Mathematics 106 Matrices & Linear Algebra: Solutions

Professor Peter M. Higgins March 9, 2018

Solutions and Comments

Problem Set 1 Matrices and determinants

1.

$$AB = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 3 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -2 & 2 \end{bmatrix}.$$
$$\begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 3 & 2 & -3 \end{bmatrix}$$

$$BA = \begin{bmatrix} 1 & -2 \\ 0 & 3 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 & -3 \\ -3 & 0 & 3 \\ -1 & -2 & 1 \end{bmatrix}$$

2. $|AB| = (2 \times 2) - (4(-2)) = 4 + 8 = 12$. On the other hand

$$|BA| = 3 \begin{vmatrix} 0 & 3 \\ -2 & 1 \end{vmatrix} - 2 \begin{vmatrix} -3 & 3 \\ -1 & 1 \end{vmatrix} - 3 \begin{vmatrix} -3 & 0 \\ -1 & -2 \end{vmatrix}$$

$$= 3(0 - (-6)) - 2(-3 + 3) - 3(6 - 0) = 18 - 0 - 18 = 0.$$

Comment If we use the fact that $\operatorname{rank}(AB) = \operatorname{rank}(BA)$ we see that $\operatorname{rank}(BA) = 2$ and, since BA is then not of full rank, |BA| = 0. We may also note that for non-square matrices we have an example where $|AB| \neq |BA|$ although for products of square matrices we always have equality.

3. Using Gaussian elimination to solve the equations a(3,2,-3)+b(-3,0,3)=(-1,-2,1) we have the matrix

$$\begin{bmatrix} 3 & -3 & -1 \\ 2 & 0 & -2 \\ -3 & 3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & -3 & -1 \\ 0 & 2 & -\frac{4}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

which gives the equations $2b=-\frac{4}{3}\Rightarrow b=-\frac{2}{3}$ and $3a=3b+1=3(-\frac{2}{3})+1=-1$. Hence we conclude that

$$-(3,2,-3) - \frac{2}{3}(-3,0,3) = (-1,-2,1).$$

Comment This also shows that rank(BA) = 2 as clearly rank(BA) > 1 as no row is a multiple of either of the other rows.

4. By the first row expansion of the determinant we obtain:

$$1(2 \times 0 - \frac{1}{2} \times 4) - 1(3 \times 0 - \frac{1}{2} \times (-1)) + 1(3 \times 4 - 2 \times (-1)) = -2 - \frac{1}{2} + 14 = \frac{23}{2} + \frac{1}{2} + \frac{1}{2}$$

By the second column expansion we obtain:

$$-1(3\times 0 - \frac{1}{2}(-1)) + 2(1\times 0 - 1\times (-1)) - 4(1\times \frac{1}{2} - 1\times 3) = -\frac{1}{2} + 2 - 4(-\frac{5}{2}) = \frac{3}{2} + 10 = \frac{23}{2}.$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

Then take the transpose A^T and we find that $AA^T = I_2$, the 2×2 identity matrix. In contrast A^TA is a singular 3×3 matrix with I_2 in the top left hand corner.

6.

$$\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

7.

$$\begin{bmatrix} 2 & 3 & 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 1 & 0 \\ 2 & 3 & 1 & 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 2 & 3 & 1 & 1 & 0 & 0 \end{bmatrix} \rightarrow$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & -4 & 1 & -3 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ 0 & 1 & 0 & \frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ 0 & 0 & 1 & -\frac{1}{4} & \frac{3}{4} & \frac{5}{4} \end{bmatrix}.$$

$$\therefore A^{-1} = \frac{1}{4} \begin{bmatrix} 1 & -3 & -1 \\ 1 & 1 & -1 \\ -1 & 3 & 5 \end{bmatrix}.$$

8. We have $|A| = \cos^2 \theta + \sin^2 \theta = 1$. Hence we may write the inverse down as:

$$A^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}.$$

Comment Or we can observe that A induces a rotation about the origin through the angle θ and so A^{-1} is found by replacing θ by $-\theta$ throughout.

9. We use the obvious row operations to reduce the matrix to echelon form:

$$\begin{bmatrix} -1 & -2 & 2 \\ 2 & 1 & 4 \\ 0 & 1 & -1 \\ -3 & 2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & -2 & 2 \\ 0 & -3 & 9 \\ 0 & 1 & -1 \\ 0 & 8 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -2 \\ 0 & 1 & -3 \\ 0 & 1 & -1 \\ 0 & 8 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -2 \\ 0 & 1 & -3 \\ 0 & 0 & 2 \\ 0 & 0 & 21 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -2 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix};$$

since there are 3 non-zero rows in the echelon form the rank of the matrix is 3. *Comment* Note that since row and column rank of a matrix are always equal,

the rank of every 4×3 matrix is no more than 3.

10. Directly we get

$$(a+bi)(a-ib) - (c+id)(id-c) = (a^2+b^2) - (-c^2-d^2) = a^2+b^2+c^2+d^2$$

It follows that if m and n are both the sum of four squares then mn can be written in the form

$$mn = \begin{vmatrix} z_1 & w_1 \\ -\overline{w_1} & \overline{z_1} \end{vmatrix} \cdot \begin{vmatrix} z_2 & w_2 \\ -\overline{w_2} & \overline{z_2} \end{vmatrix} = \begin{vmatrix} z_1 z_2 - w_1 \overline{w_2} & z_1 w_2 + w_1 \overline{z_2} \\ -\overline{w_1} z_2 - \overline{w_2} z_1 & -\overline{w_1} w_2 + \overline{z_1} z_2 \end{vmatrix}$$

which has the same form, and so is also a sum of four squares.

Comment Any positive integer m is the sum of four squares. The previous result represents a lemma that reduces this general problem to the case where m is a prime.

Problem Set 2 Systems of Linear Equations

1.

$$\begin{bmatrix} 1 & 1 & 1 & -1 & 0 & 2 \\ 2 & 2 & 3 & 1 & 0 & 5 \\ 1 & -1 & 2 & 3 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & -1 & 0 & 2 \\ 0 & 0 & 1 & 3 & 0 & 1 \\ 0 & -2 & 1 & 4 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & -1 & 0 & 2 \\ 0 & -2 & 1 & 4 & 1 & 2 \\ 0 & 0 & 1 & 3 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & -1 & 0 & 2 \\ 0 & -2 & 1 & 4 & 1 & 2 \\ 0 & 0 & 1 & 3 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & -1 & 0 & 2 \\ 0 & 0 & 1 & 3 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & \frac{3}{2} & 1 & \frac{1}{2} & 3 \\ 0 & 1 & -\frac{1}{2} & -2 & -\frac{1}{2} & -1 \\ 0 & 0 & 1 & 3 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -\frac{7}{2} & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 0 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 3 & 0 & 1 \end{bmatrix}$$

We put $x_4 = c_1$ and $x_5 = c_2$ $(c_1, c_2 \in \mathbb{R})$ to yield the solution set described by

$$\mathbf{x} = \left(\frac{3}{2} + \frac{7}{2}c_1 - \frac{1}{2}c_2, -\frac{1}{2} + \frac{1}{2}c_1 + \frac{1}{2}c_2, 1 - 3c_1, c_1, c_2\right)$$
$$= \left(\frac{3}{2}, \frac{1}{2}, 1, 0, 0\right) + c_1\left(\frac{7}{2}, \frac{1}{2}, -3, 1, 0\right) + c_2\left(-\frac{1}{2}, \frac{1}{2}, 0, 0, 1\right).$$

2.

$$\begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ -2 & -4 & 1 & 0 & -3 \\ 3 & 6 & -1 & 1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 6 & -1 & 1 & 5 \\ -2 & -4 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 1 & 2 \\ -2 & -4 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 2 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

which yields $x_3 = -1$, $x_4 = 1$, $x_2 = c$, $x_1 = 1 - 2c$ or in vector form the solution set is given by:

$$\mathbf{x} = (1 - 2c, c, -1, 1) = (1, 0, -1, 1) + c(-2, 1, 0, 0).$$

3.

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 3 & 4 & 5 & 0 & 1 & 0 \\ 3 & 6 & 10 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -3 & 1 & 0 \\ 0 & 3 & 7 & -3 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 1 & 2 & -3 & 1 & 0 \\ 0 & 0 & 1 & 6 & -3 & 1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 10 & -4 & 1 \\ 0 & 1 & 0 & -15 & 7 & -2 \\ 0 & 0 & 1 & 6 & -3 & 1 \end{bmatrix}$$

hence

$$A^{-1} = \begin{bmatrix} 10 & -4 & 1 \\ -15 & 7 & -2 \\ 6 & -3 & 1 \end{bmatrix}.$$

4.
$$|A| = (40 - 30) - (30 - 15) + (18 - 12) = 10 - 15 + 6 = 1.$$

$$|A_1| = \begin{vmatrix} 6 & 1 & 1 \\ 22 & 4 & 5 \\ 31 & 6 & 10 \end{vmatrix} = 6(40 - 30) - (220 - 155) + (132 - 124) = 60 - 65 + 8 = 3;$$

$$|A_2| = \begin{vmatrix} 1 & 6 & 1 \\ 3 & 22 & 5 \\ 3 & 31 & 10 \end{vmatrix} = (220 - 155) - 6(30 - 15) + (93 - 66) = 65 - 90 + 27 = 2.$$

$$|A_3| = \begin{vmatrix} 1 & 1 & 6 \\ 3 & 4 & 22 \\ 3 & 6 & 31 \end{vmatrix} = (124 - 132) - (93 - 66) + 6(18 - 12) = -8 - 27 + 36 = 1.$$

Hence (x, y, z) = (3, 2, 1).

