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Solutions and Comments

Problem Set 1 Matrices and determinants

1.
1 -2
1 2 -1 2 4
AB[—10 1] 03 [—2 2}
0
— 3 2 -3
BA 3 ] =|-3 0 3
0 -1 -2 1
2. |[AB|=(2x2) (—2)) =44 8 = 12. On the other hand
3 -3 0
'BA'3\ A

=3(0— (—6)) —2(-3+3)—3(6—-0) =18 —0— 18 = 0.

Comment If we use the fact that rank(AB) =rank(BA) we see that rank(BA) =
2 and, since BA is then not of full rank, |BA| = 0. We may also note that
for non-square matrices we have an example where |AB| # |BA| although for
products of square matrices we always have equality.

3. Using Gaussian elimination to solve the equations a(3,2, —3)+b(—3,0,3) =
(—1,—2,1) we have the matrix

3 -3 -1 3 -3 -1
2 0 —2|—=|0 2 -3
-3 3 1 0 0 0

which gives the equations 2b = —3 = b= —2 and 3a = 3b+1 = 3(—2)+1 = —1.
Hence we conclude that

~(3,2,-3) %(—3,0,3) —(—1,-2,1).

Comment This also shows that rank(BA) = 2 as clearly rank(BA) > 1 as
no row is a multiple of either of the other rows.
4. By the first row expansion of the determinant we obtain:

1 1 1 23
1(2><0—§><4)—1(3><075 X (—1)+1(3x4—-2x(-1)) = —275+14: 5
By the second column expansion we obtain:
1 1 1 5
—1(3x075(71))+2(1xO—lx(—l))—4(1><5—1><3) = —§+274(—§) =-+10=



5. Let

10 0
A‘[o 1 0]'

Then take the transpose A7 and we find that AAT = I, the 2 x 2 identity
matrix. In contrast AT A is a singular 3 x 3 matrix with I, in the top left hand

corner.
6. ,
1 11" Jo o
-1 =1 |0 o|"
7.
2 31100 1 0100 1 1 0100 1
110010/ —=]|-110071T0 —=1]0110T1 1|—=
1 010 01 2 31100 231100
10 1 0 0 1 101 0 0 1
101 1 0 1 1|=1]011 0 1 1| —
00 -4 1 -3 =5 001 -1 338
100 1 3 _1
SO S
—>0104§ !
001 -+ & 2
-3 -1
1
A—1=Z1 |
-1 3 5

8. We have |A| = cos? @ + sin? § = 1. Hence we may write the inverse down

—1 __ | cosf sinf
A _{—sin(? cos@]'

as:

Comment Or we can observe that A induces a rotation about the origin
through the angle # and so A~! is found by replacing 6 by —6 throughout.
9. We use the obvious row operations to reduce the matrix to echelon form:

-1 -2 2 [—1 —2 2 1 2 -2 1 2 -2
214_>0439_)014%_)0173_>
0o 1 -1 0 1 -1 01 -1 00 2
-3 2 3 | 0 8 -3 0 8 -3 0 0 21

(1 2 —2 1 2 -2

01 -3 101 -3

00 1 00 1 |

00 1 00 0

since there are 3 non-zero rows in the echelon form the rank of the matrix is 3.
Comment Note that since row and column rank of a matrix are always equal,
the rank of every 4 x 3 matrix is no more than 3.



10. Directly we get
(a4 bi)(a—ib) — (c+id)(id — ¢) = (a® + b?) — (—=* — d*) = a®> + b* + & + d°.
It follows that if m and n are both the sum of four squares then mn can be
written in the form

Z122 — W1W3 Z1W2 + w122
—W1zo —W2Z1 —WiW2 + 2122

22 wa|
—w2 7

21 wq

mn=| _ __
—wi1 21

which has the same form, and so is also a sum of four squares.

Comment Any positive integer m is the sum of four squares. The previous
result represents a lemma that reduces this general problem to the case where
m is a prime.

Problem Set 2 Systems of Linear Equations

1.

1 1 1 -1 0 2 1 1 1 -1 0 2 1 1 1 -1 0
2 3 1 05/ =0 0 1 3 01 =0 -2 1 4 1

1 -1 2 3 1 4 0 -2 1 4 1 2 0 0 1 3 0

11 1 -1 0 2 1o 2 1 3 3 100 —

01 -4 -2 -4 -11—-f0o1 -3 -2 -3 —-1/>]0 1 0 —

oo 1 3 0 1 00 1 3 0 1 00 1

We put 24 = ¢; and x5 = c2 (¢1,c2 € R) to yield the solution set described by
3 7 1 1 1

X :(5 + 56756 75 + 5¢ + 3¢ 1—3c, c1, ¢2)
31 71 11
= (2,51 Ls 31 ~1 20.0,1).
(2523 5030)+Cl(2a23 33 50)+02( 25250305)
2.
0 0 1 1 0 3 6 -1 1 5 1 2 0 1 2
-2 -4 1 0 3|—|-2 -4 1 0 -3|—>|-2 -4 1 0 -3
3 6 -1 1 5 0 0 1 1 0 0 0O 1 1 0
1 2 0 1 2 1 2 0 1 2 1 2 0 1 2
—-1/0 01 2 1{—=1(0 0 1 2 1{—=1(0 0 1 2 1
0 01 10 0 00 -1 -1 0 0 0 1 1
1 2 0 0 1
—- 10 0 1 0 -1
0O 0 0 1 1

NN
1

N[0 ~T
L o
(SIS

N =

N[

jan}
—



which yields 3 = —1, x4 = 1,292 = ¢, 1 = 1 — 2¢ or in vector form the solution

set is given by:

x=(1-2¢,¢ —1,1)=(1,0,—1,1) + ¢(=2,1,0,0).

