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Solutions and Comments for the Problems

Problem Set 1

1. The constant term is (150) (f%)f’ = 7?4938272? (-1 = -8

2. P(player misses) = 1 — P(he does not miss) = 1 — 08' 8 = 0-2. Hence
P(two successive misses) = (0-2)? =0 - 04.

Comment Of course this calculation is implicitly assuming that the outcome
of the second shot is independent of the first. This is justified as the question
says plainly that the success probability is 0.8, and so we are within our rights
to assume that this is true in all circumstances. If it wasn’t, we would need to
know more before we could answer the question.

3. The Nuffing score takes on m+1 values throughout the match (0,1,---,m)
and similarly the Plough score takes on n + 1 values, any of which may have
applied at half time, yielding a total of (m + 1)(n + 1) possibilities.

4. The product (m+1)(n+1) ‘double counts’ all the pairs {k,{} with &k # [.
The number of such pairs is (";‘1) (as m > n) , giving the answer:

(m+1)(n+1)— %n(nwL 1) = %(n+ 1)(2m —n +2).

5. There are 3! = 6 possibilities; there is 1 way of getting all 3 correct; there
is no way of getting 2 (and not all 3) correct; there are 3 ways of getting just
one right. Hence there are 6 — (1 +3) = 6 — 4 = 2 ways of being dead wrong.
Hence Pr(none correct)= 2 = 1

Comment This solves this problem but we are immediately led to think how
we might try and solve it if instead of just 3 leads and 3 sockets there were some
arbitrary number n. This problem is solved through an application of what is
called the Inclusion-Exclusion Principle. The denominator of the probability
quotient is easily seen to be n! as that is how many permutations of leads and
sockets is possible. The Principle then allows us to find the numerator through
a finite series with alternating signs that represents a series of corrections and
reverse correction terms. The outcome in this case is equal to the first n 4+ 1
terms of the series for e™* = 1 — & + & — -+ + (=1)"L; 4+ ---. Since this
series converges very quickly, for even modest values of n the answer is as near
as makes no difference to e~!, which corresponds to approximately 36 - 7%.
Another instance of this problem is where you take two well-shuffled packs of
cards and turn over one from each pack and compare. The probability that
there is no match is therefore almost exactly 0.367.

6. It is perhaps easier to count the 2 x 2, 3 x 3, etc. squares by counting the
number of their centres. This yields, not surprisingly perhaps, a sum of squares
as there are 82 unit squares, 72 squares of the 2 x 2 variety and so on to a single
8 x 8 square.

824+ 724+ ... +12 =204.



7. A rectangle on the chessboard is determined by a choice of 2 horizontal
lines (from 9) and 2 vertical lines.

. #rectangles= (3) ().

Hence, by using the answer to Question 6 that counted the number of squares
on a chessboard to be 204, we find that

2
#oblongs= #rectangles—#squares:(ﬁ—é!) — ftsquares= 362 — 204 = 1092.

8.

Hence k£ = 12.

Comment This is the unique value of k that makes f(z) into a probability
density function.

9. Each player, except the eventual champion, loses precisely one match and
each match has precisely one loser. Hence there is a one-to-one correspondence
between the set of matches and the set of losing players. Therefore there are
n — 1 matches in the entire tournament.

10. There are (g) possible pairings, of which n — 1 will get to play (by
Question 9). Hence the required probability is:

n—1 n—1 2

(g) N %n(n— 1) n

Problem Set 2

1. This is the sequence of the total number of points possible in a game of
tennis: after 6 points we have ‘deuce’ and the number of remaining points is
always a multiple of 2.

2. The probability of a ‘draw’ is . Hence, by symmetry, the probability
that the green die wins is (1 — %) = g 2=2E.

3. Pr(failure by six-dice man)=Pr(no aces)= (%) ~ 0 - 335 so his success

probability is & 1 — 0-335 = 0 - 665. On the other hand, Pr(failure by 12-dice
man) is the sum of the probability of no aces, which is (%) plus Pr(exactly one

ace), which is (112) X % X (%) (the number of aces is a binomial random variable

with success probability of %) This gives a success probability of:

1— (%) 12 x % x (%) ~ 0.619.



Therefore it is the player with the six dice who has a slight advantage.

Comment The probability of the six-dice man succeeding while the 12-dice
man fails is 0- 665 x (1 —0-619) = 0- 665 x 0- 381 = 0.253; the probability
of the 12-dice man getting an ace while the six-dice man does not is similarly
0-619 x0-335=0-207. If they play n times therefore the expected number
of more times that six-dice man wins is (0253 — 0 207)n = 0 - 046n. In other
words he has a gambling advantage of about 4.6% over his opponent.