5. We have by Question 4 that |A| = 1. The entries of the columns of A^{-1} are therefore given by

$$\begin{vmatrix} 1 & 1 & 1 \\ 0 & 4 & 5 \\ 0 & 6 & 10 \end{vmatrix} = 40 - 30 = 10, \begin{vmatrix} 1 & 1 & 1 \\ 3 & 0 & 5 \\ 3 & 0 & 10 \end{vmatrix} = -(30 - 15) = -15, \begin{vmatrix} 1 & 1 & 1 \\ 3 & 4 & 0 \\ 3 & 6 & 0 \end{vmatrix} = 18 - 12 = 6;$$

$$\begin{vmatrix} 0 & 1 & 1 \\ 1 & 4 & 5 \\ 0 & 6 & 10 \end{vmatrix} = -(10-6) = -4, \begin{vmatrix} 1 & 0 & 1 \\ 3 & 1 & 5 \\ 3 & 0 & 10 \end{vmatrix} = 10-3 = 7, \begin{vmatrix} 1 & 1 & 0 \\ 3 & 4 & 1 \\ 3 & 6 & 0 \end{vmatrix} = -(6-3) = -3;$$

$$\begin{vmatrix} 0 & 1 & 1 \\ 0 & 4 & 5 \\ 1 & 6 & 10 \end{vmatrix} = 5 - 4 = 1, \begin{vmatrix} 1 & 0 & 1 \\ 3 & 0 & 5 \\ 3 & 1 & 10 \end{vmatrix} = -(5 - 3) = -2, \begin{vmatrix} 1 & 1 & 0 \\ 3 & 4 & 0 \\ 3 & 6 & 1 \end{vmatrix} = 4 - 3 = 1.$$

$$\therefore A^{-1} = \begin{bmatrix} 10 & -4 & 1 \\ -15 & 7 & -2 \\ 6 & -3 & 1 \end{bmatrix}.$$

- 6. Observe that the determinant of an integer matrix is an integer. Hence if $|A| = \pm 1$ it follows from Cramer's rule that all the entries of A^{-1} are also integers. Conversely, if both A and A^{-1} are integer matrices then both |A| and $|A^{-1}| = |A|^{-1}$ are both integers and hence $|A| = \pm 1$. Therefore an integer matrix A has an inverse that is also an integer matrix if and only if $|A| = \pm 1$.
- matrix A has an inverse that is also an integer matrix if and only if $|A| = \pm 1$. 7. If $|A| \neq 0$ then, by Cramer's rule, A^{-1} may be calculated. Hence if A has no inverse then |A| = 0. Conversely, since $|A^{-1}| = |A|^{-1}$ whence it follows that if A possesses an inverse then $|A| \neq 0$. Therefore A^{-1} exists if and only if $|A| \neq 0$, that is to say A is non-singular.
- 8. Note first that $S \neq \emptyset$ as $\mathbf{0} \in S$. Now let $\mathbf{a} \in S$ so that $A\mathbf{a} = \mathbf{b}$ and let $\mathbf{y} \in S$. Then

$$A(\mathbf{a} + \mathbf{y}) = A\mathbf{a} + A\mathbf{y} = \mathbf{b} + \mathbf{0} = \mathbf{b},$$

from which it follows that all members of $\mathbf{a} + S$ are indeed solutions to $A\mathbf{x} = \mathbf{b}$. Conversely suppose that \mathbf{x} is a solution to our system. Then $\mathbf{x} = \mathbf{a} + (\mathbf{x} - \mathbf{a})$ and so to complete the proof we need only check that $\mathbf{x} - \mathbf{a} \in S$. To this end:

$$A(\mathbf{x} - \mathbf{a}) = A\mathbf{x} - A\mathbf{a} = \mathbf{b} - \mathbf{b} = \mathbf{0}.$$

9. Suppose that the system has two distinct solutions **a** and **c** say. Then let $\mathbf{y} = \lambda(\mathbf{a} - \mathbf{c})$. ($\lambda \neq 0$). We see that

$$A\mathbf{v} = A\lambda(\mathbf{a} - \mathbf{c}) = \lambda A\mathbf{a} - \lambda A\mathbf{c} = \lambda \mathbf{b} - \lambda \mathbf{b} = \mathbf{0}.$$

Since $\mathbf{a} - \mathbf{c} \neq \mathbf{0}$ it follows that the solution set S of the homogeneous system $A\mathbf{x} = \mathbf{0}$ is infinite. Therefore so is the solution set $\mathbf{a} + S$ of the system $A\mathbf{x} = \mathbf{b}$.

10. By Question 8, A is non-singular if and only if A^{-1} exists, in which case we have

$$A\mathbf{x} = \mathbf{b} \Rightarrow A^{-1}A\mathbf{x} = A^{-1}\mathbf{b} \Rightarrow \mathbf{x} = A^{-1}\mathbf{b}$$

and in particular $A^{-1}\mathbf{b}$ is the unique solution of our system.

Conversely, since the solution set of $A\mathbf{x} = \mathbf{b}$ has the form $S + \mathbf{a}$ where S is the solution set of $A\mathbf{x} = \mathbf{0}$. Hence if one system has a unique solution then so does the other, in which case $\mathbf{0}$ is the unique solution of $A\mathbf{x} = \mathbf{0}$. It follows that $\lambda = 0$ is not an eigenvalue of A, which is equivalent to the statement that $|A| \neq 0$.

Problem Set 3 Eigenvalues and Eigenvectors

1. Our characteristic equation is

$$0 = (-17 - \lambda)(18 - \lambda) + 300 = \lambda^2 - \lambda - 6 = (\lambda - 3)(\lambda + 2)$$

and so, in ascending order, the eigenvalues are -2 and 3.

2. For $\lambda = 2$, applying row reduction we obtain:

$$A - \lambda I = \begin{bmatrix} -15 & 30 \\ -10 & 20 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$$

giving the eigenvector $(2,1)^T$ while for $\lambda = 3$ we get:

$$A - \lambda I = \begin{bmatrix} -20 & 30 \\ -10 & 20 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -\frac{3}{2} \\ 0 & 0 \end{bmatrix}$$

which gives the eigenvector $(3,2)^T$.

3. From Question 2, our diagonalizing matrix is:

$$P = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \Rightarrow P^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$
$$\Rightarrow A = PDP^{-1} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}.$$

4.

$$A^6 = (PDP^{-1})^6 = PD^6P^{-1} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 64 & 0 \\ 0 & 729 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -6305 & 12738 \\ -12994 & 26052 \end{bmatrix}.$$

5. Suppose that $A\mathbf{x} = \lambda \mathbf{x}$ for some non-zero vector \mathbf{x} . Let $B = PAP^{-1}$ say by similar to A. Then $P\mathbf{x}$ is an eigenvector of B with eigenvalue λ :

$$B(P\mathbf{x}) = (PAP^{-1})P\mathbf{x} = PA\mathbf{x} = P\lambda\mathbf{x}$$
$$= \lambda P\mathbf{x}.$$

Since P is not singular it follows that $P\mathbf{x}$ is not the zero vector. Also since $A = P^{-1}B(P^{-1})^{-1}$, it follows that A is similar to B and so, by the same argument, each eigenvalue of B is also an eigenvalue of A. Therefore similar matrices share the same eigenvalue set.

6. We note that

$$BA = A^{-1}(AB)A, AB = A(BA)A^{-1}$$

and so by symmetry, if either of A and B is non-singular, then AB are similar matrices.

Next take

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Then

$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = A, \ BA = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = Z;$$

Now for all invertible 2×2 matrices P, since $P^{-1}ZP=Z$ and $A\neq Z$ it follows that AB and BA are not only unequal but are not similar.

7. Write $A = [a_{ij}]$ and $B = [b_{ij}]$ say. Then

$$tr(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ji} a_{ij} = tr(BA).$$

8. Let A and B be similar with $B=PAP^{-1}$ say. Then, using Question 7 we have

$$\operatorname{tr}(B) = \operatorname{tr}((PA)P^{-1})) = \operatorname{tr}(AP^{-1}P) = \operatorname{tr}(A).$$

9. Write A_{ij} for the matrix obtained from A by deleting the *i*th row and *j*th column of A. Taking the first row expansion of A we have

$$|A| = a_{11}|A_{11}| = a_{11}\prod_{k=2}^{n} a_{kk} = \prod_{k=1}^{n} a_{kk},$$

where the second equality above follows by induction (the n=1 case being trivially true).