3.
11 1 100 111 1 00 10 =1 4 -1 0
34 5 010/—=1]012 -310/—=1]/01 2 =3 1 0
36 10 0 0 1 0 3 7 -3 0 1 00 1 6 -3 1
100 10 -4 1
—1l0 1 0 —-15 7 =2
001 6 -3 1
hence
10 -4 1
A t=1-15 7 =2
6 -3 1

4. |A| = (40 — 30) — (30 — 15) 4 (18 — 12) = 10 — 15 + 6 = 1.

6 1 1
|41 =22 4 5| =6(40—30)— (220 —155)+ (132 — 124) = 60 — 65+ 8 = 3
31 6 10
1 6 1
|42] =13 22 5| = (220 —155) — 6(30 — 15) + (93 — 66) = 65 — 90 + 27 = 2
3 31 10
11 6
|A3] = |3 4 22| = (124 —132) — (93 — 66) + 6(18 — 12) = —8 — 27 + 36 = 1
3 6 31

Hence (z,y,2) = (3,2,1).
5. We have by Question 4 that |A| = 1. The entries of the columns of A~
are therefore given by

)

1

11 1 11 1 111
0 4 5|=40-30=10,[3 0 5|=—(30-15)=—15,[3 4 0| =18-12=6;
0 6 10 3.0 10 3.6 0

01 1 1 0 1 110

1 4 5|=-(10-6)=-4,3 1 5|=10-3=7,(3 4 1| =—(6-3)=—3;
0 6 10 3.0 10 3.6 0

01 1 10 1 110

0 4 5|=5-4=1,(3 0 5|=-(5-3)=-2,13 4 0|=4—-3=1

1 6 10 31 10 3.6 1



10 -4 1
ATl =|-15 7 =2
6 -3 1

6. Observe that the determinant of an integer matrix is an integer. Hence
if |A] = £1 it follows from Cramer’s rule that all the entries of A~! are also
integers. Conversely, if bothA and A~! are integer matrices then both |A| and
|[A=1| = JA|7! are both integers and hence |A| = 41. Therefore an integer
matrix A has an inverse that is also an integer matrix if and only if |A| = £1.

7. If |A| # 0 then, by Cramer’s rule, A~! may be calculated. Hence if A
has no inverse then |A| = 0. Conversely, since |A~!| = |A|~!whence it follows
that if A possesses an inverse then |A| # 0. Therefore A~! exists if and only if
|A| # 0, that is to say A is non-singular.

8. Note first that S # () as 0 € S. Now let a € S so that Aa = b and let
y € S. Then

A(a+y) =Aa+Ay =b+0 = b,

from which it follows that all members of a+ S are indeed solutions to Ax = b.
Conversely suppose that x is a solution to our system. Then x = a+(x — a)
and so to complete the proof we need only check that x —a € S. To this end:

A(x—a)=Ax—Aa=b—-b=0.

9. Suppose that the system has two distinct solutions a and c say. Then let
vy = A(a—c). (A #0). We see that

Ay =AX(a — c) =AAa — MAc =Ab — A\b = 0.

Since a — ¢ # 0 it follows that the solution set S of the homogeneous system
Ax = 0 is infinite. Therefore so is the solution set a + S of the system Ax = b.
10. By Question 8, A is non-singular if and only if A~! exists, in which case
we have
Ax=b=A"Ax=A""b=x=A""b

and in particular A~'b is the unique solution of our system.

Conversely, since the solution set of Ax = b has the form S + a where S
is the solution set of Ax = 0. Hence if one system has a unique solution then
so does the other, in which case 0 is the unique solution of Ax = 0. It follows
that A = 0 is not an eigenvalue of A, which is equivalent to the statement that

Al £ 0.



Problem Set 3 Eigenvalues and Eigenvectors

1. Our characteristic equation is
0= (=17=X)(18=A)+300=2 - A—6=(A—3)(A+2)
and so, in ascending order, the eigenvalues are —2 and 3.

2. For A = 2, applying row reduction we obtain:

A— )N = —

[ —15 30 ] (1 -2
| —10 20 | 0 0

giving the eigenvector (2,1)7 while for A = 3 we get:

[ -20 30] [1 -3
A=AM=1 10 20 70 o0 }

which gives the eigenvector (3,2)7.
3. From Question 2, our diagonalizing matrix is:

[2 3 4 [ 2 -3
SRR

B 4 [23][-20 2 -3
~ A= PDP _[1 2H0 3][1 2]_

A® = (PDP"S = PDOP! =
2 3 64 O 2 =3 | _ | —-6305 12738
1 2 0 729 -1 2 | —12994 26052 |
5. Suppose that Ax= Ax for some non-zero vector x. Let B = PAP~! say
by similar to A. Then Px is an eigenvector of B with eigenvalue A:

B(Px) = (PAP™')Px = PAx = PXx

= \Px.

Since P is not singular it follows that Px is not the zero vector. Also since
A = P71B(P~1)71 it follows that A is similar to B and so, by the same
argument, each eigenvalue of B is also an eigenvalue of A. Therefore similar
matrices share the same eigenvalue set.

6. We note that

BA=A"Y(AB)A, AB = A(BA)A™!

and so by symmetry, if either of A and B is non-singular, then AB are similar
matrices.



Next take

N

AB{O 1}A,BA {0 O]Z;

Then

0 0 0 0

Now for all invertible 2 x 2 matrices P , since P~ ZP = Z and A # Z it follows
that AB and BA are not only unequal but are not similar.
7. Write A = [a;;] and B = [b;;] say. Then

tI‘(AB) = Z?:l Z?:l aijbji = Z?:l Z?:l bjiaij = tI‘(BA)

8. Let A and B be similar with B = PAP~! say. Then, using Question 7
we have
tr(B) = tr((PA)P~1)) = tr(AP—'P) = tr(A).

9. Write A;; for the matrix obtained from A by deleting the ith row and jth
column of A. Taking the first row expansion of A we have

|A] = a11|A11| = el _sarr = I} akg,

where the second equality above follows by induction (the n = 1 case being
trivially true).