4. Pr(no diamond) = £3 - 2. Hence Pr(at least one diamond)=1—2 .28 =

1o i 52 1
34 ~ 34° ) ) ) )
5. Let r denote the radius of the coin. The centre of the coin C' settles in
some square and may equally lie any place within that square. The coin covers
a corner if and only if C' lies within a circle of radius r centred at some corner of
the square. This area consists of four quarter circles, one at each corner. Hence
the required probability is equal to:
Area of a circle of radius » 72

T
= = — =~ 0.79 (to 2 decimal pl .
Area of a square of side 2r  (2r)2 4 079 (to 2 decimal places)

6. There are two approaches, the first using geometric series: Pr(Player 1

n
‘wins’ on (n + 1)st turn) is (% : %) - & This gives:

n
‘wing) —L1Sveo (25\" _1._1__ 1 .3 _ 6
Pr(Player 1 w1ns)76§n:0(36) =6 TE T8 no

The second approach exploits the near symmetry inherent in the problem to
glean the solution with little calculation. Let the players be A and B with a
and b denoting their respective probabilities of winning. Now a + b = 1. If the
first shot in the contest is fatal (probability 1/6), B can no longer win. If A
survives the first shot however (probability 5/6), the tables are turned and, in
effect, A and B have now swapped places with B having the ‘advantage’. In
other words, in the event that the first shot is a blank, the probability that B
will yet go on to win is a. This gives an equation relating a and b: b = %a.
Coupling this with the fact that b = 1 — a we obtain:
11 6

)
a Ga: 6a:>a 11

7. The coefficient of (22)°(—y?)* is (7), yielding as the coefficient of x°y®:

9! Ix8XT7xX6
ERAN LI G T R AT
(1) 4x3x2

514!
k<Z> - (nk—' JZ)!!/@! RO —(Z)!(;)!— o n<z‘ D

It follows that

25 =9 x 7 x 20 =63 x 64 = 4032.




Comment These manipulations are valid under the convention that (’,:) =0

for all values of £ < 0. In particular the re-indexing of the sum can take a
lower limit of k = 0 rather than k = —1, which results from a formal change of
variable from k to k — 1.

9. The probability of a score of 5,4, 3,2,1 and 0 by the player is respectively

2 4 6 8 10 6 i i is o .
3636 367 367 36 36" The expected win of the Bank in pounds is given by:

1
2—%(2x5+4x4+6x3+8x2+10x1+6><O):

21101618161002702 L
=2 g0 16+ 184 16+10+0) =2 - 55 = 55 = 75
And so the Bank does indeed has a net expected gain of £0.055 per roll.

10. Under this playing regime, the (6,6) roll is effectively discounted. The
calculation is then identical to before except the divisor of 36 is replaced by
35 (and the multiplier 6 of 0 is replaced by 5, which has no effect). Hence the

expected gain of the Bank is now 2 — % = 0 and the game is fair.

Problem Set 3

1. Pr(doubles or 8)=Pr(doubles)+Pr(8) - Pr(doubles & 8))
6 5 1 5

=3 736 36 18
3\ 1_5
2/6 6 12

= ()< ()

4. One example 11100010.

Comment Such strings, known as de Bruijn strings, exist for any power of
2 and have a variety of applications and interesting properties.

5. The common sum must be % . % -12-13 = 26. Both lines start from
between 10 and 11 with the top line passing between 2 and 3 while the bottom
line passes between 8 and 9 giving the partition: {11,12,1,2}, {5,6,7,8} and
{3,4,9,10}.

6. There are 9 letters but 4 are E and 2 are V so the total number of
distinguishable permutations is:

G =55

9! 9.-8:-7-6-5

—_ = = 7,560.
412! 2 ’



7. We can choose the ‘first’ team in (162) ways, but since the order of the 2
teams is immaterial, we have to divide this number by 2!, which gives:

12! 12-11-10-9-8-7
266!  2-6-5-4-3-2

8. Ignoring the Higgins’s for the moment, the number of admissable com-
mittees is

@ @ " @ @ * @ <3> = (15)(6) + (20)(4) + (15)(1) = 185.

From this we subtract the number of committees that have both Higgins’s on
them, which numbers

(?) G)) + (3) (3) = (5)(3) + (10)(1) = 25,

.. the number of allowable committees is 185 — 25 = 160.

