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Solutions and Comments for the Problems

Problem Set 1

1. The 
onstant term is

(

10
5

)

(− 1
2 )

5 = 10·9·8·7·6
5·4·3·2·25 (−1)5 = − 63

8 .

2. P (player misses) = 1− P (he does not miss) = 1 − 0 · 8 = 0 · 2. Hen
e

P (two su

essive misses) = (0 · 2)2 = 0 · 04.
Comment Of 
ourse this 
al
ulation is impli
itly assuming that the out
ome

of the se
ond shot is independent of the �rst. This is justi�ed as the question

says plainly that the su

ess probability is 0.8, and so we are within our rights

to assume that this is true in all 
ir
umstan
es. If it wasn't, we would need to

know more before we 
ould answer the question.

3. The Nu�ng s
ore takes onm+1 values throughout the mat
h (0, 1, · · · ,m)
and similarly the Plough s
ore takes on n + 1 values, any of whi
h may have

applied at half time, yielding a total of (m+ 1)(n+ 1) possibilities.
4. The produ
t (m+1)(n+1) `double 
ounts' all the pairs {k, l} with k 6= l.

The number of su
h pairs is

(

n+1
2

)

(as m ≥ n) , giving the answer:

(m+ 1)(n+ 1)− 1

2
n(n+ 1) =

1

2
(n+ 1)(2m− n+ 2).

5. There are 3! = 6 possibilities; there is 1 way of getting all 3 
orre
t; there
is no way of getting 2 (and not all 3) 
orre
t; there are 3 ways of getting just

one right. Hen
e there are 6 − (1 + 3) = 6 − 4 = 2 ways of being dead wrong.

Hen
e Pr(none 
orre
t)= 2
6 = 1

3 .

Comment This solves this problem but we are immediately led to think how

we might try and solve it if instead of just 3 leads and 3 so
kets there were some
arbitrary number n. This problem is solved through an appli
ation of what is


alled the In
lusion-Ex
lusion Prin
iple. The denominator of the probability

quotient is easily seen to be n! as that is how many permutations of leads and

so
kets is possible. The Prin
iple then allows us to �nd the numerator through

a �nite series with alternating signs that represents a series of 
orre
tions and

reverse 
orre
tion terms. The out
ome in this 
ase is equal to the �rst n + 1
terms of the series for e−1 = 1 − 1

1! +
1
2! − · · · + (−1)n 1

n! + · · ·. Sin
e this

series 
onverges very qui
kly, for even modest values of n the answer is as near

as makes no di�eren
e to e−1
, whi
h 
orresponds to approximately 36 · 7%.

Another instan
e of this problem is where you take two well-shu�ed pa
ks of


ards and turn over one from ea
h pa
k and 
ompare. The probability that

there is no mat
h is therefore almost exa
tly 0.367.
6. It is perhaps easier to 
ount the 2× 2, 3× 3, et
. squares by 
ounting the

number of their 
entres. This yields, not surprisingly perhaps, a sum of squares

as there are 82 unit squares, 72 squares of the 2× 2 variety and so on to a single
8× 8 square.

82 + 72 + · · ·+ 12 = 204.
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7. A re
tangle on the 
hessboard is determined by a 
hoi
e of 2 horizontal

lines (from 9) and 2 verti
al lines.

∴ #re
tangles=
(

9
2

)(

9
2

)

.

Hen
e, by using the answer to Question 6 that 
ounted the number of squares

on a 
hessboard to be 204, we �nd that

#oblongs= #re
tangles-#squares=

(

9!
7!2!

)2

−#squares= 362 − 204 = 1092.

8.

ˆ 1

0

f(x) dx = [
kx3

3
− kx4

4
]10 =

k

12
= 1.

Hen
e k = 12.
Comment This is the unique value of k that makes f(x) into a probability

density fun
tion.

9. Ea
h player, ex
ept the eventual 
hampion, loses pre
isely one mat
h and

ea
h mat
h has pre
isely one loser. Hen
e there is a one-to-one 
orresponden
e

between the set of mat
hes and the set of losing players. Therefore there are

n− 1 mat
hes in the entire tournament.

10. There are

(

n
2

)

possible pairings, of whi
h n − 1 will get to play (by

Question 9). Hen
e the required probability is:

n− 1
(

n
2

) =
n− 1

1
2n(n− 1)

=
2

n
.

Problem Set 2

1. This is the sequen
e of the total number of points possible in a game of

tennis: after 6 points we have `deu
e' and the number of remaining points is

always a multiple of 2.
2. The probability of a `draw' is

1
6 . Hen
e, by symmetry, the probability

that the green die wins is

1
2 (1− 1

6 ) =
1
2 · 5

6 = 5
12 .

3. Pr(failure by six-di
e man)=Pr(no a
es)=
(

5
6

)

≈ 0 · 335 so his su

ess

probability is ≈ 1 − 0 · 335 = 0 · 665. On the other hand, Pr(failure by 12-di
e

man) is the sum of the probability of no a
es, whi
h is

(

5
6

)

plus Pr(exa
tly one

a
e), whi
h is

(

12
1

)

× 1
6 ×

(

5
6

)

(the number of a
es is a binomial random variable

with su

ess probability of

1
6 ). This gives a su

ess probability of:

1−
(5

6

)

− 12× 1

6
×
(5

6

)

≈ 0.619.
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Therefore it is the player with the six di
e who has a slight advantage.

Comment The probability of the six-di
e man su

eeding while the 12-di
e

man fails is 0 · 665 × (1 − 0 · 619) = 0 · 665 × 0 · 381 = 0.253; the probability
of the 12-di
e man getting an a
e while the six-di
e man does not is similarly

0 · 619 × 0 · 335 = 0 · 207. If they play n times therefore the expe
ted number

of more times that six-di
e man wins is (0 · 253− 0 · 207)n = 0 · 046n. In other

words he has a gambling advantage of about 4.6% over his opponent.

