of the series from (a) and obtain a
bound on the error.

7. Find the first three terms of the Taylor series for y(z) given that

4y =y, y(0)=1

16



Taylor series for function of two variables f(x,y) with centre (a,b)
8. Suppose that

flz,y) = Z amn(r —a)™(y —b)"

Extend the approach of Question 1 to partial derivatives to find an expression
for the coefficient ap, .

9(a) Write down explicitly the form of the approximating linear polynomial
of the Taylor series for f(z,y) and interpret this equation geometrically.

(b) Write down the quadratic approximating (terms up to degree 2) Taylor
polynomial for f(z,y).

10. Find the Taylor series centred at the origin for the function of two

variables 1

f(:E,y)Zm-

17



Hints for Problems

Problem Set 1

Some general hints that apply to analysis problems. An inequality of the
form |a — b| < ¢ is equivalent to —¢ < a — b < ¢, a form that is sometimes easier
to manipulate. When more than one variable term is involved, for example,
[(A—an)+ (B —by,)| make use of the triangle inequality (--- < |A —a,|+|B —
byn|---) and deal with the limiting behaviour of each term separately.

4. Use Question 3 and that |a,b, — AB| = |an,b, — Ab, + Ab, — AB| < ---.

5. Make use of Question 3 and explain why it is enough to prove the result
in the case where a,, is the constant sequence a,, = 1 for all n.

8. The sequence is contained in an interval [—M, M]. One half of this
interval contains infinitely many terms. Take that subinterval and repeat the
argument; then use the sequence of intervals so created to define a convergent
subsequence.

10. Sn = 37 Z,ijl k(n — k); examine the cases where n is even and odd
separately.

Problem Set 2

2. Replace each bracketed term of ¢(k) by 1 to get a series bounding e(n)
above. Then observe that 2™~ < m! for all m > 1 so that -%; < 7.
4. Since m > n, e(m) consists of all these terms together with more.
5(a) After differentiating take = = a.
5(b) You may need to take a limit inside of the log function, which is justified

as log is continuous. (Establishing this fact is essentially Question 1 Set 3.)

7. For p < 1 write p% =1—r, and write p% in the form H;h
10. Write a,, = (\/‘gn and then write \/a = 1+ h for some h > 0.

Problem Set 3

6. Proceed by induction on k.

7. Show that we may write f(a + h) — f(a) = hf'(a) + he(h), where the
function e(h) — 0 as h — 0.

8. Recast the problem in polar co-ordinates.
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Problem Set 4

1 & 2. The idea of Cauchy convergence among the sequence of partial sums
is helpful here.

3. Follows using Cauchy convergence on the partial sums together with the
Triangle inequality.

4. Show the sums of an even number of terms, and an odd number of terms,
are respectively decreasing and increasing. Then show the corresponding limits
of these series must be equal.

6. Write 22 =1 —r, put s =r +¢ < 1, show |an41| < $|a,| for sufficiently
large n and then work with the geometric series that arise.

Problem Set 5

1. Let s, = a1 +ag + -+ + an, ty = a1 + 2as + - - - + 2¥ay. and show that
sp < ti, for n < 2F but for n > 2%, 2s,, > t;, .

3. Look to the condensed series instead.

4. Integral test works well here.

6(a) Partial fractions leads to a telescoping series.

6(b) Begin with the series for e*, subtract 1, divide by z, differentiate term-
by-term, and finaly multiply by x.

7(b) Substitute the series into the equation, differentiate term-by-term and
equate coefficients.

8. Ratio test.

9. Show that ¢'(x) = 0.

Problem Set 6

2. Let A={x:a<z<b, f(y) <0Va<y <z} Show that the least upper
bound « of A exists and show by contradiction that f(a) = 0.

3. Apply the IVF.

7. Let A={z:a <2z <band f is bounded on [a,z]}. Use Question 6 to
show that the least upper bound of A is b. Deduce that f is bounded on all
intervals of the form [a,b—4] (6 > 0). Use symmetry to gain the same conclusion
for [a + §,b], from where the result follows easily.

8. Let M be the least upper bound for f on [a,b] and take a sequence of
points in [a,b] whose images under f become arbitrarily close to M. Take the
limit « of a convergent subsequence and consider the value of f(z).
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9. Apply the result of Question 8 to —f(x). Then show that—f has a
maximum value of m if and only if f has a minimum of —m.

10. This trick is often useful: by assuming that M is never attained by f
it follows that ¢ is continuous on [a, b] and therefore bounded, but this quickly
leads to contradiction.

Problem Set 7

3. Suppose f(z) were not uniformly continous. Let (4, ),>1 decrease mono-
tonically to 0. Then for each §,, there exists x,,,y, € [a, b] such that |z, —y,| <
on, but |f(zn) — f(yn)] > €. Take a convergent subsequence of the x, that
approaches some limit x € [a,b]. The use the continuity of f to gain a contra-
diction.

6(b) Consider | f,()gn (x)—f(2)g(z)| = |fn(2)gn(x)=fn(2)g(x)+fn(2)g(z)—
f(@)g(@)]-

8. The function defined by the infinite sum is the limit of the functions
defined by the partial sums.

10(b) Begin by substituting in the standard exponential series.

Problem Set 8

1. Use the dominating series to show that the tail of the sum of the sequence
of functions may be made arbitrarily small, independently of x.

2(b) Justify taking the infinite sum inside the integral by uniform continuity,
verified through the M-test making use of the series in (a).

Problem Set 9

1. Either f is constant or it has a local maximum or minimum, ¢. What is
f'(e)?

2. Try the absolute value function.

5. Treat the interval [—7, 7] and its complement separately.
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Problem Set 10

2. & 3. Integration by parts.

5. This is an alternating series with terms of monotonically decreasing mag-
nitude so that the absolute value of each term is itself an error bound.

7. Use implicit differentiation.

8. Look at g;Tgnkz,y):(a,b)-

9. Subscript notation for partials is easier to use here.
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Answers to the Problems

Problem Set 4

9(i) convergent; (ii) divergent; (iii) divergent. 10(i) divergent; (ii) divergent;
(iii) convergent.

Problem Set 5

3. p>1. 4. Yes. 6. 1. 10. 1+%x7ﬁx2+%x37 22?’658x4+~~~;
V212 =1-40(2d.p).

Problem Set 7
5(b) No, LHS = 0, RHS = 1 (by integration by parts)
Problem Set 8

9a) Yol ()" Yz < L (D) e+ S 4+ S+ 5 4. 10, f(z) =

n=1

(14 2)log(l+z) — x.
Problem Set 10

m+n 00 o] m+n)! m n
8. 1—a2. 9. Lty = = 2y 100 3000 S )l pmyn,

mln!l 0mxony n=0 mln!
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