8 8.7
(2)728'

10. There are four equally probably possibilities for the first two tosses,
which are HH,HT, TH, and TT. In the first three cases, HTT must appear
before TT H is possible, while in the final case T'T'H must appear first. Hence the
probability of the respective probabillities of the player and the bank winning
are Tand 2 and so the expected loss of the player is

=11-3-2.-7 =11 x 42 = 462.

3 1 10 5
—-(10) = =(20) = — = —;

therefore the average ‘winnings’ of the player per game is —£2 - 50.

Problem Set 4

1. (54 5)! = 10! = 3,628, 800.

2. Each linear arrangement gives 10 equivalent cyclic arrangements, so the
answer is 22 = 9! = 36, 280.

3. Arrange the girls and boys alternating in a row: this can be done in
2 x (5!)? = 2 x 120? = 28,800 ways. (The factor of 2 counts whether we begin
with a boy or a girl.) Divide by 10 to get the number of cyclic arrangements:
28800 — 2, 880.

4. The number of linear arrangements is

= 252.

10 71_0!710><9><8><7><6
5) 5151 5Ex4x3x2



5. The probability of n — 1 tails followed by a head is clearly 2%
6. The mean of the random variable X of Question 5 is:

Comment: For |z| <1 7 Oz =(l-2) =Y na"t=(1-2)"?=

22021 nx”™ = W Putting « = 2 gives the previous sum. Since we shall soon
be needing it, let us also differentiate again:

53 (n—1)z"?=2(1-x)"3

N)|3

éZn(n—l)z":GQ_%P ] < 1. (1)
n=0

7. The event E, we seek is that exactly one of the first n — 1 tosses is a
head, as is the nth toss. Hence

n—1\1 n—1

8. We want the expectation F(X) where P(X = p,,) so we require:

“nn—1
yueh 2Ur

n=0 23

MI»—A
P

where we have invoked (1) with z = 3.

9. There is a one-to-one correspondence between solutions to the equation
and the number of arrangements of 12 crosses and 3 slashes (the four lists of
crosses so created corresponds to the values gives to each of the z; in turn).
Hence the answer is

12+ 3 15 15-14-13
(57)-6)="5

10. Put z; = y; + 1 so that x; > 0 < y; > 1. Substituting accordingly we
get:
1+ D+ @+ +@s+1)+@at1) =12

=y +ty2+ys+ys=38;

by the argument of the previous question the number of distinct solutions is

8+3 11 11-10-9
(2%) = (a) ="

Comment: in conclusion concerning Questions 9 and 10, there are 455 solu-
tions to the equation in non-negative integers, 165 of which contain no zeros.



Problem Set 5

1. By definition of conditional probability we have the two expressions

P(A|B) = szg?) and by the same token P(B|A) = PE;%QJ)B). Cross multi-

plying gives two expression for P(A N B):

P(AN B) = P(A|B)P(B) = P(B|A)P(A)

P(B|A)P(A)
P(B)

2. Of the 6 x 6 = 36 equally likely outcomes of a two-dice roll, 6+6 —1 =11
of them satisfy the condition ‘at least one die shows 6’. Of these, those that sum
to 9 or more can be listed as (3,6), (4,6), (5,6), (6,6), (6,5), (6,4), (6,3), which
number 7 in all, giving the required probabilty as 1—71 Alternatively, let A be the
event that 'the sum of the faces exceeds 8’ and B be the event ’at least one 6 is
rolled’. Then P(ANB) = = while P(B) = &, yielding P(A|B) = & -3 = L.

3. Let p be the unknown proportion. The given information translates to

the equation:

= P(A|B) =

(0-5)(0-6)+p(1—0-6)=0-4
0-4—-0-3 0-1
= " " _—0-25.
TP T 0a 0B
4. Let A be the event "Voter supports our party’ and let B stand for "Voter
owns a Bike’. We then have

P(B)=P(BNA)+P(BNA") =(0-5)(0-6)+(0-25)(1—0-6) =0-3+0-1=0-4.
Hence we obtain the required probability as

BJA)P(A)  (0-5)(0-6) 0-3
P(B) 04 04

P(A|B) = il =075,

and so her chances of finding a supporter increases from 60% to 75% if she
concentrates our houses where she spots that the owner has a cycle.