4. Pr(no diamond) = 39
52 · 38

51 . Hen
e Pr(at least one diamond)= 1− 3
4 · 38

51 =
1− 19

34 = 15
34 .

5. Let r denote the radius of the 
oin. The 
entre of the 
oin C settles in

some square and may equally lie any pla
e within that square. The 
oin 
overs

a 
orner if and only if C lies within a 
ir
le of radius r 
entred at some 
orner of
the square. This area 
onsists of four quarter 
ir
les, one at ea
h 
orner. Hen
e

the required probability is equal to:

Area of a 
ir
le of radius r

Area of a square of side 2r
=

πr2

(2r)2
=

π

4
≈ 0.79 (to 2 de
imal pla
es).

6. There are two approa
hes, the �rst using geometri
 series: Pr(Player 1

`wins' on (n+ 1)st turn) is
(

5
6 · 5

6

)n

· 1
6 . This gives:

Pr(Player 1 `wins')=

1
6

∑∞
n=0

(

25
36

)n

= 1
6 · 1

1− 25

36

= 1
6 · 36

11 = 6
11 .

The se
ond approa
h exploits the near symmetry inherent in the problem to

glean the solution with little 
al
ulation. Let the players be A and B with a
and b denoting their respe
tive probabilities of winning. Now a+ b = 1. If the
�rst shot in the 
ontest is fatal (probability 1/6), B 
an no longer win. If A
survives the �rst shot however (probability 5/6), the tables are turned and, in

e�e
t, A and B have now swapped pla
es with B having the `advantage'. In

other words, in the event that the �rst shot is a blank, the probability that B
will yet go on to win is a. This gives an equation relating a and b: b = 5

6a.
Coupling this with the fa
t that b = 1− a we obtain:

1− a =
5

6
a ⇒ 1 =

11

6
a ⇒ a =

6

11
.

7. The 
oe�
ient of (2x)5(−y2)4 is
(

9
5

)

, yielding as the 
oe�
ient of x5y8:

9!

5!4!
· 25 · (−1)4 =

9× 8× 7× 6

4× 3× 2
· 25 = 9× 7× 26 = 63× 64 = 4032.

8.

k

(

n

k

)

=
k · n!

(n− k)!k!
= n

(n− 1)!

(n− k)!(k − 1)!
= n

(

n− 1

k − 1

)

It follows that

n
∑

k=0

k

(

n

k

)

= n

n
∑

k=0

(

n− 1

k − 1

)

= n

n−1
∑

k=0

(

n− 1

k

)

= n2n−1.
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Comment These manipulations are valid under the 
onvention that

(

n
k

)

= 0
for all values of k < 0. In parti
ular the re-indexing of the sum 
an take a

lower limit of k = 0 rather than k = −1, whi
h results from a formal 
hange of

variable from k to k − 1.
9. The probability of a s
ore of 5, 4, 3, 2, 1 and 0 by the player is respe
tively

2
36,

4
36 ,

6
36 ,

8
36 ,

10
36 ,

6
36 . The expe
ted win of the Bank in pounds is given by:

2− 1

36
(2× 5 + 4× 4 + 6× 3 + 8× 2 + 10× 1 + 6× 0) =

= 2− 1

36
(10 + 16 + 18 + 16 + 10 + 0) = 2− 70

36
=

2

36
=

1

18
.

And so the Bank does indeed has a net expe
ted gain of ¿0.055 per roll.

10. Under this playing regime, the (6, 6) roll is e�e
tively dis
ounted. The


al
ulation is then identi
al to before ex
ept the divisor of 36 is repla
ed by

35 (and the multiplier 6 of 0 is repla
ed by 5, whi
h has no e�e
t). Hen
e the

expe
ted gain of the Bank is now 2− 70
35 = 0 and the game is fair.

Problem Set 3

1. Pr(doubles or 8)=Pr(doubles)+Pr(8) - Pr(doubles & 8))

=
6

36
+

5

36
− 1

36
=

5

18
.

2.

(

3

2

)

5

6
· 1
6
=

5

12
.

3.

2 ·
(

(

5

4

)

+

(

5

5

)

)(1

2

)5
=

12

32
=

3

8
.

4. One example 11100010.
Comment Su
h strings, known as de Bruijn strings, exist for any power of

2 and have a variety of appli
ations and interesting properties.

5. The 
ommon sum must be

1
3 · 1

2 · 12 · 13 = 26. Both lines start from

between 10 and 11 with the top line passing between 2 and 3 while the bottom

line passes between 8 and 9 giving the partition: {11, 12, 1, 2}, {5, 6, 7, 8} and

{3, 4, 9, 10}.
6. There are 9 letters but 4 are E and 2 are V so the total number of

distinguishable permutations is:

9!

4!2!
=

9 · 8 · 7 · 6 · 5
2

= 7, 560.
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7. We 
an 
hoose the `�rst' team in

(

12
6

)

ways, but sin
e the order of the 2
teams is immaterial, we have to divide this number by 2!, whi
h gives:

12!

2!6!6!
=

12 · 11 · 10 · 9 · 8 · 7
2 · 6 · 5 · 4 · 3 · 2 = 11 · 3 · 2 · 7 = 11× 42 = 462.

8. Ignoring the Higgins's for the moment, the number of admissable 
om-

mittees is

(

6

2

)(

4

2

)

+

(

6

3

)(

4

1

)

+

(

6

4

)(

4

0

)

= (15)(6) + (20)(4) + (15)(1) = 185.

From this we subtra
t the number of 
ommittees that have both Higgins's on

them, whi
h numbers

(

5

1

)(

3

1

)

+

(

5

2

)(

3

0

)

= (5)(3) + (10)(1) = 25,

∴ the number of allowable 
ommittees is 185− 25 = 160.

9.

(

8

2

)

=
8 · 7
2

= 28.