10. Consider $B=A-a_{kk}I$. Then B is also an upper triangular matrix with $b_{kk}=0$. We show by induction on n that for such a matrix B, |B|=0 from which it follows that each a_{kk} is an eigenvalue of A. The claim is clear for n=1 so suppose that $n\geq 2$. If k=1 so that $b_{11}=0$ then the first column of B is a zero column and so |B|=0. Otherwise $k\geq 2$ and we have

$$|B| = b_{11}|B_{11}| = b_{11} \cdot 0 = 0$$

where the second equality follows by induction as B_{11} is an $(n-1) \times (n-1)$ upper triangular matrix with diagonal entry $b_{kk} = 0$.

Conversely let $\mu \in \mathbb{R}$ be such that $\mu \neq a_{kk}$ for all $k = 1, 2, \dots, n$. Then $A - \mu I$ is an upper triangular matrix and so by Question 9 we have

$$|A - \mu I| = \prod_{k=1}^{n} (a_{kk} - \mu) \neq 0$$

as all terms in the product are non-zero. Hence μ is not an eigenvalue of A and we conclude that the eigenvalues of A are exactly the entries on its main diagonal.

Problem Set 4 Eigenvalues and eigenvectors application

- 1. From the definition we find that $\mathbf{x_0} = (1,0,0)^T$, $\mathbf{x_1} = (2,1,1)^T$.
- 2. Since $3 \equiv 9 \equiv 0 \pmod{3}$ and $7 \equiv 1 \pmod{3}$, $2 \equiv 2 \pmod{3}$ we get the recurrence equations:

$$x_n = 2x_{n-1} + y_n + z_n, \ y_n = x_{n-1} + 2y_{n-1} + z_{n-1}, \ z_n = x_{n-1} + y_{n-1} + 2z_{n-1} \ (n \ge 1).$$

3. $\mathbf{x_n} = A\mathbf{x_{n-1}}$ where

$$A = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right]$$

and *n*-fold repetition gives the equation $\mathbf{x_n} = A^n \mathbf{x_0}$.

4. Put $|A - \lambda I| = 0$ to give

$$(2 - \lambda)((2 - \lambda)^2 - 1)) - ((2 - \lambda) - 1) + (1 - (2 - \lambda)) = 0$$

$$\Rightarrow (2 - \lambda)^3 - 2 + \lambda - 2 + \lambda + 1 - 1 + \lambda = 8 - 12\lambda + 6\lambda^2 - \lambda^3 + 3\lambda - 4 = 0$$

$$\Rightarrow \lambda^3 - 6\lambda^2 + 9\lambda - 4 = (\lambda - 1)^2(\lambda - 4) = 0.$$

Hence the eigenvalues of A are $\lambda = 1$ and $\lambda = 4$.

5. For $\lambda = 1$ we obtain:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \mathbf{x} = \mathbf{0} \Rightarrow (1, 0, -1)^T, (0, 1, -1)^T \text{ independent eigenvectors},$$

for $\lambda = 4$ we obtain:

$$\begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \mathbf{x} = \mathbf{0} \Rightarrow (1, 1, 1)^T \text{ is an eigenvector.}$$

6. $A = PDP^{-1}$ where

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
 and by a standard calculation we also get

$$P^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ 1 & 1 & 1 \end{bmatrix}.$$

7.

$$A^{n} = PD^{n}P^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4^{n} \end{bmatrix} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ 1 & 1 & 1 \end{bmatrix} =$$

$$\frac{1}{3} \begin{bmatrix} 1 & 0 & 4^n \\ 0 & 1 & 4^n \\ -1 & -1 & 4^n \end{bmatrix} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4^n + 2 & 4^n - 1 & 4^n - 1 \\ 4^n - 1 & 4^n + 2 & 4^n - 1 \\ 4^n - 1 & 4^n - 1 & 4^n + 2 \end{bmatrix}.$$

8. We require $A^n \mathbf{x_0}$ which is

$$\mathbf{x_n} = \frac{1}{3} \begin{bmatrix} 4^n + 2 \\ 4^n - 1 \\ 4^n - 1 \end{bmatrix}.$$

9. Question 8 gives the correct result $(x_0, y_0, z_0) = (1, 0, 0)$ (and $(x_1, y_1, z_1) = (2, 1, 1)$). By induction we then get

$$x_n = 2x_{n-1} + y_{n-1} + z_{n-1} = \frac{1}{3}((2 \cdot 4^{n-1} + 2 \cdot 2) + (4^{n-1} - 1) + (4^{n-1} - 1))$$
$$= \frac{1}{3}(4 \cdot 4^{n-1} + 2) = \frac{1}{3}(4^n + 2) \text{ and so the induction continues.}$$

Similar inductive calculations for y_n and z_n give the result.

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \ A^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \ A^3 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \ A^4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Hence

$$\frac{(tA)^n}{n!} = \frac{t^n}{n!} I_2 \text{ if } n \equiv 0 \pmod{4}, \frac{(tA)^n}{n!} = \frac{t^n}{n!} A \text{ if } n \equiv 1 \pmod{4}$$

$$\frac{(tA)^n}{n!} = \frac{t^n}{n!} A^2 \text{ if } n \equiv 2 \pmod{4}, \ \frac{(tA)^n}{n!} = \frac{t^n}{n!} A^3 \text{ if } n \equiv 3 \pmod{4}.$$

Hence the entries at (1,1), (1,2),(2,1) and (2,2) in e^{tA} respectively are:

$$\sum_{n=0}^{\infty} \frac{t^{4n}}{(4n)!} - \sum_{n=0}^{\infty} \frac{t^{4n+2}}{(4n+2)!} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n)!} = \cos t,$$

$$\sum_{n=0}^{\infty} \frac{-t^{4n+1}}{(4n+1)!} + \sum_{n=0}^{\infty} \frac{t^{4n+3}}{(4n+3)!} = -\sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{(2n+1)!} = -\sin t,$$

$$\sum_{n=0}^{\infty} \frac{t^{4n+1}}{(4n+1)!} - \sum_{n=0}^{\infty} \frac{t^{4n+3}}{(4n+3)!} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{(2n+1)!} = \sin t,$$

$$\sum_{n=0}^{\infty} \frac{t^{4n}}{(4n)!} - \sum_{n=0}^{\infty} \frac{t^{4n+2}}{(4n+2)!} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n)!} = \cos t.$$

$$\therefore e^{tA} = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}.$$

Problem Set 5 Positive definite matrices and quadratic forms

1 & 2. Clearly I_n is symmetric and equal to its conjugate transpose. Moreover for any $\mathbf{z} = (z_1, \dots, z_n) \in \mathbb{C}^n$ we have

$$z^{*T}I_n\mathbf{z} = \mathbf{z}^{*T}\mathbf{z} = \overline{z_1}z_1 + \dots + \overline{z_n}z = |z_1|^2 + \dots + |z_n|^2 > 0,$$

as $\mathbf{z} \neq \mathbf{0}$, as required.

3. Let $\mathbf{x} = (x, y, z) \in \mathbb{R}^3$. Then

$$= (2x^{2} - xy) + (-xy + 2y^{2} - yz) + (-yz + 2z^{2}) = 2(x^{2} + y^{2} + z^{2}) - (2xy + 2yz)$$
$$= x^{2} + z^{2} + (x - y)^{2} + (y - z)^{2} > 0.$$

4. Let $\mathbf{x} = (x, y)$. Then

$$\mathbf{x}^T A \mathbf{x} = x^2 + 4xy + y^2 = (x+y)^2 + 2xy.$$

Hence if we take $y = -x \neq 0$ then the outcome will be negative and so A is not positive definite. In particular, taking $\mathbf{x} = [1 - 1]^T$ gives $\mathbf{x}^T A \mathbf{x} = -2 < 0$.

5. Suppose that ${\bf x}$ is an eigenvector of the positive definite matrix A with eigenvalue λ . Then

$$0 < \mathbf{x}^T A \mathbf{x} = \mathbf{x}^T (\lambda \mathbf{x}) = \lambda \mathbf{x}^T \mathbf{x}.$$

Since $\mathbf{x}^T\mathbf{x} > 0$ it follows that $\lambda > 0$.