5. Let W and M be the events, W = ‘voter is a woman’ and M = ‘voter
is a man’, with P(W) = P(M) = 1. Let E be the event ‘person selected voted
ECP’. Then we are given P(E|M) = 0-35 and P(E|W) = 0-45. Also since
every voter is either a man or a woman but not both we have:

P(E) = P(ENW)P(W)+ P(ENM)P(M) = (0-45)(0-5)+(0-35)(0-5) = 0- 4.
Finally we want P(W|E) and so by Bayes’s Rule we obtain:

P(W|E) = P(Eg(/g(w) = (0'405?(40 5 _ 0. 5695,




Hence the percentage probability that the voter is a woman given that they
voted ECP is 56.25%.

6. Let R and B denote the respective events, R =‘It is raining’, B =
‘barometer indicates rain’. We require P(R|B). We are given P(B|R) =0-7
and P(B| ~ R)=0-1and P(R) = 1. Now

P(B) = P(BNR) + P(BN (~ R)) = P(B|R)P(R) + P(B|(~ R))P((~ R)) =

(7x1)+(1x2)*7+2 9 3
10 3 103/ 30 30 30 10°

7. By Bayes and using Question 6:

BIR)P(R) gX35 7 10 7
5

8. Let X, = ‘selection from urn j’ (j = 1,2, 3) and let A = ‘white ball and
red ball chosen from urn’. We require P(X5|A)

13 1 31 3 3 3 1
PAX)== 2= — PAXy))=2.-2 =2 PAX3)=2-2=2
(|1)6510,(|2)5420,(|3)98

Hence 11 31 11 1,1 3 1y 1

PA=— -4+ . 4= (=2 )=2,
(4) 037203783 3(10 20 8) 8

Therefore by Bayes’s Rule:

P(A|X2)P(X2) 553 8 2
PXA: = = — = —,
(Xa]4) P(A) 1 20 5

9. Let + denote the event that a person tests positive and let D denote
the event that the person has the disease. We are given that P(+|D) = 1,
P(+|-D) = 0-05. Now

P(+) = P(+& D) + P(+ & (=D)) = P(D)P(+|D) + P(=D)P(+|-D) =
=0-001x1+0-999 x 0-05=0-05095.

Hence

+|D)P(D)  1x0-001 1

B
P D == = = =
(DI+) P(+) 0-05095 5095

0-0196 =~ 2%.

Comment Questions like this are sometimes given to people, including med-
ical professionals, and invariably those questioned tick the box with a much
higher probability. A common response is 95% as ‘the test is 95% accurate’.
Probability is a peculiar in that, unlike other branches of mathematics, raw
intuition often leads to estimates that are wildly wrong but at the same time
those making the bad guesses are convinced the problem is simple and that their
answer is obviously right.



10. Let F" and S be the respective events that the first and the second marble
chosen were red. Then
P(F&S) P(F)-P(S|F) 2-1 1

PRSI ==py =~ R~ T 1

Comment: We could argue that P(F|S) = P(S|F) (as P(F) = P(S)) and the
latter is clearly i.

Problem Set 6

Let a and b be the respective probabilities that P is absorbed at z = —1 and
x = 2. Since absorption is inevitable (as the probability of endless oscillation
between = 0 and x = 1 is 0) we have a + b = 1. Either P initially moves left
from the origin, we write this as P — —1, (probability 3) and so P is absorbed
at ¢ = —1, or P — 1 (probability %) By symmetry, the probability of P being
absorbed at z = 2 given P — 1 is equal to a. Hence

1
b= Pr(P — 1)Pr(Pis absorbed at = 2|P — 1) =50
substituting a = 2b in our original probability equation now gives
1
2b+b=3b=1andso b= 3"

In conclusion, the chances that the particle will eventually be absorbed at the
right hand barrier is 1/3.
2. The given information implies that
6 5 1

== —1)=3-
| 3:>n(n )=3-30

=n2-n-90=0= (n—10)(n+9) =0

and taking the positive solution gives n = 10, so that is the number of sweets
in Charlotte’s bag.

3. Let us look at the general situation where we begin with 2n teams and
their names are drawn from a hat, one after another, to produce n pairs. The
number of different permutations that may be formed of the 2n names as we
draw them out is (2n)!. Each particular drawing of the teams into pairs arises
from n!2™ of these permutations: the n! term counts the number of arrangements
of the n pairs and for each of the n pairs there is a factor of 2 corresponding to
the order of draw within the pair. Hence the number of ways of splitting a set
of size 2n into pairs is

(2n)!
Pn = 2np!’