10. Consider B = A — agI. Then B is also an upper triangular matrix with
brr = 0. We show by induction on n that for such a matrix B, |B| = 0 from
which it follows that each ayx is an eigenvalue of A. The claim is clear for n =1
so suppose that n > 2. If £k = 1 so that b;; = 0 then the first column of B is a
zero column and so |B| = 0. Otherwise k£ > 2 and we have

|B| = b11|B11] = b11-0=0

where the second equality follows by induction as By is an (n — 1) x (n — 1)
upper triangular matrix with diagonal entry by, = 0.

Conversely let 4 € R be such that p # agg for all K = 1,2,--- 'n. Then
A — pI is an upper triangular matrix and so by Question 9 we have

|A — pl| =TIy (akr —p) #0

as all terms in the product are non-zero. Hence p is not an eigenvalue of A
and we conclude that the eigenvalues of A are exactly the entries on its main
diagonal.



Problem Set 4 Eigenvalues and eigenvectors application

)T X1 = (25 17 1>T

1. From the definition we find that xo = (1,0,0)",
d 3), 2 =2 (mod 3) we get the

2. Since 3=9 =0 (mod 3) and 7 =1 (mo
recurrence equations:

Tn = 2$n71+yn+zn; Yn = zn71+2yn71+zn717 Zn = zn71+yn71+2zn71 (n Z 1)
3. Xpn = Axn_1 where

2
A=1|1
1

— D =
DO = =

and n-fold repetition gives the equation x, = A"xg.
4. Put |A — M| =0 to give

2=-MN(E2=-2=-1) = (2-N)-D+1-(2-X)=0
= 2N 24X -2+ A +1-1+A=8-120+6X2 =N\ +3)1-4=0
A —6A 9N —4=(A-1)*)(\A—4)=0.

Hence the eigenvalues of A are A =1 and A = 4.
5. For A = 1 we obtain:

1 1
1 1 1 |x=0=(1,0,-1),(0,1,-1)" independent eigenvectors,
1 1

1 -2 1 |x=0=(1,1,1)7 is an eigenvector.

1 0 1 1 00
P = 0 1 1 |,D=1]0 1 0 | and by a standard calculation we also get
-1 -1 1 |0 0 4
1 2 -1 -1
Pl=-| -1 2 -1
311 1 1
7.
1 0 1 1 0 0 2 -1 -1
A" =pPD"Pt = 0 1 1 01 0 -1 2 -1 |=
-1 -1 1 0 0 4m 1 1 1



1 1 0 47 2 -1 -1 4" 42 4" -1 4" -1
3 0 1 4n -1 2 -1 =3 4" -1 4" +2 4" -1
-1 -1 4" 1 1 1 -1 4" -1 4"+ 2

8. We require A"xqg which is:

L[4 +2
Xp == | 4" —1
an—1

9. Question 8 gives the correct result (g, yo, 20) = (1,0,0) (and (z1,y1,21) =
(2,1,1)). By induction we then get

1
Ty =2Tp—1+ Yn—1+ 2Zp-1 = 5((2 A 2.2+ (4 )+ (4 1)

1 1
=3 (4 c4qn—l g 2) =3 (4" + 2) and so the induction continues.

Similar inductive calculations for y,, and z, give the result.
10.

Jo -1 o [-1 0] s [0 1] 4 [t O
S e P e R Rt}

Hence

(tAR = t—'IQ if n = 0(mod 4), (tA|)" =L Aifn=1 (mod 4)
(t4) = t_AQ if n = 2(mod 4), (tA,)n:t—T:A3 if n =3 (mod 4).
n! n! n: "

Hence the entries at (1,1), (1,2),(2,1) and (2,2) in e!” respectively are:

t4n St t4n+2 St (71)"15271

_ E— -t = t
2 (4n)! 2 (4n + 2)! @) 0
n=0 n=0 n=0
[e%s} _t4n+1 o t4n+3 0 1 nt2n+1
> et =X G =
— (4n 4+ 1)! = (4n + 3)! o (2n +1)!
0 t4n+1 0 t4n+3 0 -1 nt2n+1
e S e S o =
—(An+ 1)~ (dn+3)! = (2n+1)!
o t4n e t4n+2 e (71)"15271
— B —_— = t.
7; (4n)! ; (4n + 2)! nz:; o) "

‘A cost —sint
ettt = . .
sint  cost

10



Problem Set 5 Positive definite matrices and quadratic forms

1 & 2. Clearly I, is symmetric and equal to its conjugate transpose. More-
over for any z = (z1,--+ ,2,) € C"™ we have

Tz =2T2 =272+ + Znz = |21+ -+ |z > 0,

as z # 0, as required.
3. Let x = (x,y,2) € R® . Then

2 -1 0 x
XTAX:[;L' y z] -1 2 -1 y :[2:ny —x+2y— 2z 7y+22]
0o -1 2 z

= (20° —ay) + (~2y + 297 —y2) + (—yz +22°) = 2(® + 3 + %) - (2wy + 2y2)
=2 +22+ (x—y)? + (y—2)>>0.
4. Let x = (z,y). Then

xTAx = 2% + day + y* = (x +y)? + 2zy.

Hence if we take y = —z # 0 then the outcome will be negative and so A is not
positive definite. In particular, taking x = [1 — 1]7 gives xT Ax = —2 < 0.
5. Suppose that x is an eigenvector of the positive definite matrix A with
eigenvalue A. Then
0 <xTAx =xT(Mx) = A&xTx.