6&7. Let the entries of A be a, b, c and d in the usual way. Equating $\mathbf{x}^T A \mathbf{x}$ with Q(x, y) then gives

$$ax^{2} + (b+c)xy + dy^{2} = 5x^{2} - 10xy + y^{2}.$$

Hence we need a=5, d=1 and b and c can be any numbers subject to the constraint that b+c=-10. In Question 7 we demand that A is symmetric so that b=c=-5. Hence the unique symmetric solution to our equation is:

$$A = \left[\begin{array}{cc} 5 & -5 \\ -5 & 1 \end{array} \right].$$

- 8. In general, taking $M=(a_{ij})$ and writing the coefficient of x_ix_j in $q(x_1,x_2,\cdots,x_n)$ to be b_{ij} we see that $b_{ij}=a_{ij}+a_{ji}$. Hence we can take M to be symmetric by putting $a_{ij}=a_{ji}=\frac{b_{ij}}{2}$.
- 9. Using the fact that A is symmetric and that the transpose of a constant is itself we have the sequence of equalities:

$$\mathbf{v}_1^T A \mathbf{v}_2 = \mathbf{v}_1^T \lambda_2 \mathbf{v}_2 = \lambda_2 \mathbf{v}_1 \bullet \mathbf{v}_2 = \lambda_2 \mathbf{v}_2 \bullet \mathbf{v}_1$$

$$= (A\mathbf{v}_2)^T \mathbf{v}_1 = \mathbf{v}_2^T A^T \mathbf{v}_1 = \mathbf{v}_2^T A \mathbf{v}_1 = \mathbf{v}_2^T \lambda_1 \mathbf{v}_1$$
$$= \lambda_1 \mathbf{v}_2 \bullet \mathbf{v}_1 = \lambda_1 \mathbf{v}_1 \bullet \mathbf{v}_2$$

and so we conclude that

$$\lambda_1(\mathbf{v}_1 \bullet \mathbf{v}_2) = \lambda_2(\mathbf{v}_1 \bullet \mathbf{v}_2).$$

10. We deduce at once from the result of Question 9 that

$$(\lambda_1 - \lambda_2)\mathbf{v}_1 \bullet \mathbf{v}_2 = 0$$

and so given that $\lambda_1 \neq \lambda_2$ we may cancel that factor to conclude that $\mathbf{v}_1 \bullet \mathbf{v}_2 = 0$, which is to say that eigenvectors of distinct eigenvalues of a symmetric matrix are mutually orthogonal.

Problem Set 6 Matrices and Analytical geometry

1. In two dimensions, the standard basis vectors are $\mathbf{u} = (1,0)^T$ and $\mathbf{v} = (0,1)^T$. We get the columns of A and of A^{-1} respectively by rotating each of them in turn through -30° and 30° to give the transformation matrices:

$$A = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} A^{-1} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}.$$

2. This is a linear transformation of the plane and so the columns of the transformation matrix A are the images of the respective standard basis vectors, $\mathbf{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ under the mapping. We see that \mathbf{u} maps onto the unit vector making an angle of $2 \times \frac{\pi}{8} = \frac{\pi}{4}$ with the axes, which is $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, while reflecting \mathbf{v} in the line $\theta = \frac{\pi}{8}$ maps it into the direction $\theta = \frac{\pi}{8} - \left(\frac{\pi}{2} - \frac{\pi}{8}\right) = -\frac{\pi}{4}$, whence \mathbf{v} is mapped to $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Hence the required matrix is:

$$B = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

3. The columns of A are the respective images of the standard basis vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. The former is mapped by this *shearing* transformation to $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$ while the latter is *invariant* (fixed) by this linear transformation.

$$A = \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix}.$$

4. Following the procedure of the first two questions, we see that in general the matrix for a rotation of θ anti-clockwise about the origin is given by:

$$Rot(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Geometrically it is clear that $Rot(\theta)Rot(\phi) = Rot(\theta + \phi)$. This can be verified algebraically as well:

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} = \begin{bmatrix} \cos\theta\sin\phi - \sin\theta\sin\phi & -\cos\theta\sin\phi - \sin\theta\cos\phi \\ \sin\theta\cos\phi + \cos\theta\sin\phi & -\sin\theta\sin\phi + \cos\theta\sin\phi + \cos\theta\sin\phi + \cos\theta\cos\phi \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\theta+\phi) & -\sin(\theta+\phi) \\ \sin(\theta+\phi) & \cos(\theta+\phi) \end{bmatrix} .$$

5. And for reflection in the line making an angle θ

$$\operatorname{Ref}(\theta) = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix};$$

for example, to find the second column entries we need the coodinates of the tip of the position vector $\mathbf{v} = \begin{pmatrix} \mathbf{0} \\ \mathbf{1} \end{pmatrix}$ after reflection in the line. For $0 \le \theta \le \frac{\pi}{2}$, the angle of the image vector is $\frac{\pi}{2} - 2(\frac{\pi}{2} - \theta) = 2\theta - \frac{\pi}{2}$. Hence the respective xand y-coordinates are:

$$\cos(2\theta - \frac{\pi}{2}) = \cos 2\theta \cos(\frac{\pi}{2}) + \sin 2\theta \sin(\frac{\pi}{2}) = \sin 2\theta;$$

$$\sin(2\theta - \frac{\pi}{2}) = \sin 2\theta \cos(\frac{\pi}{2}) - \cos 2\theta \sin \frac{\pi}{2} = -\cos 2\theta.$$

For $\frac{\pi}{2} \leq \theta \leq \pi$ the angle of the image vector is $\frac{\pi}{2} + 2(\theta - \frac{\pi}{2}) = 2\theta - \frac{\pi}{2}$, which yields the same result.

6. The transformation matrix is the product:

$$\begin{bmatrix} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos 2\phi \cos \theta + \sin 2\phi \sin \theta & -\cos 2\phi \sin \theta + \sin 2\phi \cos \theta \\ \sin 2\phi \cos \theta - \cos 2\phi \sin \theta & -\sin 2\phi \sin \theta - \cos 2\phi \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos(2\phi - \theta) & \sin(2\phi - \theta) \\ \sin(2\phi - \theta) & -\cos(2\phi - \theta) \end{bmatrix},$$

which is the transformation of Ref $(\phi - \frac{\theta}{2})$. 7. In this case we put $\theta = -\frac{\pi}{6}$ and $\phi = \frac{\pi}{8}$ so the product of the corresponding matrices represents the transformation $\operatorname{Ref}(\phi - \frac{\theta}{2}) = \operatorname{Ref}(\frac{\pi}{8} + \frac{\pi}{12}) = \operatorname{Ref}(\frac{5\pi}{24})$ The matrix of the transformation is

$$\frac{1}{2\sqrt{2}}\begin{bmatrix}1&1\\1&-1\end{bmatrix}\begin{bmatrix}\sqrt{3}&1\\-1&\sqrt{3}\end{bmatrix} = \frac{1}{4}\begin{bmatrix}\sqrt{6}-\sqrt{2}&\sqrt{6}+\sqrt{2}\\\sqrt{6}+\sqrt{2}&\sqrt{2}-\sqrt{6}\end{bmatrix},$$

and therefore we may infer that the respective values of $\cos(2\phi - \theta) = \cos\frac{5\pi}{12}$ and $\sin \frac{5\pi}{12}$:

$$\cos \frac{5\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}, \sin \frac{5\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}.$$

Comment These values can be verified directly. For example

$$\cos\frac{5\pi}{12} = \cos(\frac{\pi}{4} + \frac{\pi}{6}) = \cos\frac{\pi}{4}\cos\frac{\pi}{6} - \sin\frac{\pi}{4}\sin\frac{\pi}{6}$$

$$=\frac{1}{\sqrt{2}}(\frac{\sqrt{3}}{2}-\frac{1}{2})=\frac{\sqrt{6}-\sqrt{2}}{4}.$$

8. Reversing the order of the product from Question 6 gives

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{bmatrix} = \begin{bmatrix} \cos \theta \cos 2\phi - \sin \theta \sin 2\phi & \cos \theta \sin 2\phi + \sin \theta \cos 2\phi \\ \sin \theta \cos 2\phi + \cos \theta \sin 2\phi & \sin \theta \sin 2\phi - \cos \theta \cos 2\phi \end{bmatrix}$$

$$= \begin{bmatrix} \cos(2\phi + \theta) & \sin(2\phi + \theta) \\ \sin(2\phi + \theta) & -\cos(2\phi + \theta) \end{bmatrix},$$

which is the matrix of $\operatorname{Ref}(\phi + \frac{\theta}{2})$.

9. By Question 5, the matrix for $Ref(\phi)Ref(\theta)$ is

$$\begin{bmatrix} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{bmatrix} \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix} = \begin{bmatrix} \cos 2\phi \cos 2\theta + \sin 2\phi \cos 2\theta & \cos 2\phi \sin 2\theta - \sin 2\phi \cos 2\theta \\ \sin 2\phi \cos 2\theta - \cos 2\phi \sin 2\theta & \sin 2\phi \sin 2\theta + \cos 2\phi \cos 2\theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos(2(\phi - \theta)) & \sin(2(\theta - \phi)) \\ \sin(2(\phi - \theta)) & \cos(2(\phi - \theta)) \end{bmatrix} = \begin{bmatrix} \cos(2(\phi - \theta)) & -\sin(2(\phi - \theta)) \\ \sin(2(\phi - \theta)) & \cos(2(\phi - \theta)) \end{bmatrix} .$$

Hence $\operatorname{Ref}(\phi)\operatorname{Ref}(\theta) = \operatorname{Rot}(2(\phi - \theta))$

10.

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The inverse A^{-1} will represent the linear transformation such that $\mathbf{i} \mapsto \mathbf{k} \mapsto \mathbf{j}$, which gives:

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

To find the eigenvalues λ we solve $|A - \lambda I| = 0 \Leftrightarrow$

$$\begin{vmatrix} -\lambda & 0 & 1\\ 1 & -\lambda & 0\\ 0 & 1 & -\lambda \end{vmatrix} = 0;$$

Expanding by the first row gives the equation:

$$\Leftrightarrow -\lambda(\lambda^2 - 0) - 0 + (1 - 0) = 0 \Leftrightarrow \lambda^3 = 1 \Leftrightarrow \lambda = 1.$$

To find the corresponding eigenspace we solve $(A-I)\mathbf{x} = \mathbf{0}$, which yields the equations $-x + z = x - y = y - z = 0 \Leftrightarrow x = y = z$. Hence eigenvectors are the non-zero multiples of $\mathbf{x} = (1, 1, 1)^T$.