10



By multiplying each term in the n! product be one of the instances of 2 in the
2" term we see that the denominator can be written as

(2n)(2n —2)(2n —4)--- 2,

the product of the first n even numbers. Cancelling these terms into the numer-
ator (2n)! tells us that p,,, the number of ways of splitting 2n objects into pairs
is the product of the first n odd numbers:

pn=(2n—1)(2n—3)---3.

In this problem, n = 8. The total number of ways the 16 teams may be drawn
into pairs is pg. We are interested in the number of these pairings where 4
named teams are drawn together. There are is po = 3 ways these 4 can be
drawn against one another - once you pick one of the three possible opponents
for any specific team, the draw is fixed for all four of them, while the other 12
teams can be drawn against one another in pg ways. The total number of ways
therefore of splitting the 8 pairs up in this fashion is pspg. Hence the required
probability, p, is given by the ratio

_paps Al 120 2881 4 x3 8x T 1
p= pg 2220 266! 16! 1 16x15x14x13 65

4. The total number of possibilities in the 2n tosses is 22”. On the other
hand the number of ways in which each of the two people toss and equal number,

k, of heads is >, _ (2)2 — (2:) Hence, the required probability is:
" @a)  @n-1)2n-3)1

n

22— (2))2  2n(2n—2)(2n—4)-- -2

Comment Using the so-called Wallis Formula for 7 it can be shown that this
probability ratio approaches ﬁ for large n.

5. This pretty problem has arisen in different guises before but this version
featured on the website of the American Mathematical Society in 2015 and
triggered a viral surge on the internet. The question does not demand that the
two groups are equal but we can supply such a solution.

First, split the coins into two equal groups, the left and the right say, of n
coins each. The left hand group will have some unknown number, k of heads
(and n — k tails), for some number k in the range 0 < k < n. Since we know
there are n heads overall, it follows that the right hand group of coins must have
the remaining n — k heads (and k tails).

If we now flip over all the coins in the right hand group, that group will have
k heads (and n — k tails). Therefore both groups now have an equal number, &
of heads and also an equal number, n — k of tails.

Of course, we do not, know the value of k, although it is not a difficult exercise
to find the probability for each value of k in the experiment.

6. Let the probablilty of no tremor in the next half hour be p. Then the
probability of no tremor in the next hour is p> = 1 —0-4 = 0-36. Hence

11



p = 0-6 and therefore the probability of at least one tremor in the next half
houris1—p=1-0-6=0-4.
Comment I have read that Google have used a version of this problem as an
interview question for prospective employees - it is short but quite tricky!
1

7. The probability that any particular set is chosen by A is 5. The prob-

ablity that A, (we use the same symbol for both set and player), has exactly

k members is therefore % The probability that B C A is then g—: = 2k—n,

Hence, the overall probability that B C A is

n

3 (Z) 9n . gk—n — 4= i <Z> ok

k=0 k=0

Now (14+z)" =37, (2) z* so upon putting 2 = 2 we get the previous proba-
blility is equal to:
471 42)" = (%)”.

8 & 9. We introduce a fresh argument that allows us to answer Questions
7,8 and 9 together. Let the underlying set S = {1,2,---,n}. Let both A and
B choose their random sets by tossing a coin n times with 4 included in their
set if the ith toss is a head, denoted by 1 and i is excluded in the event of a
tail, denoted by 0. This produces n independent experiements, the outcome
of which can be coded as a binary pair, ab of four possible types, with a = 0
or 1 according as A tosses head or tail, and similarly for the second digit as
regards B. Then we will get B C A if and only if the forbidden outcome of 01
is avoided on all occasions. The probability of avoidance of the forbbidden pair
is evidently 2 so the probability that B C A is (2)".

The answers to Questions 8 and 9 are the same as Question 7: in Question
8 the forbidden pair is 11 and for Question 9 it is 00.

Alternatively we note that the logical equivalence of the three events A C (~
B), AnNB=10and (~ A)U(~ B) = S. Since P(A C B) = P(A C (~ B))) we
see that Questions 7 and 8 have the same answer. Similarly since P((~ A)U (~
B)) =8) = P((AU B) = S) we obtain the equality of the answers to Question
8 and 9.