Since xTx > 0 it follows that A > 0.
6&7. Let the entries of A be a,b,c and d in the usual way. Equating x” Ax
with Q(z,y) then gives

az® + (b + c)zy + dy* = 52 — 10zy + >

Hence we need ¢ = 5, d = 1 and b and ¢ can be any numbers subject to the
constraint that b + ¢ = —10. In Question 7 we demand that A is symmetric so
that b = ¢ = —5. Hence the unique symmetric solution to our equation is:

5 =5
A= [ oo ] |
8. In general, taking M = (a;;) and writing the coefficient of z;z; in
q(z1, 2, -+ ,x,) to be b;; we see that b;; = a;; + a;;. Hence we can take
M to be symmetric by putting a;; = a;; = %
9. Using the fact that A is symmetric and that the transpose of a constant
is itself we have the sequence of equalities:

vlTAvQ = vlT)\ng = AaVi ®Vy = A\oVy @V

11

X

Y
z



= (AVQ)TV1 = VQTATvl = VQTAvl = VQT/\lvl
= AlVaeV] = A\|V]eVy
and so we conclude that
A1(vi eva) = Aa(vy e va).
10. We deduce at once from the result of Question 9 that
(A —A2)vieva =0

and so given that A; # A2 we may cancel that factor to conclude that vievy = 0,
which is to say that eigenvectors of distinct eigenvalues of a symmetric matrix
are mutually orthogonal.

Problem Set 6 Matrices and Analytical geometry

1. In two dimensions, the standard basis vectors are u = (1,0)7 and v =
(0,1)T. We get the columns of A and of A~! respectively by rotating each of
them in turn through —30° and 30° to give the transformation matrices:

N O N L <
=12 B4 =1 4
2 2 2 2

2. This is a linear transformation of the plane and so the columns of the
transformation matrix A are the images of the respective standard basis vectors,
u= ((1)) and v = ((1)) under the mapping. We see that u maps onto the unit vector
making an angle of 2 x § = 7 with the axes, which is \/Lg G), while reflecting v

™ s s

in the line § = § maps it into the direction § = T — (5 — g) = —7, whence v

is mapped to % (711) Hence the required matrix is:

1 1 1
p-35h )
3. The columns of A are the respective images of the standard basis vectors

(;) and (). The former is mapped by this shearing transformation to (') while
the latter is invariant (fixed) by this linear transformation.

1 0
A= [_ i 1] |
4. Following the procedure of the first two questions, we see that in general
the matrix for a rotation of 6 anti-clockwise about the origin is given by:

cos) —sinf
Rot(6) = {sin@ cos ] ’

12



Geometrically it is clear that Rot(6)Rot(¢) = Rot(f + ¢). This can be verified
algebraically as well:

cosf) —sinf| |cos¢ —sing| [cosfsing —sinfsing — cosfsin ¢ — sin § — sin 6 cos ¢
sinf cosf | |sing cos¢ | |sinfcos¢ + cosfsing —sinfsin@ + cosfsin @ + cosf cos ¢

_ [cos(@ +¢) —sin(6+ gb)]
sin(0 + ¢) cos(d+¢) |’

5. And for reflection in the line making an angle 6:

)

Ref(6) — [cos 260 sin26 ]

sin26 — cos20

for example, to find the second column entries we need the coodinates of the
tip of the position vector v = ((1)) after reflection in the line. For 0 <60 < 7, the
angle of the image vector is § — 2(§ — 0) = 20 — 7. Hence the respsective -
and y-coordinates are:
™ ™ 0
cos(20 — 5) = cos 20 cos(§) + sin 26 sin(§) = sin 26,

sin(26 — g) = sin 26 cos(g) — cos QHSing = —cos26.

For 7 < 60 < 7 the angle of the image vector is 5 +2(0 — §) = 20 — %, which
yields the same result.
6. The transformation matrix is the product:

cos2¢ sin2¢ | [cos@ —sinf| |cos2¢pcosf +sin2¢sind — cos2¢sin b + sin 2¢ cos
sin2¢ —cos2¢| [sinf cosf |  |sin2¢cosf — cos2¢sinf —sin2¢sinfh — cos2¢ cosb

_ [cos(2¢ —0) sin(2¢ —0) ]
sin(2¢ —0) —cos(29 —0)|’

which is the transformation of Ref(¢ — £).

7. In this case we put § = — ¢ and ¢ = £ so the product of the corresponding
matrices represents the transformation Ref(¢ — &) = Ref(Z + ) = Ref(53).

The matrix of the transformation is

L 1][Vvs 1] _1[V6-v2 V6+2
2—\/5[1 1} [—1 \/5]_1[\/6+\/5 \f—\/é}’

and therefore we may infer that the respective values of cos(2¢ — 0) = cos 75
and sin 22
5m_ V6—v2 . 5m V64 V2
= s =

12

12 T U
Comment These values can be verified directly. For example:

57 (7T+7T) T s .o o.T
cos — = cos(— + —) = cos — cos — — sin — sin —
12 4176 4 %G TG

13



=—(X2-J)= M
V2 2 20 4
8. Reversing the order of the product from Question 6 gives

cosf) —sinf| |cos2¢ sin2¢ |  |cosfcos2¢ —sinfsin2¢ costsin2¢ + sin 6 cos 2¢
sinf cos | |sin2¢ —cos2¢| |sinfcos2¢ + cosfsin2¢ sinfsin2¢ — cos b cos2¢

_ [COS(2¢ +60) sin(2¢+6) ]
sin(2¢ +60) —cos(290+6)|’

which is the matrix of Ref(¢ + g)
9. By Question 5, the matrix for Ref(¢)Ref(0) is

cos2¢ sin2¢ | [cos20 sin20 |  |cos2¢cos20 + sin2¢cos20 cos2¢sin 20 — sin 2¢ cos 26
sin2¢ —cos2¢| |sin260 —cos20|  |sin2¢cos26 — cos2¢sin26 sin 2¢sin 20 + cos 2¢ cos 20

_ [COS(Q(Qﬁ —0)) sin(2(0 — ¢))} _ [cos(2(¢ —0) —sin(2(¢ —0))
sin(2(¢ — 0))  cos(2(¢ — 0)) sin(2(¢ — 0))  cos(2(¢ —0)) |-

Hence Ref(¢)Ref(0) = Rot(2(¢ — 9)).
10.