Comment The action of this linear transformation is that of rotation through $\frac{2\pi}{3}$ about the axis x=y=z. Any linear mapping that is a rotation will fix its axis of rotation pointwise and so must have 1 as an eigenvalue and the axis of rotation as the corresponding eigenspace, with no other eigenvectors.

Problem Set 7 Linear Independence and bases

1. We determine the rank of the matrix of vectors.

$$\begin{bmatrix} -1 & -2 & 2 \\ 2 & 1 & 4 \\ 0 & 1 & -1 \\ -3 & 2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & -2 & 2 \\ 0 & 1 & 6 \\ 0 & 1 & -1 \\ 0 & 6 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -2 \\ 0 & 1 & 6 \\ 0 & 0 & -7 \\ 0 & 0 & 3 \end{bmatrix},$$

which is rank 3 so the given set of 3 vectors is independent.

2.

$$M = \begin{bmatrix} 1 & -1 & 3 & 2 \\ -1 & 3 & -2 & 2 \\ 2 & 1 & 2 & -1 \\ -1 & 0 & 2 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 & 2 \\ 0 & 2 & 1 & 4 \\ 0 & 3 & -4 & -5 \\ 0 & -1 & 5 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 & 2 \\ 0 & 1 & -5 & -9 \\ 0 & 2 & 1 & 4 \\ 0 & 3 & -4 & -5 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & -1 & 3 & 2 \\ 0 & 1 & -5 & 9 \\ 0 & 0 & 11 & 22 \\ 0 & 0 & 11 & 22 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 & 2 \\ 0 & 1 & -5 & 9 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Hence the subspace has dimension 3 and has a basis $\{(1, -1, 3, 2), (0, 1, -5, 9), (0, 0, 1, 2)\}$.

3. Put $x_2 = c_1$, $x_3 = c_2$, $x_4 = c_3$ so that the solution of the equation of the hyperlane is

$$\mathbf{x} = (\frac{3}{2}c_1 - 2c_2 + \frac{1}{2}c_3, c_1, c_2, c_3)$$
$$= c_1(\frac{3}{2}, 1, 0, 0) + c_2(-2, 0, 1, 0) + c_3(\frac{1}{2}, 0, 0, 1).$$

Therefore a basis for the hyperplane is, for example

$$\{(3,2,0,0),(-2,0,1,0),(1,0,0,2)\}.$$

4. Suppose that

$$\mathbf{u} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_k \mathbf{u}_k = b_1 \mathbf{u}_1 + b_2 \mathbf{u}_2 + \dots + b_k \mathbf{u}_k$$

 $\Rightarrow (a_1 - b_1) \mathbf{u}_1 + (a_2 - b_2) \mathbf{u}_2 + \dots + (a_k - b_k) \mathbf{u}_k = \mathbf{0},$

and since $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$ is an independent set, $a_1 - b_1 = a_2 - b_2 = \cdots = a_k - b_k = 0$, which is to say that $a_1 = b_1, a_2 = b_2 \cdots, a_k = b_k$.

5. Let $A = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be a finite subset of a vector space V and suppose that $\mathbf{u}_i = a_1\mathbf{u}_1 + \dots + a_i\mathbf{u}_i$ for some $1 \le i < j \le k$. Then

$$a_1\mathbf{u}_1 + \cdots + a_i\mathbf{u}_i + 0\mathbf{u}_{i+1} + \cdots + 0\mathbf{u}_{i-1} - \mathbf{u}_i + 0\mathbf{u}_{i+1} + \cdots + 0\mathbf{u}_k = \mathbf{0}$$

showing that A is not linearly independent. It follows by the contrapositive that if A is linearly independent then no member of A is a linear combination of its predecessors.

Conversely, suppose that A is not linearly independent so that we have

$$a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \dots + a_k\mathbf{u}_k = \mathbf{0}$$

with not all the a_i equal to zero. Let j be the greatest subscript i such that $a_i \neq 0$. Note that $j \geq 2$ as $\mathbf{u}_1 \neq \mathbf{0}$. Then

$$\mathbf{u}_j = -\frac{a_1}{a_j}\mathbf{u}_1 - \frac{a_2}{a_j}\mathbf{u}_2 - \dots - \frac{a_{j-1}}{a_j}\mathbf{u}_{j-1}$$

so that \mathbf{u}_j is a linear combination of its predecessors in the list. Hence it follows that if no member of A is a linear combination of the predecessors in the list, then A is independent.

6. Let $R = \langle \mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_n \rangle$ where $A = \{\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_n\}$ is the set of row vectors of M. Swapping two rows does not alter the generating set A of R and so does not alter the subspace generated by that set. Suppose next that \mathbf{r}_i is replaced by $a\mathbf{r}_i$ for some $a \neq 0$. Then for any linear combination $\mathbf{u} = a_1\mathbf{r}_1 + a_2\mathbf{r}_2 + \cdots + a_n\mathbf{r}_n$ of the members of A we have

$$\mathbf{u} = a_1 \mathbf{r}_1 + a_2 \mathbf{r}_2 + \dots + \frac{a_i}{a} (a \mathbf{r}_i) + \dots + a_n \mathbf{r}_n$$

so that $R \subseteq S = \langle \mathbf{r}_1, \mathbf{r}_2, \dots, a\mathbf{r}_i, \dots, \mathbf{r}_n \rangle$. By the same argument, replacing the generator $a\mathbf{r}_i$ by \mathbf{r}_i shows that $S \subseteq R$. Therefore R = S so that the row space is unchanged by this row operation.

Finally, let us replace the generator \mathbf{r}_j of A by $\mathbf{r} = \mathbf{r}_j + a\mathbf{r}_i$, again calling the subspace generated S. Then since $\mathbf{r} \in R$ it follows that $S \subseteq R$. However, since $\mathbf{r}_j = \mathbf{r} - a\mathbf{r}_i$ it follows in the same way that each member of A lies in the subspace S so that $R \subseteq S$ and once more we have the required equality R = S of subspaces.

- 7. By Question 6, the row space R of M and of its echelon form E are the same. The dimension of R equals the size of any maximal independent set of rows of either matrix as any such set is a basis for R. Clearly E is spanned by its non-zero rows, which number m-k, so that the common row rank of M and E is m-k.
- 8. Each non-zero row of the echelon form E of M has one pivotal 1. Consider the corresponding set B of columns of E. Each such column C has a unique non-zero entry in its pivotal 1 in row i say. Since every other member of B has a zero in row i, it follows that C is not a linear combination of the other columns. Since this applies to each member of B, it follows from Question 7 that B is an independent set.
- 9. From Question 8 it follows that the column rank of E is at least m-k, the common value of the row rank of E and M. In particular the row rank of M is less than or equal to the column rank of M.
 - 10. By Question 9 we have that

$$\operatorname{colrank} M = \operatorname{rowrank}(M^T) \leq \operatorname{colrank}(M^T) = \operatorname{rowrank}(M);$$

therefore it follows from this and Question 9 that the row rank and column ranks of M are equal and that their common value is m-k, the number of non-zero rows in the echelon from of M.

Comment This common value can therefore be referred to simply as the rank of the matrix M.

Problem Set 8

1.

$$L(\mathbf{0}) = L(\mathbf{0} + \mathbf{0}) = L(\mathbf{0}) + L(\mathbf{0})$$

whereupon, subtracting $L(\mathbf{0})$ from both sides gives $L(\mathbf{0}) = \mathbf{0}$.

Comment Bear in mind that this is saying that $L(\mathbf{0}_U) = \mathbf{0}_v$, the zeros of the respective domain and range spaces.

2. The case where k=2 is given and the k=1 case follows from this by taking $a_2=0$. Hence assume that $k\geq 3$. We then bracket as below and apply the k=2 case, and then the inductive hypothesis for the k-1 case as follows:

$$L(a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \dots + a_k\mathbf{u}_k) = L(a_1\mathbf{u}_1 + (a_2\mathbf{u}_2 + \dots + a_k\mathbf{u}_k))$$

$$= a_1L(\mathbf{u}_1) + L(a_2\mathbf{u}_2 + \dots + a_k\mathbf{u}_k)$$

$$= a_1L(\mathbf{u}_1) + a_2L(\mathbf{u}_2) + \dots + a_kL(\mathbf{u}_k).$$

Comment In the same way we can show that if a set is closed under the taking of linear combinations of two vectors, then the same is true of arbitrary linear combinations.

3. By Question 1, $L(\mathbf{0}) = \mathbf{0}$ so that the kernel of L is not empty. Suppose now that $L(\mathbf{u}) = L(\mathbf{v}) = \mathbf{0}$ and that a, b are scalars. Then

$$L(a\mathbf{u} + b\mathbf{v}) = aL(\mathbf{u}) + bL(\mathbf{v}) = a\mathbf{0} + b\mathbf{0} = \mathbf{0} + \mathbf{0} = \mathbf{0}.$$

Hence ker(L) is a subspace of the domain space U.