10. We extend the previous approach to that of k subsets Ay, - - -, Ay, which
are determined by coin toss so that the outcome at each stage of the construction
is a binary k-tuple. The admissable k-tuples at each stage are then exactly those
with no more that one instance of 1, which number 1+ k. The 1 corresponds to
the k-tuple of zeros while there are k choices of k-tuples that feature exactly one
instance of 1. Hence the probability that the k-tuple chosen at any particular

stage is admissable is £ and therefore the probability that the k-sets chosen

2)€
. . e . n
at random are pairwise disjoint is (1)

12



Problem Set 7

1. The underlying random variable X here is distributed Bin(8,0-6), a bino-
mial distribution with n = 8 and success probability p = 0-6 and complementary
probability g =1—0-6 = 0-4. Hence

P(X >5)=P(X =6)+P(X =7)+ P(X =8)

8 8 8
= <6> (0-6)°(0-4)* + (7) (0-6)7(0-4)" + <8) (0-6)%(0-4)°
= 28(0 - 046656)(0 - 16) + 8(0 - 0279936)(0- 4) + 1(0 - 0167961)(1)
=0-315 to 3d.p.
2. Here X ~Bin(n, i) sothatg=1—-p= %, where X is the random variable
denoting the number of red flowers chosen. Here n is unknown. However we

know that P(X = 0) <1—0-95 = 0-05. Hence we require the least n such
that

0
= nlog;((0-75) < log;,(0 - 05)
= n(—0-125) < —1-301
1-301
0-125
so that n > 10 - 4 and since n is the least integer satisfying this inequality we
conclude that n = 11.

3 (a) Here we are dealing with X ~Bin(3,0-7) as there are n = 3 identical
Bernoulli trials with success probability p = %. We want

<”> (0-25)°(0 - 75)" < 0- 05

=n> (direction of inequality flips!)

P(X=3)=p>=(0-7)>=0-343.

(b) This is an example of a hypergeometric distribution with parameters
N = 10 and n = 7 but we can find the probability of the give event without
reference to this general description, for it is:

() m M 765 T
(0 " a3 G0 T 10-9-8 21 0P

4. We want P(X < 2). In general, P(X =z) = ¢ X" and so we here need:

!

_ AN _ 13
=e A(1+ﬁ+§)=e 4(1+4+8)=e—4=0-238 (3 d.p.).
5. Such processes follow a Poisson distribution with the mean number A of

misprints per page equal to 750 = 3. The mean number per two pages (whether

13



or not they are consecutive) is 2- 3 = 3. Hence we require p = P(X = 0) where
X ~ Po(3), so that

)\O
p= e_’\a —e M =e3=0-0497 (3 s.f.).

6. The probability will the be the following ratio, the numerator of which is
the number of ways of choosing exactly k£ blue marbles and m — k red ones from
the bag while the denominator is the total number of groups of marbles of size
m that can be chosen:

n\ (N—n
() Gnr)

(m)
7. Since there are N balls, the number of subsets of m balls that can be

drawn from the bag is (::i) This is also equal to the sum, as k ranges from 0 to
m of the number of ways of choosing k blue balls and m — k red balls. Hence

(-0 )

Comment The identity (2) is often known as Vandermonde’s identity (1772)
but this fact was known to the Chinese mathematician Zhu Shijie (1303).

8. Here we have a Binomial distribution with n = 12 and p = 0-8. Now | (n+
1))p] = |10-4] = 10, which is then the mode (outcome of highest probability)
for this distribution. (The probability that X = 10 can be calculated as 0-2384.)

9. We put A = np =500 x 0-002 = 1 and approximate the distribution to
that of X ~Po(1). We want

121
Sl — _— =0.184 3 d.p.

P(X =2) =
(X =2)=e"5r =7

Comment This agrees, to 3 d.p. with the exact answer given through the
binomial distribution.
10. Here we have a binomial distribution with n = 90 and p = &. We

36
approximate this by X ~Po()) where A =np = 23 =2-5. Then

P(X>2)=1-P(X=0)—P(X=1)

3-5
=1—-e??(1+42-5)=1— == =0-7133 d.p.
(&

The probability that at least two double sixes are observed in 90 tosses of the
dice is 0 - 713.
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Problem Set 8

1. Let Y be the number of events in ¢ time units. Then Y ~ Po(\t) and
P(Y =0) = e~*. Hence P(waiting time till first event <) =1 - P(Y =0) =1 — e |
which is to say
Ft)y=1—e = f(t)=F'(t) = e ™ (t > 0).

2. Here A = 3 so that f(t) = 3e=3! (¢ > 0). Hence

P(T>1)= / e 3tdt = [—e 32, =0~ (—e®)=e"2=0-050 3 d.p.
1

3.
B2 =B = [T e
Ry AT

Hence F(Z) = 0. It follows that the variance Var(Z) is given by

52 = [ war= 5 [T -
1o,

4. We have X = 1+ 0Z so that

P(ng)zp(wrazgx)zp(zgx;“):F(x;“).