0 0 1
A=1{1 0 0
0 1 0
The inverse A~! will represent the linear transformation such that i —k — j,
which gives:
01 0
0 0 1
1 00

To find the eigenvalues A we solve |[A — A\]| =0 <

Expanding by the first row gives the equation:
& -AN-0)-0+1-0=0X=1A=1

To find the corresponding eigenspace we solve (A — I)x = 0, which yields the
equations —x+z =z —y =y — 2z =0< = =y = z. Hence eigenvectors are the
non-zero multiples of x = (1,1,1)7.

Comment The action of this linear transformation is that of rotation through
%“ about the axis z = y = z. Any linear mapping that is a rotation will fix its
axis of rotation pointwise and so must have 1 as an eigenvalue and the axis of
rotation as the corresponding eigenspace, with no other eigenvectors.

14



Problem Set 7 Linear Independence and bases

1. We determine the rank of the matrix of vectors.

-1 -2 2 -1 -2 2 1 2 -2
2 1 4 . 0 1 6 . 01 6
0 1 -1 0 1 -1 0 0 -—-7|’
-3 2 3 0 6 -3 00 3
which is rank 3 so the given set of 3 vectors is independent.
2.
1 -1 3 2 1 -1 3 2 1 -1 3 2
M= -1 3 -2 2 . 0 2 1 4 _ O 1 -5 -9
T2 1 2 -1 0 3 —4 -5 0 2 1 4
-1 0 2 7 0 -1 5 9 0 3 -4 -5
1 -1 3 2 1 -1 3 2
0 1 -5 9 . 0O 1 -5 9
0O 0 11 22 0 0 1 2
0O 0 11 22 0 O 0 0

Hence the subspace has dimension 3 and has a basis {(1, —1, 3,2), (0,1, —5,9), (0,0, 1,2)}.
3. Put x5 = ¢1, 3 = o, x4 = c3 so that the solution of the equation of the
hyperlane is

X = (501 - 202 + 5035015025C3>

= e1(2,1,0,0) + ex(~2,0,1,0) + e5(3,0,0,1)
Therefore a basis for the hyperplane is, for example
{(3,2,0,0),(-2,0,1,0),(1,0,0,2)}.
4. Suppose that

u= a1U1+GQUQ + -+ arpur = b1u1 —+ lelQ + -+ bkuk

= (a1 — by)ug + (a2 — ba)ug + - - - + (ar — by)uy, =0,

and since {uj,us,---,u;} is an independent set, a; — by = a3 — by = -+ =
axr — b = 0, which is to say that a; = by,a3 =by -+ ,a = by.
5. Let A = {uj,us, -+ ,u;} be a finite subset of a vector space V and

suppose that u; = aju; + - - - + a;u; for some 1 <4 < j < k. Then
a1u1—|—---+aiui—|—0ui+1—|—---—|—Ouj_1 —uj +01J.j+1 +---4+0u,=0

showing that A is not linearly independent. It follows by the contrapositive that
if A is linearly independent then no member of A is a linear combination of its
predecessors.

15



Conversely, suppose that A is not linearly independent so that we have
aiug + agug + -+ - +arur =0

with not all the a; equal to zero. Let j be the greatest subscript ¢ such that
a; # 0. Note that j > 2 as u; # 0. Then

so that u; is a linear combination of its predecessors in the list. Hence it follows
that if no member of A is a linear combination of the predecessors in the list,
then A is independent.

6. Let R = (r1,ro, -+ ,r,) where A = {ry,ro,---,r,} is the set of row
vectors of M. Swapping two rows does not alter the generating set A of R
and so does not alter the subspace generated by that set. Suppose next that
r; is replaced by ar; for some a # 0. Then for any linear combination u =
airi + asrs + - - - + a,r, of the members of A we have

Q;
u=airit+asrs +---+ E(al‘i) + -+ apr,

so that R C S = (ry,re, - ,ar;, -+ ,r,). By the same argument, replacing the
generator ar; by r; shows that S C R. Therefore R = S so that the row space
is unchanged by this row operation.

Finally, let us replace the generator r; of A by r = r;+ar;, again calling the
subspace generated S . Then since r € R it follows that S C R. However,
since r; = r — ar; it follows in the same way that each member of A lies in the
subspace S so that R C S and once more we have the required equality R = S
of subspaces.

7. By Question 6, the row space R of M and of its echelon form E are the
same. The dimension of R equals the size of any maximal independent set of
rows of either matrix as any such set is a basis for R. Clearly E is spanned by
its non-zero rows, which number m — k, so that the common row rank of M and
FEism — k.

8. Each non-zero row of the echelon form E of M has one pivotal 1. Consider
the corresponding set B of columns of E. Each such column C has a unique
non-zero entry in its pivotal 1 in row 4 say. Since every other member of B has a
zero in row i, it follows that C' is not a linear combination of the other columns.
Since this applies to each member of B, it follows from Question 7 that B is an
independent set.

9. From Question 8 it follows that the column rank of F is at least m — k,
the common value of the row rank of E' and M. In particular the row rank of
M is less than or equal to the column rank of M.

10. By Question 9 we have that

colrankM = rowrank(M7T) < colrank(M7T) = rowrank(M);
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therefore it follows from this and Question 9 that the row rank and column
ranks of M are equal and that their common value is m — k, the number of
non-zero rows in the echelon from of M.

Comment This common value can therefore be referred to simply as the rank
of the matrix M.

Problem Set 8

L(0) = L(0 + 0) = L(0) + L(0)

whereupon, subtracting L(0) from both sides gives L(0) = 0.

Comment Bear in mind that this is saying that L(0y) = 0,, the zeros of the
respective domain and range spaces.