4. By Question 1, the range set L(U) contains $\mathbf{0}_V$ and so is not empty. Let $\mathbf{x}, \mathbf{y} \in L(U)$ so that $\mathbf{x} = L(\mathbf{u})$ and $\mathbf{y} = L(\mathbf{v})$ say and let a, b be scalars. Then

$$L(a\mathbf{u} + b\mathbf{v}) = aL(\mathbf{u}) + bL(\mathbf{v}) = a\mathbf{x} + b\mathbf{y}$$

and so L(U) is closed under the taking of linear combinations and is therefore a subspace of the codomain space V.

5. Suppose that L is one-to-one and that $\mathbf{u}, \in \ker(L)$. Then by Question 1 we then have $L(\mathbf{u}) = L(\mathbf{0}) = \mathbf{0}$ and since L is injective (one-to-one) it follows that $\mathbf{u} = \mathbf{0}$. Therefore if L is injective then $\ker(L) = \{\mathbf{0}\}$. Conversely suppose that $L(\mathbf{u}) = L(\mathbf{v})$. Then by linearity of L we hav that $L(\mathbf{u} - \mathbf{v}) = L(\mathbf{u}) - L(\mathbf{v}) = \mathbf{0}$ so that $\mathbf{u} - \mathbf{v} \in \ker(L)$. If we suppose now that $\ker(L)$ is the trivial subspace $\{\mathbf{0}\}$ then we have $\mathbf{u} - \mathbf{v} = \mathbf{0}$ so that $\mathbf{u} = \mathbf{v}$ and therefore L is one-to-one. In

conclusion a linear mapping L is one-to-one if and only if the kernel of L is trivial.

6. A typical member of the range is $M\mathbf{u}$ where $\mathbf{u}^T = (u_1, u_2, \dots, u_n)$ say. We then have that the *i*th entry of the vector $M\mathbf{u}$ equals $a_{i1}u_1 + a_{i2}u_2 + \dots + a_{im}u_n$ and so, writing \mathbf{c}_j for the *j*th column of M we infer that:

$$M\mathbf{u} = u_1\mathbf{c}_1 + u_2\mathbf{c}_2 + \dots + u_n\mathbf{c}_n.$$

Hence the range space L(U) is contained in the span of the columns of M. Conversely taking $u_i = 1$ and $u_j = 0$ for all $j \neq i$ we see that each \mathbf{c}_j lies in L(U). Therefore the columns of M form a aspanning set for the range space L(U).

7. Let $\mathbf{c}_j = L(\mathbf{e}_j)$, where \mathbf{e}_j is the *j*th standard basis vector of \mathbb{R}^n . Let M be the $m \times n$ matrix whose *j*th column is \mathbf{c}_j . Then we have using Questions 5 and 6:

$$L(\mathbf{u}) = L(u_1\mathbf{e}_1 + u_2\mathbf{e}_2 + \dots + u_n\mathbf{e}_n) = u_1L(\mathbf{e}_1) + u_2L(\mathbf{e}_2) + \dots + u_nL(\mathbf{e}_n)$$
$$= u_1\mathbf{c}_1 + u_2\mathbf{c}_2 + \dots + u_n\mathbf{c}_n = M(\mathbf{u}).$$

Therefore the action of L is that of the matrix M the columns of which are the images of the each of the standard basis vectors taken in the natural order.

- 8. Since U and W are subspaces of V we certainly have $\mathbf{0} \in U \cap W$. Let $\mathbf{u}, \mathbf{v} \in U \cap W$ and take scalars a, b. Then, again since each is a subspace, $a\mathbf{u} + b\mathbf{v} \in U \cap W$, whence it follows that $U \cap W$ is a subspace of V.
- 9. We have $A \subseteq \langle B \rangle$. Take an arbitrary member of $\langle A \rangle$, which may be written as $\mathbf{u} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \cdots + a_n \mathbf{u}_n$ where each $\mathbf{u}_i \in A$. Then each $\mathbf{u}_i \in \langle B \rangle$ and since $\langle B \rangle$ is a subspace it is closed under the taking of arbitrary linear combinations so that, in particular, $\mathbf{u} \in \langle B \rangle$. Since \mathbf{u} was an arbitrary member of $\langle A \rangle$ it follows that $\langle A \rangle \subseteq \langle B \rangle$, as required.
- 10. Since B_1 is independent and B_2 is a spanning set for V, it follows that $|B_1| \leq |B_2|$. Interchanging B_1 and B_2 is the previous reasoning gives the opposite inequality and so $|B_1| = |B_2|$. Therefore all bases of V have the same number of elements, the *dimension* of V.

Problem Set 9

1. Certainly $\mathbf{0} = \mathbf{0} + \mathbf{0} \in U + W$ so $U + W \neq \emptyset$. Let $\mathbf{x}_1, \mathbf{x}_2 \in U + W$ so that $\mathbf{x}_1 = \mathbf{u}_1 + \mathbf{v}_1$ say and $\mathbf{x}_2 = \mathbf{u}_2 + \mathbf{v}_2$. Take scalars a, b. Then

$$a\mathbf{x}_1 + b\mathbf{x}_2 = a(\mathbf{u}_1 + \mathbf{v}_1) + b(\mathbf{u}_2 + \mathbf{v}_2) = (a\mathbf{u}_1 + b\mathbf{u}_2) + (a\mathbf{v}_1 + b\mathbf{v}_2) \in U + W,$$

and so U + W is a subspace of V.

2. The dimension of the domain space is given as n and, by Question 7 of Set 8 it follows that the dimension of the range space L(U) is the rank $m \leq n$

of M. Now the kernel of L is the solution space of the system $M\mathbf{x} = \mathbf{0}$, which is that of $E\mathbf{x} = \mathbf{0}$, where E is the echelon form of M. Each unknown x_i for which the *i*th column of E is not a pivot column may be assigned freely, with the other unknowns expressed in terms of these free variables. This leads to a basis of order n - m for the kernel of L. Therefore

$$\dim(\ker(L)) + \dim(\operatorname{range}(L)) = \dim(\operatorname{domain}(L)).$$

- 3. Since $A = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$ is an independent subset of V and $S = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_m\}$ spans V we know from the Exchange Lemma that $k \leq m$. If A does not span V then some member of S, without loss we may assume it is \mathbf{v}_1 , does lie in $\langle A \rangle$. Then $A \cup \{\mathbf{v}_1\} = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k, \mathbf{v}_1\}$ is independent as no member of the set is a linear combination of its predecessors. We may repeat this argument as often as required until we have extended A to a basis B of V. Therefore any independent subset of a finite dimensional vector space may be extended to a basis for V.
- 4. Let **u** and **v** respectively be solutions to the systems A**x** = **0** and A**x** = **b**. Then

$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{b} = \mathbf{b}$$

so it follows that $U + \mathbf{v}$ consists of solutions of the inhomogeneous system $A\mathbf{x} = \mathbf{b}$, where U is the subspace of solutions of the homgeneous system.

Conversely let w be any solution of Ax = b. Then

$$A(\mathbf{w} - \mathbf{v}) = A\mathbf{w} - A\mathbf{v} = \mathbf{b} - \mathbf{b} = \mathbf{0}$$

so that $\mathbf{v} - \mathbf{w} \in U$ and since $\mathbf{w} = (\mathbf{w} - \mathbf{v}) + \mathbf{v} \in U + \mathbf{v}$. Therefore the solution set of $A\mathbf{x} = \mathbf{b}$ is $U + \mathbf{v}$ where U is the subspace of solutions of $A\mathbf{x} = \mathbf{0}$ and \mathbf{v} is any solution of the system $A\mathbf{x} = \mathbf{b}$.