Hence the pdf g(z)of X is given by

5. In the case where Z = N(0,1) we have the pdf g(z) of X = p+0Z is
given by

1 1 _1(u)2 1 _;‘(Ifu)Z
e 2 2 = ¢ 2 = .
o2 V2ro?

6. Since f(z) is an even function, the graph of f(z) is symmetric with respect
to the y-axis (it is the standard bell curve). It follows that P(X > z) = P(X <
x) and so

O(—z)=P(X>2)=1-PX<z2)=1-9(2), (—00 <7 < 0).

Or equivalently



P(|X — 50| < V8) = P(—V8 < X — 50 < V)
X —50
V8
=2(1) = 2(-1) = (1) — (1 - &(1))
=2P(1) —1=2(0-8413) — 1 =0 - 6826.

Therefore P(|z — 50| < 1/8) = 0 - 6826.
8. We match the mean and variance of the two distributions. Here y = np =

400 x 0- 35 = 140 and 0 = npg = 140 x 0 - 65 = 91. Hence our approximating
normal distrtibution is X ~ N(140,91). Then

P(-1< <1)=P(-1<Z<1)

P(120 < X <150) — P(119.5 < X < 150.5) (continuity correction)

119-5—-140 X —140 _ 150-5— 140

Y - S Y - B

)

= P(-2149 < Z < 1-101) = ®(1-101) —®(—2-149) = B(1-101)— (1—D(2-149))

®(1-101) + $(2-149) — 1 = 08465+ 0- 9842 — 1 = 0 - 8307.

The probability that between 120 and 150 brown-eyed people in the sample is
0-8307.

Comment The rule of thumb is that the normal with matching mean and
variance is a good approximation to the binomial for large n and when p is close
to %, the latter guaranteeing that the shape of the distribution is not too skewed
to one end but is more like the normal bell-shape.

9. We approximate the underlying Poisson distribution with mean (and
variance) A = 25 by a normal random variable X with the same mean and
variance, X ~ N(25,25). Again, using a continuity correction in order to reduce
rounding error we cacluate

22-5—25 X —25 27-5—25
< < )

5 5 5
=P(-0-5<Z<0-5=20(0-5)—1=2(0-6915) — 1 =0 - 383.

P(22-5< X <27-5) = P(

Therefore the probability that between 23 and 27 particles are detected in any
give second is 0 - 383.
Comment The heuristic for this approximation to be sound is that A > 20.
10. We are given X ~ N(u,(1-3)?). The 95% confidence interval for y is
T+1- 96% so the width of the interval is 2 x 1- 96%. In this case we therefore
need the least positive integer n such that

1-
2><1~96><—3<2:>\/ﬁ>1~96><1~3:2~548
vn

=n>6-49,
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so that n = 7 tests are needed.

Problem Set 9

1. We have E((X — a)?) = E(X?) — 2au + a®. Since E(X?) is a constant,
we seek the value of a that minimizes a? — 2au = a(a —2u). This is a parabola
in a with roots 0 and 2u and so the minimum occurs at a = p.

Z Tt T =2 0" = = g+ = nin = 1)
4. Now in general
Var(X) = E(X?) - E*(X) = E(X(X — 1)) + E(X) — E*(X).
In this case we get from the results of the two previous questions:
Var(X) = n(n —1)p* + np — n’*p® = np — np® = np(1 — p) = npq.
Hence o(X) = /npq.

5.
e )\k—l

_ Ook/,)‘ke_)\_)\—/\ _
_Z = ;m_

k=1

42 e e — )\

17



7. Again Var(X) = E(X(X — 1)) + E(X) —E(X) = X2+ X =\ = )
o(X) =V

8. [y Ae™Mdr = A[ — 7] ¥ = —[0—1] =1 and since f(z) > 0 Vz, it
follows that f(z) is a pdf. Next

F(z) = /Oz ftydt = —[e ] = ~[e* —1] =1— e (x> 0).

Comment We use the symbol ¢ in the integral so that the symbol x does not
simultaneously stand for a fixed value and also for the variable of integration.
Since the value of the integral is independent of the symbol used as the variable
of integration, the variable ¢ is sometimes referred to as a dummy variable,
meaning that it has no particular meaning in itself, and so could be any symbol
that is not used elsewhere in the calculation.

9. First consider the integral I = fze’%zzdz. Put u = —12? = du =

—zdx. Hence [ = — [e¥du = —e~2%" + ¢. Hence

1 _;IZ}oo 1

1 i 1 TN
E(X):\/—2_7T/_Ooxe 2 dy = \/ﬁ[ = \/%[0 0] =o0.