2. The case where k = 2 is given and the k = 1 case follows from this by
taking as = 0. Hence assume that £ > 3. We then bracket as below and apply
the k = 2 case, and then the inductive hypothesis for the £ — 1 case as follows:

L(aju; + agug + - - + agug) = L(ayug + (aguz + - - + apuyg))

=a1L(u1) + L(agug + - - - + apuy)
= alL(ul) + (IQL(HQ) + 4 akL(uk).

Comment In the same way we can show that if a set is closed under the
taking of linear combinations of two vectors, then the same is true of arbitrary
linear combinations.

3. By Question 1, L(0) = 0 so that the kernel of L is not empty. Suppose
now that L(u) = L(v) = 0 and that a, b are scalars. Then

L(au+bv) = aL(u) + bL(v) = a0+b0 =0+ 0 = 0.

Hence ker(L) is a subspace of the domain space U.
4. By Question 1, the range set L(U) contains Oy and so is not empty. Let
x,y € L(U) so that x = L(u) and y = L(v) say and let a,b be scalars. Then

L(au+bv) = aL(u) + bL(v) = ax + by

and so L(U) is closed under the taking of linear combinations and is therefore
a subspace of the codomain space V.

5. Suppose that L is one-to-one and that u, € ker(L). Then by Question 1 we
then have L(u) = L(0) = 0 and since L is injective (one-to-one) it follows that
u = 0. Therefore if L is injective then ker(L) = {0}. Conversely suppose that
L(u) = L(v). Then by linearity of L we hav that L(u —v) =L(u) — L(v) =0
so that u — v € ker(L). If we suppose now that ker(L) is the trivial subspace
{0} then we have u — v = 0 so that u = v and therefore L is one-to-one. In
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conclusion a linear mapping L is one-to-one if and only if the kernel of L is
trivial.

6. A typical member of the range is Mu where u’ = (uq,us,- - ,u,) say. We
then have that the ith entry of the vector Mu equals a;1u1 4+ azous + - - -+ Gimun
and so, writing c; for the jth column of M we infer that:

Mu =U1C1 + U2C2 + *+ + + URCy.

Hence the range space L(U) is contained in the span of the columns of M.
Conversely taking u; = 1 and u; = 0 for all j # i we see that each c; lies in
L(U). Therefore the columns of M form a aspanning set for the range space
L().

7. Let ¢; = L(e;), where e, is the jth standard basis vector of R"™. Let M
be the m x n matrix whose jth column is c¢;. Then we have using Questions 5
and 6:

L(u) = L(uie1 + uges + - - + upey) = uyL(e1)tusL(ez) + - - + unL(ey,)

= u1C1 + ug2C2 + -+ + UpCp = M(u)

Therefore the action of L is that of the matrix M the columns of which are the
images of the each of the standard basis vectors taken in the natural order.

8. Since U and W are subspaces of V' we certainly have 0 € U N W. Let
u,v € UNW and take scalars a,b. Then, again since each is a subspace,
au+ bv € UNW, whence it follows that U N W is a subspace of V.

9. We have A C (B). Take an arbitrary member of (A4), which may be
written as u = aju; + asus + --- + a,u, where each u; € A. Then each
u; € (B) and since (B) is a subspace it is closed under the taking of arbitrary
linear combinations so that, in particular, u € (B). Since u was an arbitrary
member of (A) it follows that (A) C (B), as required.

10. Since Bj is independent and By is a spanning set for V, it follows
that |Bi1| < |Bz|. Interchanging By and Bs is the previous reasoning gives the
opposite inequality and so |B;1| = |Bz|. Therefore all bases of V' have the same
number of elements, the dimension of V.

Problem Set 9

1. Certainly 0 =0+0 €U +W so U+ W # (). Let x1,x2 € U + W so that
x1=u; + v1 say and X3 = us + va. Take scalars a,b. Then

axy + bxa = a(uy + v1) + b(uz + va) = (aug + dbug) + (avy + bva) € U + W,

and so U + W is a subspace of V.
2. The dimension of the domain space is given as n and, by Question 7 of
Set 8 it follows that the dimension of the range space L(U) is the rank m < n
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of M. Now the kernel of L is the solution space of the system Mx = 0, which
is that of Ex = 0, where E is the echelon form of M. Each unknown z; for
which the ith column of F is not a pivot column may be assigned freely, with
the other unknowns expressed in terms of these free variables. This leads to a
basis of order n — m for the kernel of L. Therefore

dim(kernel(L)) + dim(range(L)) = dim(domain(L)).

3. Since A = {uj,us, - ,u;} is an independent subset of V and S =
{v1,va, -+ ,Vy} spans V we know from the Exchange Lemma that £ < m. If
A does not span V' then some member of .S, without loss we may assume it is
v1, does lie in (A). Then AU {vy} = {uj,uz, - ,ug, v} is independent as no
member of the set is a linear combination of its predecessors. We may repeat
this argument as often as required until we have extended A to a basis B of V.
Therefore any independent subset of a finite dimensional vector space may be
extended to a basis for V.

4. Let u and v respectively be solutions to the systems Ax = 0 and Ax = b.
Then

A(u+v)=Au+ Av = 0+b =b

so it follows that U + v consists of solutions of the inhomogeneous system Ax =
b, where U is the subspace of solutions of the homgeneous system.
Conversely let w be any solution of Ax = b. Then

Alw—-v)=Aw - Av=b-b =0

so that v —w € U and since w = (w — v) + v € U + v. Therefore the solution
set of Ax = b is U + v where U is the subspace of solutions of Ax = 0 and v is
any solution of the system Ax = b.

5. Let U be a subspace of V. By Question 3, any basis B of U may be
extended to a basis B’ of V. Hence dim(U) < dim(V'). Moreover if we have
equality then since B may be extended to a basis for V' and all bases for V' have
the same number of elements, it follows that B is a basis for V and so U = V.
Therefore a subspace U of a finite dimensional vector space V' has dimension no
larger than that of V' with equality of dimension if and only if U = V.