10. There are four equally probably possibilities for the �rst two tosses,

whi
h are HH,HT , TH , and TT . In the �rst three 
ases, HTT must appear

before TTH is possible, while in the �nal 
ase TTH must appear �rst. Hen
e the

probability of the respe
tive probabillities of the player and the bank winning

are

1
4and

3
4 and so the expe
ted loss of the player is

3

4
(10)− 1

4
(20) =

10

4
=

5

2
;

therefore the average `winnings' of the player per game is −¿2 · 50.

Problem Set 4

1. (5 + 5)! = 10! = 3, 628, 800.
2. Ea
h linear arrangement gives 10 equivalent 
y
li
 arrangements, so the

answer is

10!
10 = 9! = 36, 280.

3. Arrange the girls and boys alternating in a row: this 
an be done in

2× (5!)2 = 2× 1202 = 28, 800 ways. (The fa
tor of 2 
ounts whether we begin

with a boy or a girl.) Divide by 10 to get the number of 
y
li
 arrangements:

28,800
10 = 2, 880.
4. The number of linear arrangements is

(

10

5

)

=
10!

5!5!
=

10× 9× 8× 7× 6

5× 4× 3× 2
= 252.
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5. The probability of n− 1 tails followed by a head is 
learly

1
2n .

6. The mean of the random variable X of Question 5 is:

∞
∑

n=1

n

2n
= 2.

Comment: For |x| < 1
∑∞

n=0 x
n = (1−x)−1 ⇒ ∑∞

n=0 nx
n−1 = (1−x)−2 ⇒

∑∞
n=1 nx

n = x
(1−x)2 . Putting x = 1

2 gives the previous sum. Sin
e we shall soon

be needing it, let us also di�erentiate again:

∞
∑

n=1

n(n− 1)xn−2 = 2(1− x)−3

⇒
∞
∑

n=0

n(n− 1)xn =
2x2

(1 − x)3
|x| < 1. (1)

7. The event En we seek is that exa
tly one of the �rst n − 1 tosses is a

head, as is the nth toss. Hen
e

P (En) = pn =

(

n− 1

1

)

1

2n
=

n− 1

2n
.

8. We want the expe
tation E(X) where P (X = pn) so we require:

∞
∑

n=0

n(n− 1)

2n
=

2 · (12 )2
1
23

= 4.

where we have invoked (1) with x = 1
2 .

9. There is a one-to-one 
orresponden
e between solutions to the equation

and the number of arrangements of 12 
rosses and 3 slashes (the four lists of


rosses so 
reated 
orresponds to the values gives to ea
h of the xi in turn).

Hen
e the answer is

(

12 + 3

3

)

=

(

15

3

)

=
15 · 14 · 13

6
= 5 · 7 · 13 = 455.

10. Put xi = yi + 1 so that xi ≥ 0 ⇔ yi ≥ 1. Substituting a

ordingly we

get:

(y1 + 1) + (y2 + 1) + (y3 + 1) + (y4 + 1) = 12

⇒ y1 + y2 + y3 + y4 = 8;

by the argument of the previous question the number of distin
t solutions is

(

8 + 3

3

)

=

(

11

3

)

=
11 · 10 · 9

6
= 11 · 5 · 3 = 165.

Comment : in 
on
lusion 
on
erning Questions 9 and 10, there are 455 solu-
tions to the equation in non-negative integers, 165 of whi
h 
ontain no zeros.
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Problem Set 5

1. By de�nition of 
onditional probability we have the two expressions

P (A|B) = P (A∩B)
P (B) and by the same token P (B|A) = P (A∩B)

P (A) . Cross multi-

plying gives two expression for P (A ∩B):

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A)

⇒ P (A|B) =
P (B|A)P (A)

P (B)
.

2. Of the 6×6 = 36 equally likely out
omes of a two-di
e roll, 6+6−1 = 11
of them satisfy the 
ondition `at least one die shows 6'. Of these, those that sum
to 9 or more 
an be listed as (3, 6), (4, 6), (5, 6), (6, 6), (6, 5), (6, 4), (6, 3), whi
h
number 7 in all, giving the required probabilty as

7
11 . Alternatively, let A be the

event that 'the sum of the fa
es ex
eeds 8' and B be the event 'at least one 6 is
rolled'. Then P (A∩B) = 7

36 while P (B) = 11
36 , yielding P (A|B) = 7

36 · 36
11 = 7

11 .

3. Let p be the unknown proportion. The given information translates to

the equation:

(0 · 5)(0 · 6) + p(1− 0 · 6) = 0 · 4

⇒ p =
0 · 4− 0 · 3

0 · 4 =
0 · 1
0 · 4 = 0 · 25.

4. Let A be the event 'Voter supports our party' and let B stand for 'Voter

owns a Bike'. We then have

P (B) = P (B∩A)+P (B∩A′) = (0 ·5)(0 ·6)+(0 ·25)(1−0 ·6) = 0 ·3+0 ·1 = 0 ·4.

Hen
e we obtain the required probability as

P (A|B) =
P (B|A)P (A)

P (B)
=

(0 · 5)(0 · 6)
0 · 4 =

0 · 3
0 · 4 = 0 · 75,

and so her 
han
es of �nding a supporter in
reases from 60% to 75% if she


on
entrates our houses where she spots that the owner has a 
y
le.

5. Let W and M be the events, W = `voter is a woman' and M = `voter

is a man', with P (W ) = P (M) = 1
2 . Let E be the event `person sele
ted voted

ECP'. Then we are given P (E|M) = 0 · 35 and P (E|W ) = 0 · 45. Also sin
e

every voter is either a man or a woman but not both we have:

P (E) = P (E∩W )P (W )+P (E∩M)P (M) = (0 ·45)(0 ·5)+(0 ·35)(0 ·5) = 0 ·4.

Finally we want P (W |E) and so by Bayes's Rule we obtain:

P (W |E) =
P (E|W )P (W )

P (E)
=

(0 · 45)(0 · 5)
0 · 4 = 0 · 5625.
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Hen
e the per
entage probability that the voter is a woman given that they

voted ECP is 56.25%.