Comment That the mean is 0 also follows from the fact that the pdf is an
even function so the integrand of E(X) is odd. A similar comment applies to
the latter calculation in the following question.

10. The variance of X is E(X — p)? = E(X?). Consider the integral I =

f:ch*%zz dz. Integrate by parts, putting u = z, dv = ze~ 2% dx so that du = dz
and v = —e~2%" . Then

1,2 1.2
I = xe 2% +/e 2% dg.

Hence

1 > 2 1 e 2
E(X?) = \/—2_77/ ze 2" dx+\/—2_77/ e 3" da.

Now the second integral in the previous line is equal to 1 as it is that of a pdf,
while for the first we get

18



Problem Set 10

1. Our distribution is P(X = k) = (;Dpkqn”c (g=1-p,0<k<n). Hence
E(etX) = ietk n pEgnk = zn: n (pe')*q" % = (pe! + @)™
— k k '

k=0 k=0
M) = (plef = 1)+ )™,
2. Continuing with the solution to Q1 we obtain:
E'(e"*) = npe (pe'+q)" ! = E" (") = np(pe’+q)" " +n(n—1)p*e* (pe'+q)" 2.

Hence
E(X) = M'(0) = npe’ (pe” +¢)" " = np.
E(X?) = M@ (0) = np(pe®+q)"~*+n(n—1)p*(pe’+q)"~? = np+n(n—1)p* Hence

0® = E(X?) —E*(X) = np+n(n—1)p* —n’p* = np —np* = np(1 — p) = npq.

3.
b etz
E(et™) :/ - adz = t(bl—a) [eX] =
1 t ta . .
t(bfa)(eb_e ), t # 0;E(e) = 1.
4, / 1 o o
M(t):_m(e —e )+t(b7a)(be —aet?) =
(bt — 1) — et (af —
(b—ayp'(r) = < 1)t2 (at —1)

Taking the limit as ¢ — 0 we obtain:

(b— a)M'(0) = tim S OL =D — (@t 1) _

t—0 t2
b?tebt _ a2teat . b2€bt + b3tebt _ a2€at _ a3teat b2 _ a2
lim ———— = lim = =
t—0 2t t— 2 2
M(0) = b — a? _ (b—a)(b+a) _b+ta
2(b—a) 2(b—a) 2

Comment In this case the mgf method involves a lot more work that a direct
calculation. Indeed from symmetry it is obvious that u = HT" for the uniform

2
distribution. Direct calculation also gives 0 = %.
5.
o0 — o0
E(etX) = Zetk Are? 42 (Aeh)* — e AN o

S
k=0 k=0
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M(t) = M0,

6. Continuing from Q5 we have
M'(t) = e' - M = N A o M'(0) = Xer MO0 = 2 = ).

M"(t) = AAe! + 1)er T2 = M(0) = A(A+ 1)eM0 = A(A + 1);

Hence
UQ:IE(XQ)—IEQ(X) :/\(/\qu)—/\2 =X+ A=A =\

7. We first find
Ak*B
(k —3)!

oo . o keiA oo
E(X(X -1)(X -2)) =) k(k 1>(’“k! 2)A =e N\
k=2 k=3

=e M\ Z i Ae et = 23 Now
k=0
E(X3) = B((X (X —1)(X —2))+3E(X?)—2E(X) = M3 4+3 (A 1)—2) = N34+3A7+ .

Hence ¥ )
s
E( - ) :W(E(ﬁ)—SAE(X2)+3A21E(X)—A3)

— 1 3 2 3 2 3 3\ A _ 1
fm(x FINA BN =N 43N - ) = 15 =

8.

p=Y kP(X=k)>> kP(X=k)>a) P(X =k)=aP(X >k)
k=0 k=a k=a

= P(X >k <k
a

9. The random variable Y = (X — u)? is a discrete random variable on the
non-negative integers with mean o2 so applying the Markov Inequality to Y we
obtain:

2 o? 1
P((X_M) 2 k202) < 202 k2’

Now (X —u)? > k?0% & | X — u| > ko, which gives the required conclusion:

1
P(IX — p| > ko) < =k

10. We have X ~ B(200, 0-5) so that g = np = 100 and 02 = npq = 50. Hence
applying the Chebyshev Inequality we obtain:

1
P(|X —100] > 2V/50) < 5 = P(IX — 100/ > 10V2) <

=
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