- 5. Let U be a subspace of V. By Question 3, any basis B of U may be extended to a basis B' of V. Hence $\dim(U) \leq \dim(V)$. Moreover if we have equality then since B may be extended to a basis for V and all bases for V have the same number of elements, it follows that B is a basis for V and so U = V. Therefore a subspace U of a finite dimensional vector space V has dimension no larger than that of V with equality of dimension if and only if U = V.
- 6. Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$ be a spanning set for V and let B be a maximal independent subset of S. If B were not a basis for V there would exist some $\mathbf{u}_i \in S$ such that $\mathbf{u}_i \notin \langle B \rangle$ as otherwise $S \subseteq \langle B \rangle$ and then $V = \langle S \rangle \subseteq \langle B \rangle$ in which case B would be a basis for V. But then $B \cup \{\mathbf{u}_i\}$ is an independent set that strictly contains B as, attaching \mathbf{u}_i to the end of any list of the elements of B gives a set in which no members is a linear combination of its predecessors. However this now contradicts that B is a maximal independent subset of S. Therefore any maximal independent subset of a spanning set for V is a basis for V
- 7. By Question 5, $U \cap W$ is a finite dimensional with basis B_1 say with k elements. By Question 4, $B_1 = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ can be extended to a finite basis $B_2 = B_1 \cup C$ where $C = \{\mathbf{c}_1, \dots, \mathbf{c}_m\}$ say of U and extended to a finite basis

 $B_3 = B_1 \cup D$ where $D = \{\mathbf{d}_1, \dots, \mathbf{d}_n\}$ say of W with both these unions being disjoint, meaning that $B_2 \cap C = \emptyset = B_3 \cap D$. Note also that $C \cap D = \emptyset$ as no member of $C \cup D$ lies in $U \cap W$. We claim that $B = B_1 \cup C \cup D$ is a basis for U + W. First we show that B is independent. To this end consider the set B listed in the order

$$B = {\mathbf{u}_1, \cdots, \mathbf{u}_k, \mathbf{c}_1, \cdots, \mathbf{c}_m, \mathbf{d}_1, \cdots, \mathbf{d}_n}.$$

Since B_2 spans U and B_3 spans W it follows that $B = B_2 \cup B_3$ spans the vector space U + W. We next show that B is independent. Since B_2 is an independent set, no \mathbf{u}_i or \mathbf{c}_j is a linear combination of its predecessors in the above list for B. Suppose however that for some \mathbf{d}_i we have

$$\mathbf{d}_{i} = a_{1}\mathbf{u}_{1} + \dots + a_{k}\mathbf{u}_{k} + a_{k+1}\mathbf{c}_{1} + \dots + a_{k+m}\mathbf{c}_{m} + a_{k+m+1}\mathbf{d}_{1} + \dots + a_{k+m+i-1}\mathbf{d}_{i-1}$$

$$(1)$$

$$\Rightarrow \mathbf{d}_{i} - a_{k+m+1}\mathbf{d}_{1} - \dots - a_{k+m-i}\mathbf{d}_{i-1} = a_{1}\mathbf{u}_{1} + \dots + a_{k}\mathbf{u}_{k} + a_{k+1}\mathbf{c}_{1} + \dots + a_{k+m}\mathbf{c}_{m}$$

However the RHS of (2) lies in U while the LHS lies in W so that both sides represent a common member $\mathbf{x} \in U \cap W$. Hence the RHS of (2) may therefore be written as a linear combination of the vectors of B_1 it follows that \mathbf{d}_i is a linear combination of $\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{d}_1, \dots, \mathbf{d}_{i-1}$, contradicting that B_3 is a basis for W. It follows that B is indeed an independent set and therefore a basis for U + W. Moreover it now follows that the order of B is k+m+n=(k+m)+(k+n)-k, which is equivalent to the required statement:

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W).$$

8. Let $\mathbf{x} = \mathbf{u} + \mathbf{v}$ where $\mathbf{u} \in U$ and $\mathbf{v} \in W$ and let $\mathbf{y} \in U \cap W$. Then $\mathbf{y}, -\mathbf{y} \in U \cap W$ so that $\mathbf{u} + \mathbf{y} \in U$ and $\mathbf{u} - \mathbf{y} \in W$ and so $\mathbf{x} = (\mathbf{u} + \mathbf{y}) + (\mathbf{v} - \mathbf{y})$. It follows that if the representation of *any* member $\mathbf{x} \in U + W$ is unique then $U \cap W = \{\mathbf{0}\}$.

Conversely suppose that $U \cap W = \{0\}$ and let $\mathbf{x} = \mathbf{u_1} + \mathbf{v_1} = \mathbf{u_2} + \mathbf{v_2}$ where $\mathbf{u_1}, \mathbf{u_2} \in U$ and $\mathbf{v_1}, \mathbf{v_2} \in W$. Then $\mathbf{u_1} - \mathbf{u_2} = \mathbf{v_1} - \mathbf{v_2} \in U \cap W = \{0\}$ so that $\mathbf{u_1} = \mathbf{u_2}$ and $\mathbf{v_1} = \mathbf{v_2}$.

9. Certainly $\mathbf{0} \in U^{\perp}$ so that $U^{\perp} \neq \emptyset$. Take any $\mathbf{v}, \mathbf{w} \in U^{\perp}$ and scalars a, b. Then for any $\mathbf{u} \in U$ we have

$$\mathbf{u} \bullet (a\mathbf{v} + b\mathbf{w}) = \mathbf{u} \bullet (a\mathbf{v}) + \mathbf{u} \bullet (b\mathbf{w})$$

$$= a(\mathbf{u} \bullet \mathbf{v}) + b(\mathbf{u} \bullet \mathbf{w}) = a0 + b0 = 0.$$

Therefore U^{\perp} is a subspace of V. Moreover if $\mathbf{v} \in U \cap U^{\perp}$ then $\mathbf{v} \bullet \mathbf{v} = 0$, whence $\mathbf{v} = \mathbf{0}$ and so $U \cap U^{\perp} = \{\mathbf{0}\}$.

10. Let $A = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$ be a basis of U. Then U^{\perp} is exactly the solution set of $M\mathbf{x} = \mathbf{0}$ where the rows of M are exactly the members of A. The solution space is the kernel of the linear mapping defined by left multiplication by M, the rank of which, since A is independent, is k. It follows by Question 6 of Set 8 that the dimension of U^{\perp} is given by n - k. It now follows from

Question 6 that $\dim(U \oplus U^{\perp}) = k + (n - k) - 0 = n$. Therefore, by Question 4 we conclude that

$$U \oplus U^{\perp} = V$$
.

Problem Set 10

1. Let us write

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_k \mathbf{v}_k$$

$$\Rightarrow \mathbf{v} \bullet \mathbf{v}_1 = a_1 \mathbf{v} \bullet \mathbf{v}_1 + a_2 \mathbf{v} \bullet \mathbf{v}_2 + \dots + a_k \mathbf{v} \bullet \mathbf{v}_k$$

$$= a_1 ||\mathbf{v}_1||^2 + a_2(0) + \dots + a_k(0) = a_1$$

And so we see that $a_1 = \mathbf{v} \bullet \mathbf{v}_1$ and by the same argument we obtain generally that $a_i = \mathbf{v} \bullet \mathbf{v}_i$ $(1 \le i \le k)$, as required.

2. Suppose that

$$\mathbf{v} = a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \dots + a_k \mathbf{v_k} = \mathbf{0}.$$

Then $a_i = \mathbf{v} \bullet \mathbf{v}_i = \mathbf{v} \bullet \mathbf{0} = 0$, for all $1 \le i \le k$, and therefore $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}$ is independent.

3.

$$||\mathbf{v}_1|| = \frac{1}{2^2}(3+1) = 1, \ ||\mathbf{v}_2|| = \frac{1}{2^2}((-1)^2 + 3) = 1,$$

so both vectors are unit vectors. Moreover $\mathbf{v}_1 \bullet \mathbf{v}_2 = \frac{1}{2^2}(-\sqrt{3} + \sqrt{3}) = 0$ so that the pair $B = \{\mathbf{v}_1, \mathbf{v}_2\}$ form an orthonormal set of order 2. By Question 2, B is independent and is therefore B is a basis of the 2-dimensional vector space \mathbb{R}^2 .

Given $\mathbf{v} = (-2,3)$ we have the B-coordinates of \mathbf{v} are given by

$$(\mathbf{v} \bullet \mathbf{v}_1, \mathbf{v} \bullet \mathbf{v}_2) = (-\sqrt{3} + \frac{3}{2}, 1 + \frac{3\sqrt{3}}{2}).$$

4. We first verify that $W=\{\mathbf{w}_1,\cdots,\mathbf{w}_k\}$ is an orthogonal set of vectors. The equations are:

$$\mathbf{w}_{1} = \mathbf{v}_{1}, \ \mathbf{w}_{i} = \mathbf{v}_{i} - \frac{\mathbf{v}_{i} \bullet \mathbf{w}_{1}}{\mathbf{w}_{1} \bullet \mathbf{w}_{1}} \mathbf{w}_{1} - \frac{\mathbf{v}_{i} \bullet \mathbf{w}_{2}}{\mathbf{w}_{2} \bullet \mathbf{w}_{2}} \mathbf{w}_{2} - \dots - \frac{\mathbf{v}_{i} \bullet \mathbf{w}_{i-1}}{\mathbf{w}_{i-1} \bullet \mathbf{w}_{i-1}} \mathbf{w}_{i-1}, \ 2 \leq i \leq k.$$

$$(3)$$

Suppose inductively that for all j < i we have $\mathbf{w}_i \bullet \mathbf{w}_j = 0$, which holds by default when i = 1. Now take $i \geq 2$ and suppose that the claim holds for all lesser values of i. Then from (3) and the inductive hypothesis we have

$$\mathbf{w}_i \bullet \mathbf{w}_j = \mathbf{v}_i \bullet \mathbf{w}_j - \frac{\mathbf{v}_i \bullet \mathbf{w}_j}{\mathbf{w}_j \bullet \mathbf{w}_j} \mathbf{w}_j \bullet \mathbf{w}_j = 0,$$

and so the induction continues and therefore the set W consists of mutually orthogonal vectors. To complete the proof we need to prove that no member of

W is the zero vector, which is true for $\mathbf{w}_1 = \mathbf{v}_1$ as the original set of vectors is independent. Again we may now check this inductively. By construction, the set $\{\mathbf{w}_1, \cdots, \mathbf{w}_{i-1}\}$ lies in the span of $\{\mathbf{v}_1, \cdots, \mathbf{v}_{i-1}\}$. If now $\mathbf{w}_i = \mathbf{0}$ it would follow from (3) that \mathbf{v}_i was in the span of $\{\mathbf{w}_1, \cdots, \mathbf{w}_{i-1}\}$ and hence in the span of $\{\mathbf{v}_1, \cdots, \mathbf{v}_{i-1}\}$ contrary to the independence of the original basis set $\{\mathbf{v}_1, \cdots, \mathbf{v}_k\}$. Therefore the set W is an orthogonal set of non-zero vectors and the corresponding set of unit vectors forms an orthogonal basis of the vector space spanned by $\{\mathbf{v}_1, \cdots, \mathbf{v}_k\}$.