6. Let R and B denote the respe
tive events, R =`It is raining', B =
`barometer indi
ates rain'. We require P (R|B). We are given P (B|R) = 0 · 7
and P (B| ∼ R) = 0 · 1 and P (R) = 1

3 . Now

P (B) = P (B ∩R) + P (B ∩ (∼ R)) = P (B|R)P (R) + P (B|(∼ R))P ((∼ R)) =

( 7

10
× 1

3

)

+
( 1

10
× 2

3

)

=
7

30
+

2

30
=

9

30
=

3

10
.

7. By Bayes and using Question 6:

P (R|B) =
P (B|R)P (R)

P (B)
=

7
10 × 1

3
3
10

=
7

30
× 10

3
=

7

9
.

8. Let Xj ≡ `sele
tion from urn j' (j = 1, 2, 3) and let A ≡ `white ball and

red ball 
hosen from urn'. We require P (X2|A). We have P (Xj) =
1
3 . Also

P (A|X1) =
1

6
· 3
5
=

1

10
, P (A|X2) =

3

5
· 1
4
=

3

20
, P (A|X3) =

3

9
· 3
8
=

1

8
.

Hen
e

P (A) =
1

10
· 1
3
+

3

20
· 1
3
+

1

8
· 1
3
=

1

3

( 1

10
+

3

20
+

1

8

)

=
1

8
.

Therefore by Bayes's Rule:

P (X2|A) =
P (A|X2)P (X2)

P (A)
=

3
20 · 1

3
1
8

=
8

20
=

2

5
.

9. Let + denote the event that a person tests positive and let D denote

the event that the person has the disease. We are given that P (+|D) = 1,
P (+|¬D) = 0 · 05. Now

P (+) = P (+&D) + P (+& (¬D)) = P (D)P (+|D) + P (¬D)P (+|¬D) =

= 0 · 001× 1 + 0 · 999× 0 · 05 = 0 · 05095.
Hen
e

P (D|+) =
P (+|D)P (D)

P (+)
=

1× 0 · 001
0 · 05095 =

1

50 · 95 = 0 · 0196 ≈ 2%.

Comment Questions like this are sometimes given to people, in
luding med-

i
al professionals, and invariably those questioned ti
k the box with a mu
h

higher probability. A 
ommon response is 95% as `the test is 95% a

urate'.

Probability is a pe
uliar in that, unlike other bran
hes of mathemati
s, raw

intuition often leads to estimates that are wildly wrong but at the same time

those making the bad guesses are 
onvin
ed the problem is simple and that their

answer is obviously right.
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10. Let F and S be the respe
tive events that the �rst and the se
ond marble


hosen were red. Then

P (F |S) = P (F&S)

P (S)
=

P (F ) · P (S|F )

P (S)
=

2
5 · 1

4
2
5

=
1

4
.

Comment: We 
ould argue that P (F |S) = P (S|F ) (as P (F ) = P (S)) and the

latter is 
learly

1
4 .

Problem Set 6

Let a and b be the respe
tive probabilities that P is absorbed at x = −1 and
x = 2. Sin
e absorption is inevitable (as the probability of endless os
illation

between x = 0 and x = 1 is 0) we have a+ b = 1. Either P initially moves left

from the origin, we write this as P → −1, (probability 1
2 ) and so P is absorbed

at x = −1, or P → 1 (probability

1
2 ). By symmetry, the probability of P being

absorbed at x = 2 given P → 1 is equal to a. Hen
e

b = Pr(P → 1)Pr(P is absorbed at x = 2|P → 1) =
1

2
a;

substituting a = 2b in our original probability equation now gives

2b+ b = 3b = 1 and so b =
1

3
.

In 
on
lusion, the 
han
es that the parti
le will eventually be absorbed at the

right hand barrier is 1/3.
2. The given information implies that

6

n
· 5

n− 1
=

1

3
⇒ n(n− 1) = 3 · 30

⇒ n2 − n− 90 = 0 ⇒ (n− 10)(n+ 9) = 0

and taking the positive solution gives n = 10, so that is the number of sweets

in Charlotte's bag.

3. Let us look at the general situation where we begin with 2n teams and

their names are drawn from a hat, one after another, to produ
e n pairs. The

number of di�erent permutations that may be formed of the 2n names as we

draw them out is (2n)!. Ea
h parti
ular drawing of the teams into pairs arises

from n!2n of these permutations: the n! term 
ounts the number of arrangements

of the n pairs and for ea
h of the n pairs there is a fa
tor of 2 
orresponding to
the order of draw within the pair. Hen
e the number of ways of splitting a set

of size 2n into pairs is

pn =
(2n)!

2nn!
.
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By multiplying ea
h term in the n! produ
t be one of the instan
es of 2 in the

2n term we see that the denominator 
an be written as

(2n)(2n− 2)(2n− 4) · · · 2,

the produ
t of the �rst n even numbers. Can
elling these terms into the numer-

ator (2n)! tells us that pn, the number of ways of splitting 2n obje
ts into pairs

is the produ
t of the �rst n odd numbers:

pn = (2n− 1)(2n− 3) · · · 3.

In this problem, n = 8. The total number of ways the 16 teams may be drawn

into pairs is p8. We are interested in the number of these pairings where 4
named teams are drawn together. There are is p2 = 3 ways these 4 
an be

drawn against one another - on
e you pi
k one of the three possible opponents

for any spe
i�
 team, the draw is �xed for all four of them, while the other 12
teams 
an be drawn against one another in p6 ways. The total number of ways
therefore of splitting the 8 pairs up in this fashion is p2p6. Hen
e the required
probability, p, is given by the ratio

p =
p2p6
p8

=
4!

222!
· 12!

266!
· 2

88!

16!
=

4× 3

1
· 8× 7

16× 15× 14× 13
=

1

65
.