6. Let S = {uj,us,- - ,u;} be a spanning set for V" and let B be a maximal
independent subset of S. If B were not a basis for V' there would exist some
u; € S such that u; ¢ (B) as otherwise S C (B) and then V = (S) C (B) in
which case B would be a basis for V. But then B U {u;} is an independent set
that strictly contains B as, attaching u; to the end of any list of the elements of
B gives a set in which no members is a linear combination of its predecessors.
However this now contradicts that B is a maximal independent subset of S.
Therefore any maximal independent, subset of a spanning set for V' is a basis for
V.

7. By Question 5, U N W is a finite dimensional with basis Bisay with &
elements. By Question 4, B; = {uy,--- ,u;} can be extended to a finite basis
By = By UC where C = {cy1,--- ,cp} say of U and extended to a finite basis
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B3 = By UD where D = {dy,--- ,d,,} say of W with both these unions being
disjoint, meaning that B, N C' = () = B3 N D. Note also that C N D = as no
member of C U D liesin UNW. We claim that B = B; UC U D is a basis for
U + W. First we show that B is independent. To this end consider the set B
listed in the order

B:{U.l,"' ,Ug,C1, -0 acmadla"' adn}

Since Bs spans U and Bj spans W it follows that B = By U B3 spans the vector
space U +W. We next show that B is independent. Since Bs is an independent
set, no u; or ¢; is a linear combination of its predecessors in the above list for
B. Suppose however that for some d; we have

d; = aiui+- - Fapup+aprici+ A 0remCm+ Gkgmi1di - Gppmpi—1di—1

(1)
= di—artrm+1di— - —Gpem—idi—1 = a4+ - Fapup+ar41Ci+- -+ Ar4mCm

2)
However the RHS of (2) lies in U while the LHS lies in W so that both sides
represent a common member x € UNW. Hence the RHS of (2) may therefore be
written as a linear combination of the vectors of B; it follows that d; is a linear
combination of uy, - -+ ,ug,dq,--- ,d;_1, contradicting that Bs is a basis for .
It follows that B is indeed an independent set and therefore a basis for U + W.
Moreover it now follows that the order of B is k+m+n = (k+m)+ (k+n)—k,
which is equivalent to the required statement:

dim(U + W) = dim(U) + dim(W) — dim(U N W).

8. Let x = u+ v where u € U and v €W and let y €U N W. Then
y,—y €UNW so that u+y €U and u—y €W and so x =(u+y) + (v —y).
It follows that if the representation of any member x € U + W is unique then
Unw ={0}.

Conversely suppose that U N W = {0} and let x =u; + v1 = uz + vawhere
uj,up € U and vi,vy € W. Then uy —uz = vy —vo € UNW = {0} so that
u; = ug and vy = vs.

9. Certainly 0 € U+ so that Ut # (). Take any v,w € U+ and scalars a, b.
Then for any u € U we have

ue(av + bw) = ue(av) + ue(bw)

=a(uev)+bluew)=a0+b0=0.

Therefore U~ is a subspace of V. Moreover if v € UNU~' then v e v =0, whence
v=0andso UNU* ={0}.

10. Let A = {uj,uz,---,u;} be a basis of U. Then U~ is exactly the
solution set of Mx = 0 where the rows of M are exactly the members of A. The
solution space is the kernel of the linear mapping defined by left multiplication
by M, the rank of which, since A is independent, is k. It follows by Question
6 of Set 8 that the dimension of U~ is given by n — k. It now follows from
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Question 6 that dim(U ® Ut) = k+ (n — k) — 0 = n. Therefore, by Question 4
we conclude that
UoU't=V.

Problem Set 10

1. Let us write
vV =a1vi+asvs + -+ apvg

= VeV = aiVevVv;+avevy+ - -4 arvevy
= ar||vi* + a2(0) + - + ax(0) = a1

And so we see that a; = v e vi and by the same argument we obtain generally
that a; = vev; (1 <14 < k), as required.
2. Suppose that

V =a1Vi+asvg + -+ apvr = 0.

Then a; =vev;, =ve0=0,forall 1 <i<k, and therefore {vy,va, - -, v}
is independent.
3.

1
22
so both vectors are unit vectors. Moreover vi e vy = 2%(7\/§+ \/§) = 0 so that
the pair B = {vy, vs}Horm an orthonormal set of order 2. By Question 2, B is
independent and is therefore B is a basis of the 2-dimensional vector space R2.

Given v = (-2,3) we have the B-coordinates of v are given by

33

1
Vill = 553+ 1) =1, [[vall = ﬁ((—l)2 +3)=1,

(vovl,von):(—\/g—i—;,l—i— ).

2
4. We first verify that W = {wy,--- ,wy} is an orthogonal set of vectors.
The equations are:
v; oW Vi ® Wo View; 1 .
W=V, W =V — Wi—— Wo— i —————w;_q, 2<i < k.
Wi ew; W2 @ Wo Wi—1®W;_1

(3)
Suppose inductively that for all j < ¢ we have w; e w; = 0, which holds by
default when ¢ = 1. Now take i > 2 and suppose that the claim holds for all
lesser values of i. Then from (3) and the inductive hypothesis we have
VoW
W, ewW; =Vv,ew; — ——w; ew,; =0,
W] L] ’LUJ
and so the induction continues and therefore the set W consists of mutually
orthogonal vectors. To complete the proof we need to prove that no member of
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W is the zero vector, which is true for w; = vy as the orginal set of vectors is
independent. Again we may now check this inductively. By construction, the
set {w1,---,w;_1} lies in the span of {vy,---,v;_1}. If now w; = 0 it would
follow from (3) that v; was in the span of {wy,---,w;_1} and hence in the
span of {vy,---,v;_1} contrary to the independence of the original basis set
{v1, -+ ,vi}. Therefore the set W is an orthogonal set of non-zero vectors and
the correpsonding set of unit vectors forms an orthogonal basis of the vector
space spanned by {vy, -+, v}

5. The given homogeneous system of equations gives rise to the row reduction
as follows:

r + vy + z + w =0
- + y + w = 0
1 1110 ft 11 10 L0350 0]
-1 1 0 1 0 0 2 1 2 0 0 2 1 2 0f’
{1 0 % 0 o}
01 5 10
putting z = 2¢ and w = d for arbitrary constants ¢ and d gives x = —c¢,y =

—c—d. Hence the solution vector x is given by x = ¢(—1,—1,2,0)+d(0,—1,0,1).