5. The given homogeneous system of equations gives rise to the row reduction as follows:

putting z=2c and w=d for arbitrary constants c and d gives x=-c,y=-c-d. Hence the solution vector \mathbf{x} is given by $\mathbf{x}=c(-1,-1,2,0)+d(0,-1,0,1)$. Hence as a basis for the solution space we may choose $\{\mathbf{v}_1,\mathbf{v}_2\}=\{(1,1,-2,0),(0,1,0,-1)\}$.

Applying the Gram-Schmidt equations we have $\mathbf{w}_1 = \mathbf{v}_1 = (1, 1, -2, 0)$. Using the Gram-Schmidt equation we then have:

$$\mathbf{w}_2 = \mathbf{v}_2 - \frac{\mathbf{v}_2 \bullet \mathbf{w}_1}{\mathbf{w}_1 \bullet \mathbf{w}_1} \mathbf{w}_1 = (0, 1, 0, -1) - \frac{0 + 1 + 0 + 0}{1 + 1 + 4 + 0} (1, 1, -2, 0)$$
$$= (0, 1, 0, -1) - \frac{1}{6} (1, 1, -2, 0) = \frac{1}{6} (-1, 5, 2, -6).$$

Hence $||\mathbf{w}_1|| = \sqrt{1+1+4+0} = \sqrt{6}$ and $||\mathbf{w}_2|| = \frac{1}{6}\sqrt{1+25+4+36} = \frac{1}{6}\sqrt{66}$. = The corresponding orthonormal basis for the solution space of the system therefore is

$$\{\frac{\mathbf{w}_1}{||\mathbf{w}_1||}, \frac{\mathbf{w}_2}{||\mathbf{w}_2||}\} = \frac{1}{\sqrt{6}}(1, 1, -2, 0), \frac{1}{\sqrt{66}}(-1, 5, 2, -6).$$

6

$$\begin{bmatrix} -4 & 1 & 1 & 1 & 0 & 0 \\ 5 & -3 & -2 & 0 & 1 & 0 \\ -1 & 2 & 1 & -1 & -1 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \\ -1 & 5 & 3 & 4 & 3 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & -1 & 1 & 1 & 0 \\ 5 & -3 & -2 & 0 & 1 & 0 \\ -1 & 2 & 1 & -1 & -1 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \\ -1 & 5 & 3 & 4 & 3 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & -1 & 1 & 1 & 0 \\ 0 & 7 & 3 & -5 & -4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \\ 0 & 3 & 2 & 5 & 4 & 5 \end{bmatrix}$$

Hence the change-of-basis matrix from B- to C-coordinates is

$$P = \begin{bmatrix} 1 & 1 & 1 \\ -5 & -4 & -3 \\ 10 & 8 & 7 \end{bmatrix}.$$

Comment This calculation that both sets are independent and generate the same space as the row reduced matrix has exactly two rows of zeros.

Continuing our question, the vector $\mathbf{v} = 2(1, 0, -1, 0, 4)^T - (0, 1, -1, 0, 3)$ has **B**-coords 2(1, 0, 0) - (0, 1, 0) = (2, -1, 0) and so the **C**-coordinates of **v**is $P\mathbf{v}$

$$= \begin{bmatrix} 1 & 1 & 1 \\ -5 & -4 & -3 \\ 10 & 8 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -6 \\ 12 \end{bmatrix}.$$

7. First we find the eigenvalues of the transformation:

$$\begin{vmatrix} 1 - \lambda & 5 \\ 2 & 4 - \lambda \end{vmatrix} = (1 - \lambda)(4 - \lambda) - 10 = 0$$
$$\Rightarrow \lambda^2 - 5\lambda - 6 = (\lambda + 1)(\lambda - 6) = 0,$$

so that $\lambda \in \{-1, 6\}$. The equation for an eigenvector with $\lambda_1 = -1$ is 2x + 5y = 0 so that $\mathbf{v}_1 = (5, -2)^T$. For $\lambda_2 = 6$ the equation is -5x + 5y = 0 so that $\mathbf{v}_2 = (1, 1)^T$ is an eigenvector. Hence our matrix P of eigenvectors and its inverse P^{-1} are given by

$$P = \begin{bmatrix} 5 & 1 \\ -2 & 1 \end{bmatrix} P^{-1} = \frac{1}{7} \begin{bmatrix} 1 & -1 \\ 2 & 5 \end{bmatrix} D = \begin{bmatrix} -1 & 0 \\ 0 & 6 \end{bmatrix}$$

and so $A = PDP^{-1}$ as can be checked directly. Direct calculation now gives that for any vector $\mathbf{v} = (a, b)^T$:

$$A^{n}\mathbf{v} = PD^{n}P^{-1}\mathbf{v} = \frac{1}{7} \begin{bmatrix} (-1)^{n}5(a-b) + 6^{n}(2a+5b) \\ 2(-1)^{n+1}(a-b) + 6^{n}(2a+5b) \end{bmatrix}.$$

Hence, as long as $2a+5b \neq 0$, which is to say \mathbf{v} is not a multiple of the eigenvector of the smaller eigenvalue, for large n, the direction of $A^n\mathbf{v}$ approaches that of $\mathbf{v}_2 = (1,1)^T$.

8. Let $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ denote an orthonormal basis for \mathbb{R}^n . Write $\mathbf{v} = a_1\mathbf{u}_1 + \dots + a_n\mathbf{u}_n$ and $\mathbf{w} = b_1\mathbf{u}_1 + \dots + b_n\mathbf{u}_n$ so that, by orthogonality and the fact that $\mathbf{u}_i \bullet \mathbf{u}_i = 1$ we have

$$\mathbf{v} \bullet \mathbf{w} = a_1 b_1 + \dots + a_n b_n = (\mathbf{v} \bullet \mathbf{u}_1)(\mathbf{w} \bullet \mathbf{u}_1) + \dots + (\mathbf{v} \bullet \mathbf{u}_n)(\mathbf{w} \bullet \mathbf{u}_n).$$

Putting $\mathbf{w} = \mathbf{v}$ is this result gives

$$\mathbf{v} \bullet \mathbf{v} = ||\mathbf{v}||^2 = (\mathbf{v} \bullet \mathbf{u}_1)^2 + \dots + (\mathbf{v} \bullet \mathbf{u}_n)^2$$

9. We extend the orthonormal set $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ to an orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ for \mathbb{R}^n by the Gram-Schmidt algorithm as this will not alter the first listed set of k orthonormal vectors. All the terms on the right in Parseval's equality are non-negative and so, deleting all but the first k terms gives Bessel's inequality:

$$(\mathbf{v} \bullet \mathbf{u}_1)^2 + \cdots + (\mathbf{v} \bullet \mathbf{u}_k)^2 \le ||\mathbf{v}||^2.$$

10. The least squares approximation to a set $(x_1, y_1), \dots, (x_n, y_n)$ is the line y = mx + b where for $\mathbf{1} = (1, 1, \dots, 1), \mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n)$

$$m = \frac{(\mathbf{1} \bullet \mathbf{1})(\mathbf{x} \bullet \mathbf{y}) - (\mathbf{1} \bullet \mathbf{x})(\mathbf{1} \bullet \mathbf{y})}{(\mathbf{1} \bullet \mathbf{1})(\mathbf{x} \bullet \mathbf{x}) - (\mathbf{1} \bullet \mathbf{x})^2} \ b = \frac{(\mathbf{x} \bullet \mathbf{x})(\mathbf{1} \bullet \mathbf{y}) - (\mathbf{x} \bullet \mathbf{y})(\mathbf{1} \bullet \mathbf{x})}{(\mathbf{1} \bullet \mathbf{1})(\mathbf{x} \bullet \mathbf{x}) - (\mathbf{1} \bullet \mathbf{x})^2}.$$

In this example $\mathbf{x} = (-1, 1, 3, 5)$ and $\mathbf{y} = (1, -1, -4, -4)$ and so

$$m = \frac{(4)(-34) - (8)(-8)}{(4)(36) - 8^2} = -\frac{9}{10}$$

$$b = \frac{(36)(-8) - (-34)(8)}{(4)(36) - 8^2} = -\frac{1}{5}.$$

The line of best fit is therefore $y = -\frac{9}{10}x - \frac{1}{5}$.