4. The total number of possibilities in the 2n tosses is 22n. On the other

hand the number of ways in whi
h ea
h of the two people toss and equal number,

k, of heads is
∑n

k=0

(

n
k

)2
=

(

2n
n

)

. Hen
e, the required probability is:

(

2n
n

)

22n
=

(2n)!

(2nn!)2
=

(2n− 1)(2n− 3) · · · 1
2n(2n− 2)(2n− 4) · · · 2 .

Comment Using the so-
alled Wallis Formula for π it 
an be shown that this

probability ratio approa
hes

1√
πn

for large n.

5. This pretty problem has arisen in di�erent guises before but this version

featured on the website of the Ameri
an Mathemati
al So
iety in 2015 and

triggered a viral surge on the internet. The question does not demand that the

two groups are equal but we 
an supply su
h a solution.

First, split the 
oins into two equal groups, the left and the right say, of n

oins ea
h. The left hand group will have some unknown number, k of heads

(and n − k tails), for some number k in the range 0 ≤ k ≤ n. Sin
e we know

there are n heads overall, it follows that the right hand group of 
oins must have

the remaining n− k heads (and k tails).

If we now �ip over all the 
oins in the right hand group, that group will have

k heads (and n− k tails). Therefore both groups now have an equal number, k
of heads and also an equal number, n− k of tails.

Of 
ourse, we do not know the value of k, although it is not a di�
ult exer
ise
to �nd the probability for ea
h value of k in the experiment.

6. Let the probablilty of no tremor in the next half hour be p. Then the

probability of no tremor in the next hour is p2 = 1 − 0 · 4 = 0 · 36. Hen
e

11



p = 0 · 6 and therefore the probability of at least one tremor in the next half

hour is 1− p = 1− 0 · 6 = 0 · 4.
Comment I have read that Google have used a version of this problem as an

interview question for prospe
tive employees - it is short but quite tri
ky!

7. The probability that any parti
ular set is 
hosen by A is

1
2n . The prob-

ablity that A, (we use the same symbol for both set and player), has exa
tly

k members is therefore

(nk)
2n . The probability that B ⊆ A is then

2k

2n = 2k−n
.

Hen
e, the overall probability that B ⊆ A is

n
∑

k=0

(

n

k

)

2−n · 2k−n = 4−n
n
∑

k=0

(

n

k

)

2k.

Now (1 + x)n =
∑n

k=0

(

n
k

)

xk
so upon putting x = 2 we get the previous proba-

blility is equal to:

4−n(1 + 2)n =
(3

4

)n
.

8 & 9. We introdu
e a fresh argument that allows us to answer Questions

7,8 and 9 together. Let the underlying set S = {1, 2, · · · , n}. Let both A and

B 
hoose their random sets by tossing a 
oin n times with i in
luded in their

set if the ith toss is a head, denoted by 1 and i is ex
luded in the event of a

tail, denoted by 0. This produ
es n independent experiements, the out
ome

of whi
h 
an be 
oded as a binary pair, ab of four possible types, with a = 0
or 1 a

ording as A tosses head or tail, and similarly for the se
ond digit as

regards B. Then we will get B ⊆ A if and only if the forbidden out
ome of 01
is avoided on all o

asions. The probability of avoidan
e of the forbbidden pair

is evidently

3
4 so the probability that B ⊆ A is

(

3
4

)n
.

The answers to Questions 8 and 9 are the same as Question 7: in Question

8 the forbidden pair is 11 and for Question 9 it is 00.
Alternatively we note that the logi
al equivalen
e of the three events A ⊆ (∼

B), A ∩B = ∅ and (∼ A) ∪ (∼ B) = S. Sin
e P (A ⊆ B) = P (A ⊆ (∼ B))) we
see that Questions 7 and 8 have the same answer. Similarly sin
e P ((∼ A)∪ (∼
B)) = S) = P ((A ∪B) = S) we obtain the equality of the answers to Question

8 and 9.

10. We extend the previous approa
h to that of k subsets A1, · · · , Ak, whi
h

are determined by 
oin toss so that the out
ome at ea
h stage of the 
onstru
tion

is a binary k-tuple. The admissable k-tuples at ea
h stage are then exa
tly those
with no more that one instan
e of 1, whi
h number 1+ k. The 1 
orresponds to
the k-tuple of zeros while there are k 
hoi
es of k-tuples that feature exa
tly one
instan
e of 1. Hen
e the probability that the k-tuple 
hosen at any parti
ular

stage is admissable is

1+k
2k and therefore the probability that the k-sets 
hosen

at random are pairwise disjoint is

(

1+k
2k

)n

12



Problem Set 7

1. The underlying random variable X here is distributed Bin(8, 0 ·6), a bino-
mial distribution with n = 8 and su

ess probability p = 0·6 and 
omplementary
probability q = 1− 0 · 6 = 0 · 4. Hen
e

P (X > 5) = P (X = 6) + P (X = 7) + P (X = 8)

=

(

8

6

)

(0 · 6)6(0 · 4)2 +
(

8

7

)

(0 · 6)7(0 · 4)1 +
(

8

8

)

(0 · 6)8(0 · 4)0

= 28(0 · 046656)(0 · 16) + 8(0 · 0279936)(0 · 4) + 1(0 · 0167961)(1)
= 0 · 315 to 3d.p.

2. Here X ∼Bin(n, 14 ) so that q = 1−p = 3
4 , where X is the random variable

denoting the number of red �owers 
hosen. Here n is unknown. However we

know that P (X = 0) < 1 − 0 · 95 = 0 · 05. Hen
e we require the least n su
h

that

(

n

0

)

(0 · 25)0(0 · 75)n < 0 · 05

⇒ n log10(0 · 75) < log10(0 · 05)
⇒ n(−0 · 125) < −1 · 301

⇒ n >
1 · 301
0 · 125 (dire
tion of inequality �ips!)

so that n > 10 · 4 and sin
e n is the least integer satisfying this inequality we


on
lude that n = 11.
3 (a) Here we are dealing with X ∼Bin(3, 0 · 7) as there are n = 3 identi
al

Bernoulli trials with su

ess probability p = 7
10 . We want

P (X = 3) = p3 = (0 · 7)3 = 0 · 343.