Hence as a basis for the solution space we may choose {v1,va} ={(1,1,-2,0), (0,1,0,—1)}.
Applying the Gram-Schmidt equations we have w1 = v; = (1,1,—2,0).

Using the Gram-Schmidt equation we then have:

Vo @ Wy 0+1+04+0
—vy— 22 G 2 (0,1,0,-1) — —— T (1,1,-2,0
W2 Va W1'W1W1 (a s Uy ) 1+1+4+0(5 9 9 )
1 1
= (0,1,0,-1) = £(1,1,-2,0) = £(~1,5,2,-6).

Hence |[wi|| =T+ 1+4+0=V6and |[ws|| = :/T+25+4+36 = £V66. =
The corresponding orthonmormal basis for the solution space of the system
therefore is

1 1
{— —} = —=(1,1,-2,0), ——=(—1,5,2, —6).
[fwill” [[wall” V6 V66
6.
-4 1 1 1 0 0 1 -2 -1 1 1 0] 1 -2 -1 1 1
5 -3 -2 0 1 0 5 -3 -2 0 1 0 0 7 3 -5 —4
-1 2 1 -1 -1 0|—=>1|-1 2 1 -1 -1 0|—=1]0 0 0 0 O
0o 2 1 0 0 1 0o 2 1 0 0 1 0 2 1 0 0
-1 5 3 4 3 5 -1 5 3 4 3 5] 0o 3 2 5 4
1 =2 =1 1 1 0 10 0 1 1 1 1T o0 1 1 1
0 2 1 0 o0 1 02 1 0 0 1 021 0 01
%073—5—40%00—%—5—4—%%0011087
0 3 2 5 4 5 00 -3 5 4 I 000 0 00
0O 0 0 0 0 O 0 0 0 0 0] 000 0 00
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1 0 0 1 1 1 1 00 1 1 1
0 2 0 -10 -8 —6 010 -5 -4 -3
-+]10 0 1 10 8 T7|—=|0 01 10 8 7
00 0 O 0 0 000 0 0 O
000 O 0 0 000 0 0 O

Hence the change-of-basis matrix from B- to C-coordinates is

111
P=|-5 -4 -3
0 8 7

Comment This calculation that both sets are independent and generate the
same space as the row reduced matrix has exactly two rows of zeros.

Continuing our question, the vector v = 2(1,0, —1,0,4)T — (0,1, —1,0, 3) has
B-coords 2(1,0,0) — (0,1,0) = (2,—1,0) and so the C-coordinates of vis Pv

1 1 1772 1
=|-5 -4 -3||-1|=|-6
10 8 7|0 12

7. First we find the eigenvalues of the transformation:

1-X 5
‘2 4)\’_(1—)\)(4—)\)—10—0

=X -5A-6=(\+1)(A—6)=0,

sothat A € {—1,6}. The equation for an eigenvector with \;y = —1is 2245y =0
so that vi=(5, —2)T. For A\ = 6 the equation is —52 + 5y = 0 so that vy =
(1,1)7 is an eigenvector. Hence our matrix P of eigenvectors and its inverse
P! are given by

5 1] o 11 =1 o [-1 0
=% =1l ) =0 )

and so A = PDP~! as can be checked directly. Direct calculation now gives
that for any vector v = (a,b):
_ 1] (=1)™5(a —b) + 6™(2a + 5b)
n _ n 1 _ =
A" =PD"P v = - [2(—1)"+1(a—b)+6"(2a+5b) .
Hence, as long as 2a+5b # 0, which is to say v is not a multiple of the eigenvector
of the smaller eigenvalue, for large n, the direction of A™v approaches that of
vy = (1,1)7T.
8. Let {uy,- - ,u,} denote an orthonormal basis for R”. Write v = a;u; +
-+ +apu, and w = bjuj + - -+ + byu, so that, by orthogonality and the fact
that u; e u; = 1 we have

vew =aibi+ - +apb, = (Vveu)(weuy)+---+ (veu,)(weu,).
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Putting w = v is this result gives

vev=|v[[?=(veu)?+ -+ (veu,)”.
9. We extend the orthonormal set {uy,---,u;} to an orthonormal basis
{uy, -+ ,u,} for R™ by the Gram-Schmidt algorithm as this will not alter the

first listed set of k orthonormal vectors. All the terms on the right in Parseval’s
equality are non-negative and so, deleting all but the first k& terms gives Bessel’s
inequality:
(veu )+ -+ (veuw)? < |v]|*
10. The least squares approximation to a set (z1,y1)," - , (Zn,Yn) is the line
y=mx+bwhere for 1 = (1,1,---1), x = (21, - ,2n), y = (Y1, ,Yn)

_ (lel)(xey)—(lex)(ley) b (xex)(ley)— (xey)(lex)
(lel)(xex)— (1ex)> (Lel)(xex)—(lex)> =

In this example x = (—1,1,3,5) and y = (1,—1, —4, —4) and so

(4)(=34) — (8)(=8) 9

(4)(36)—82 10
36— (-3 _ 1
(4)(36) — &2 5
The line of best fit is therefore y = — 5z — 1.
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