(b) This is an example of a hypergeometri
 distribution with parameters

N = 10 and n = 7 but we 
an �nd the probability of the give event without

referen
e to this general des
ription, for it is:

(

7
3

)

(

10
3

) =
7!

4!3!
· 7!3!
10!

=
7 · 6 · 5
10 · 9 · 8 =

7

24
= 0 · 292.

4. We want P (X ≤ 2). In general, P (X = x) = e−λλx

x! and so we here need:

= e−λ(1 +
λ

1!
+

λ2

2!
) = e−4(1 + 4 + 8) =

13

e4
= 0 · 238 (3 d.p.).

5. Su
h pro
esses follow a Poisson distribution with the mean number λ of

misprints per page equal to

750
500 = 3

2 . The mean number per two pages (whether

13



or not they are 
onse
utive) is 2 · 3
2 = 3. Hen
e we require p = P (X = 0) where

X ∼ Po(3), so that

p = e−λλ
0

0!
= e−λ = e−3 = 0 · 0497 (3 s.f.).

6. The probability will the be the following ratio, the numerator of whi
h is

the number of ways of 
hoosing exa
tly k blue marbles and m−k red ones from

the bag while the denominator is the total number of groups of marbles of size

m that 
an be 
hosen:

(

n
k

)(

N−n
m−k

)

(

N
m

) .

7. Sin
e there are N balls, the number of subsets of m balls that 
an be

drawn from the bag is

(

N
m

)

. This is also equal to the sum, as k ranges from 0 to
m of the number of ways of 
hoosing k blue balls and m− k red balls. Hen
e

(

N

m

)

=

m
∑

k=0

(

n

k

)(

N − n

m− k

)

(2)

⇒
m
∑

k=0

(

n
k

)(

N−n
m−k

)

(

N
m

) = 1.

Comment The identity (2) is often known as Vandermonde's identity (1772)

but this fa
t was known to the Chinese mathemati
ian Zhu Shijie (1303).

8. Here we have a Binomial distribution with n = 12 and p = 0·8. Now ⌊(n+
1|)p⌋ = ⌊10 · 4⌋ = 10, whi
h is then the mode (out
ome of highest probability)

for this distribution. (The probability that X = 10 
an be 
al
ulated as 0·2384.)
9. We put λ = np = 500× 0 · 002 = 1 and approximate the distribution to

that of X ∼Po(1). We want

P (X = 2) = e−1 1
2

2!
=

1

2e
= 0 · 184 3 d.p.

Comment This agrees, to 3 d.p. with the exa
t answer given through the

binomial distribution.

10. Here we have a binomial distribution with n = 90 and p = 1
36 . We

approximate this by X ∼Po(λ) where λ = np = 90
36 = 2 · 5. Then

P (X ≥ 2) = 1− P (X = 0)− P (X = 1)

= 1− e−2·5(1 + 2 · 5) = 1− 3 · 5
e2·5

= 0 · 713 3 d.p.

The probability that at least two double sixes are observed in 90 tosses of the

di
e is 0 · 713.
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Problem Set 8

1. Let Y be the number of events in t time units. Then Y ∼ Po(λt) and
P (Y = 0) = e−λt

. Hen
e P (waiting time till �rst event < t) = 1− P (Y = 0) = 1− e−λt
,

whi
h is to say

F (t) = 1− e−λt ⇒ f(t) = F ′(t) = λe−λt (t ≥ 0).

2. Here λ = 3 so that f(t) = 3e−3t (t ≥ 0). Hen
e

P (T > 1) =

ˆ ∞

1

3e−3t dt = [−e−3t]∞t=1 = 0− (−e−3) = e−3 = 0 · 050 3 d.p.

3.

E(Z) = E(
X − µ

σ
) =

ˆ ∞

−∞

x− µ

σ
f(x) dx

=
1

σ

(

ˆ ∞

−∞
xf(x) dx − µ

σ

ˆ ∞

−∞
f(x) dx =

µ

σ
− µ

σ
= 0.

Hen
e E(Z) = 0. It follows that the varian
e V ar(Z) is given by

E(Z2) =

ˆ ∞

−∞

(X − µ

σ

)2
f(x) dx =

1

σ2

ˆ ∞

−∞
(X − µ)2f(x) dx

=
1

σ2
· σ2 = 1.

4. We have X = µ+ σZ so that

P (X ≤ x) = P (µ+ σZ ≤ x) = P (Z ≤ x− µ

σ
) = F (

x − µ

σ
).

Hen
e the pdf g(x)of X is given by

g(x) = (F (
x− µ

σ
))′ =

1

σ
f(

x− µ

σ
).

5. In the 
ase where Z = N(0, 1) we have the pdf g(x) of X = µ + σZ is

given by

1

σ

1√
2π

e−
1

2

(

x−µ
2

)

2

=
1√
2πσ2

e−
1

2
·
(

x−µ
σ

)

2

.

6. Sin
e f(x) is an even fun
tion, the graph of f(x) is symmetri
 with respe
t
to the y-axis (it is the standard bell 
urve). It follows that P (X ≥ x) = P (X ≤
x) and so

Φ(−x) = P (X ≥ x) = 1− P (X ≤ x) = 1− Φ(x), (−∞ < x < ∞).

Or equivalently

Φ(x) + Φ(−x) = 1 ∀x.
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7.

P (|X − 50| <
√
8) = P (−

√
8 < X − 50 <

√
8)

P (−1 <
X − 50√

8
< 1) = P (−1 < Z < 1)

= Φ(1)− Φ(−1) = Φ(1)− (1− Φ(1))

= 2Φ(1)− 1 = 2(0 · 8413)− 1 = 0 · 6826.
Therefore P (|x− 50| <

√

8) = 0 · 6826.
8. We mat
h the mean and varian
e of the two distributions. Here µ = np =

400× 0 · 35 = 140 and σ = npq = 140× 0 · 65 = 91. Hen
e our approximating
normal distrtibution is X ∼ N(140, 91). Then

P (120 ≤ X ≤ 150) → P (119.5 ≤ X ≤ 150.5) (
ontinuity 
orre
tion)

= P (
119 · 5− 140√

91
≤ X − 140√

91
≤ 150 · 5− 140√

91
)

= P (−2·149 ≤ Z ≤ 1·101) = Φ(1·101)−Φ(−2·149) = Φ(1·101)−(1−Φ(2·149))

Φ(1 · 101) + Φ(2 · 149)− 1 = 0 · 8465 + 0 · 9842− 1 = 0 · 8307.
The probability that between 120 and 150 brown-eyed people in the sample is

0 · 8307.
Comment The rule of thumb is that the normal with mat
hing mean and

varian
e is a good approximation to the binomial for large n and when p is 
lose
to

1
2 , the latter guaranteeing that the shape of the distribution is not too skewed

to one end but is more like the normal bell-shape.

9. We approximate the underlying Poisson distribution with mean (and

varian
e) λ = 25 by a normal random variable X with the same mean and

varian
e, X ∼ N(25, 25). Again, using a 
ontinuity 
orre
tion in order to redu
e
rounding error we 
a
luate

P (22 · 5 ≤ X ≤ 27 · 5) = P (
22 · 5− 25

5
≤ X − 25

5
≤ 27 · 5− 25

5
)

= P (−0 · 5 ≤ Z ≤ 0 · 5) = 2Φ(0 · 5)− 1 = 2(0 · 6915)− 1 = 0 · 383.
Therefore the probability that between 23 and 27 parti
les are dete
ted in any

give se
ond is 0 · 383.
Comment The heuristi
 for this approximation to be sound is that λ > 20.
10. We are given X ∼ N(µ, (1 · 3)2). The 95% 
on�den
e interval for µ is

x±1 ·96 σ√
n
so the width of the interval is 2×1 ·96 σ√

n
. In this 
ase we therefore

need the least positive integer n su
h that

2× 1 · 96× 1 · 3√
n

< 2 ⇒ √
n > 1 · 96× 1 · 3 = 2 · 548

⇒ n > 6 · 49,
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so that n = 7 tests are needed.

Problem Set 9

1. We have E((X − a)2) = E(X2) − 2aµ + a2. Sin
e E(X2) is a 
onstant,

we seek the value of a that minimizes a2 − 2aµ = a(a− 2µ). This is a parabola
in a with roots 0 and 2µ and so the minimum o

urs at a = µ.

2.

E(X) =

n
∑

k=1

k

(

n

k

)

pkqn−k =

n
∑

k=1

n!

(k − 1)!(n− k)!
pkqn−k =

np

n
∑

k=1

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!
pk−1q(n−1)−(k−1) =

= np

n−1
∑

k=0

(

n− 1

k − 1

)

pkq(n−1)−k = np(p+ q)n−1 = np.

3.

E(X(X − 1)) =

n
∑

k=2

k(k − 1)

(

n

k

)

pkqn−k =

n
∑

k=2

n!

(k − 2)!(n− k)!
pkqn−k

= n(n− 1)p2
n
∑

k=2

(n− 2)!

(k − 2)!((n− k)!
pk−2q(n−2)−(k−2) =

n(n− 1)p2
n−2
∑

k=0

(n− 2)!

k!((n− 2)− k)!
pkq(n−2)−k = n(n− 1)p2(p+ q)n−2 = n(n− 1)p2.

4. Now in general

V ar(X) = E(X2)− E
2(X) = E(X(X − 1)) + E(X)− E

2(X).

In this 
ase we get from the results of the two previous questions:

V ar(X) = n(n− 1)p2 + np− n2p2 = np− np2 = np(1− p) = npq.

Hen
e σ(X) =
√
npq.

5.

E(X) =

∞
∑

k=1

k
λke−λ

k!
= λe−λ

∞
∑

k=1

λk−1

(k − 1)!
=

λe−λ
∞
∑

k=0

λk

k!
= λe−λeλ = λ.
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6.

E(X(X − 1)) =
∞
∑

k=2

k(k − 1)
λke−λ

k!
= λ2e−λ

∞
∑

k=1

λk−2

(k − 2)!
=

= λ2e−λeλ = λ2.

7. Again V ar(X) = E(X(X − 1)) + E(X) − E(X) = λ2 + λ − λ2 = λ;
σ(X) =

√
λ.

8.

´∞
0

λe−λxdx = λ
[

− 1
λe

−λx
]∞
0

= −
[

0 − 1
]

= 1 and sin
e f(x) ≥ 0 ∀x, it
follows that f(x) is a pdf. Next

F (x) =

ˆ x

0

f(t) dt = −
[

e−λt
]t=x

0
= −

[

e−λx − 1
]

= 1− e−λx (x ≥ 0).

Comment We use the symbol t in the integral so that the symbol x does not

simultaneously stand for a �xed value and also for the variable of integration.

Sin
e the value of the integral is independent of the symbol used as the variable

of integration, the variable t is sometimes referred to as a dummy variable,

meaning that it has no parti
ular meaning in itself, and so 
ould be any symbol

that is not used elsewhere in the 
al
ulation.

9. First 
onsider the integral I =
´

xe−
1

2
x2

dx. Put u = − 1
2x

2 ⇒ du =

−x dx. Hen
e I = −
´

eudu = −e−
1

2
x2

+ c. Hen
e

E(X) =
1√
2π

ˆ ∞

−∞
xe−

1

2
x2

dx = − 1√
2π

[

e−
1

2
x2]∞

−∞ = − 1√
2π

[

0− 0
]

= 0.

Comment That the mean is 0 also follows from the fa
t that the pdf is an

even fun
tion so the integrand of E(X) is odd. A similar 
omment applies to

the latter 
al
ulation in the following question.

10. The varian
e of X is E(X − µ)2 = E(X2). Consider the integral I =
´

x2e−
1

2
x2

dx. Integrate by parts, putting u = x, dv = xe−
1

2
x2

dx so that du = dx

and v = −e−
1

2
x2

. Then

I = xe−
1

2
x2

+

ˆ

e−
1

2
x2

dx.

Hen
e

E(X2) =
1√
2π

ˆ ∞

−∞
xe−

1

2
x2

dx+
1√
2π

ˆ ∞

−∞
e−

1

2
x2

dx.

Now the se
ond integral in the previous line is equal to 1 as it is that of a pdf,

while for the �rst we get

− 1√
2π

[

e−
1

2
x2]∞

∞ = − 1√
2π

[

0− 0
]

= 0.

It follows that σ2(X) = σ(X) = E(X2) = 1.
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Problem Set 10

1. Our distribution is P (X = k) =
(

n
k

)

pkqn−k (q = 1−p, 0 ≤ k ≤ n). Hen
e

E(etX) =

n
∑

k=0

etk
(

n

k

)

pkqn−k =

n
∑

k=0

(

n

k

)

(pet)kqn−k = (pet + q)n;

∴ M(t) = (p(et − 1) + 1)n.

2. Continuing with the solution to Q1 we obtain:

E
′(etX) = npet(pet+q)n−1 ⇒ E

′′(etX) = np(pet+q)n−1+n(n−1)p2e2t(pet+q)n−2.

Hen
e

E(X) = M ′(0) = npe0(pe0 + q)n−1 = np.

E(X2) = M (2)(0) = np(pe0+q)n−1+n(n−1)p2(pe0+q)n−2 = np+n(n−1)p2Hen
e

σ2 = E(X2)− E
2(X) = np+ n(n− 1)p2 − n2p2 = np− np2 = np(1− p) = npq.

3.

E(etX) =

ˆ b

a

etx

b− a
dx =

1

t(b− a)
[etX ]ba =

1

t(b − a)

(

etb − eta
)

, t 6= 0;E(e0) = 1.

4.

M ′(t) = − 1

t2(b − a)

(

etb − eta
)

+
1

t(b− a)

(

betb − aeta
)

⇒

(b− a)M ′(t) =
ebt(bt− 1)− eat(at− 1)

t2
.

Taking the limit as t → 0 we obtain:

(b− a)M ′(0) = lim
t→0

ebt(bt− 1)− eat(at− 1)

t2
=

lim
t→0

b2tebt − a2teat

2t
= lim

t→

b2ebt + b3tebt − a2eat − a3teat

2
=

b2 − a2

2
⇒

M ′(0) =
b2 − a2

2(b− a)
=

(b− a)(b + a)

2(b− a)
=

b+ a

2
.

Comment In this 
ase the mgf method involves a lot more work that a dire
t


al
ulation. Indeed from symmetry it is obvious that µ = b+a
2 for the uniform

distribution. Dire
t 
al
ulation also gives σ2 = (b−a)2

12 .

5.

E(etX) =

∞
∑

k=0

etk
λke−λ

k1
= e−λ

∞
∑

k=0

(λet)k

k!
= e−λeλe

t ⇒
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M(t) = eλ(e
t−1).

6. Continuing from Q5 we have

M ′(t) = λet · eλ(et−1) = λeλe
t−λ+t ⇒ M ′(0) = λeλ−λ+0 = λe0 = λ.

M ′′(t) = λ(λet + 1)eλe
t+t−λ ⇒ M ′′(0) = λ(λ+ 1)eλ+0−λ = λ(λ + 1);

Hen
e

σ2 = E(X2)− E
2(X) = λ(λ + 1)− λ2 = λ2 + λ− λ2 = λ.

7. We �rst �nd

E(X(X − 1)(X − 2)) =

∞
∑

k=2

k(k − 1)(k − 2)λke−λ

k!
= e−λλ3

∞
∑

k=3

λk−3

(k − 3)!

= e−λλ3
∞
∑

k=0

λk

k!
= λ3e−λeλ = λ3.Now

E(X3) = E((X(X−1)(X−2))+3E(X2)−2E(X) = λ3+3λ(λ+1)−2λ = λ3+3λ2+λ.

Hen
e

E
(X − µ

σ

)3
=

1

λ3/2

(

E(X3)− 3λE(X2) + 3λ2
E(X)− λ3)

=
1

λ3/2

(

λ3 + 3λ2 + λ− 3λ3 − 3λ2 + 3λ3 − λ3) =
λ

λ3/2
=

1√
λ
.

8.

µ =

∞
∑

k=0

kP (X = k) ≥
∞
∑

k=a

kP (X = k) ≥ a

∞
∑

k=a

P (X = k) = aP (X ≥ k)

⇒ P (X ≥ k) ≤ µ

a
.

9. The random variable Y = (X − µ)2 is a dis
rete random variable on the

non-negative integers with mean σ2
so applying the Markov Inequality to Y we

obtain:

P
((

X − µ
)2 ≥ k2σ2

)

≤ σ2

k2σ2
=

1

k2
;

Now (X − u)2 ≥ k2σ2 ⇔ |X − µ| ≥ kσ, whi
h gives the required 
on
lusion:

P
(

|X − µ| ≥ kσ
)

≤ 1

k2
.

10. We have X ∼ B(200, 0 ·5) so that µ = np = 100 and σ2 = npq = 50. Hen
e
applying the Chebyshev Inequality we obtain:

P (|X − 100| ≥ 2
√
50) ≤ 1

22
⇒ P (|X − 100| ≥ 10

√
2) ≤ 1

4
.

20


