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Solutions and Comments

Problem Set 1 Matri
es and determinants

1.

AB =

[

1 2 −1
−1 0 1

]





1 −2
0 3
−1 0



 =

[

2 4
−2 2

]

.

BA =





1 −2
0 3
−1 0





[

1 2 −1
−1 0 1

]

=





3 2 −3
−3 0 3
−1 −2 1





2. |AB| = (2× 2)− (4(−2)) = 4 + 8 = 12. On the other hand

|BA| = 3

∣

∣

∣

∣

0 3
−2 1

∣

∣

∣

∣

− 2

∣

∣

∣

∣

−3 3
−1 1

∣

∣

∣

∣

− 3

∣

∣

∣

∣

−3 0
−1 −2

∣

∣

∣

∣

= 3(0− (−6))− 2(−3 + 3)− 3(6− 0) = 18− 0− 18 = 0.

Comment If we use the fa
t that rank(AB) =rank(BA) we see that rank(BA) =
2 and, sin
e BA is then not of full rank, |BA| = 0. We may also note that

for non-square matri
es we have an example where |AB| 6= |BA| although for

produ
ts of square matri
es we always have equality.

3. Using Gaussian elimination to solve the equations a(3, 2,−3)+b(−3, 0, 3) =
(−1,−2, 1) we have the matrix





3 −3 −1
2 0 −2
−3 3 1



 →





3 −3 −1
0 2 − 4

3

0 0 0





whi
h gives the equations 2b = − 4

3
⇒ b = − 2

3
and 3a = 3b+1 = 3(− 2

3
)+1 = −1.

Hen
e we 
on
lude that

−(3, 2,−3)− 2

3
(−3, 0, 3) = (−1,−2, 1).

Comment This also shows that rank(BA) = 2 as 
learly rank(BA) > 1 as

no row is a multiple of either of the other rows.

4. By the �rst row expansion of the determinant we obtain:

1(2× 0− 1

2
× 4)− 1(3× 0− 1

2
× (−1))+1(3× 4− 2× (−1)) = −2− 1

2
+14 =

23

2
.

By the se
ond 
olumn expansion we obtain:

−1(3×0−1

2
(−1))+2(1×0−1×(−1))−4(1×1

2
−1×3) = −1

2
+2−4(−5

2
) =

3

2
+10 =

23

2
.
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5. Let

A =

[

1 0 0
0 1 0

]

.

Then take the transpose AT
and we �nd that AAT = I2, the 2 × 2 identity

matrix. In 
ontrast ATA is a singular 3× 3 matrix with I2 in the top left hand


orner.

6.

[

1 1
−1 −1

]2

=

[

0 0
0 0

]

.

7.





2 3 1 1 0 0
−1 1 0 0 1 0
1 0 1 0 0 1



 →





1 0 1 0 0 1
−1 1 0 0 1 0
2 3 1 1 0 0



 →





1 0 1 0 0 1
0 1 1 0 1 1
2 3 1 1 0 0



 →

→





1 0 1 0 0 1
0 1 1 0 1 1
0 0 −4 1 −3 −5



 →





1 0 1 0 0 1
0 1 1 0 1 1
0 0 1 − 1

4

3

4

5

4



 →

→





1 0 0 1

4

3

4
− 1

4

0 1 0 1

4

1

4
− 1

4

0 0 1 − 1

4

3

4

5

4



 .

∴ A−1 =
1

4





1 −3 −1
1 1 −1
−1 3 5



 .

8. We have |A| = cos2 θ + sin2 θ = 1. Hen
e we may write the inverse down

as:

A−1 =

[

cos θ sin θ
− sin θ cos θ

]

.

Comment Or we 
an observe that A indu
es a rotation about the origin

through the angle θ and so A−1
is found by repla
ing θ by −θ throughout.

9. We use the obvious row operations to redu
e the matrix to e
helon form:









−1 −2 2
2 1 4
0 1 −1
−3 2 3









→









−1 −2 2
0 −3 9
0 1 −1
0 8 −3









→









1 2 −2
0 1 −3
0 1 −1
0 8 −3









→









1 2 −2
0 1 −3
0 0 2
0 0 21









→









1 2 −2
0 1 −3
0 0 1
0 0 1









→









1 2 −2
0 1 −3
0 0 1
0 0 0









;

sin
e there are 3 non-zero rows in the e
helon form the rank of the matrix is 3.
Comment Note that sin
e row and 
olumn rank of a matrix are always equal,

the rank of every 4× 3 matrix is no more than 3.
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10. Dire
tly we get

(a+ bi)(a− ib)− (c+ id)(id− c) = (a2 + b2)− (−c2 − d2) = a2 + b2 + c2 + d2.

It follows that if m and n are both the sum of four squares then mn 
an be

written in the form

mn =

∣

∣

∣

∣

z1 w1

−w1 z1

∣

∣

∣

∣

·
∣

∣

∣

∣

z2 w2

−w2 z2

∣

∣

∣

∣

=

∣

∣

∣

∣

z1z2 − w1w2 z1w2 + w1z2
−w1z2 − w2z1 −w1w2 + z1z2

∣

∣

∣

∣

whi
h has the same form, and so is also a sum of four squares.

Comment Any positive integer m is the sum of four squares. The previous

result represents a lemma that redu
es this general problem to the 
ase where

m is a prime.

Problem Set 2 Systems of Linear Equations

1.





1 1 1 −1 0 2
2 2 3 1 0 5
1 −1 2 3 1 4



 →





1 1 1 −1 0 2
0 0 1 3 0 1
0 −2 1 4 1 2



 →





1 1 1 −1 0 2
0 −2 1 4 1 2
0 0 1 3 0 1



 →





1 1 1 −1 0 2
0 1 − 1

2
−2 − 1

2
−1

0 0 1 3 0 1



 →





1 0 3

2
1 1

2
3

0 1 − 1

2
−2 − 1

2
−1

0 0 1 3 0 1



 →





1 0 0 − 7

2

1

2

3

2

0 1 0 − 1

2
− 1

2
− 1

2

0 0 1 3 0 1





We put x4 = c1 and x5 = c2 (c1, c2 ∈ R) to yield the solution set des
ribed by

x =(
3

2
+

7

2
c1 −

1

2
c2, −

1

2
+

1

2
c1 +

1

2
c2, 1− 3c1, c1, c2)

= (
3

2
,
1

2
, 1, 0, 0) + c1(

7

2
,
1

2
,−3, 1, 0) + c2(−

1

2
,
1

2
, 0, 0, 1).

2.





0 0 1 1 0
−2 −4 1 0 −3
3 6 −1 1 5



 →





3 6 −1 1 5
−2 −4 1 0 −3
0 0 1 1 0



 →





1 2 0 1 2
−2 −4 1 0 −3
0 0 1 1 0





→





1 2 0 1 2
0 0 1 2 1
0 0 1 1 0



 →





1 2 0 1 2
0 0 1 2 1
0 0 0 −1 −1



 →





1 2 0 1 2
0 0 1 2 1
0 0 0 1 1





→





1 2 0 0 1
0 0 1 0 −1
0 0 0 1 1





4



whi
h yields x3 = −1, x4 = 1,x2 = c, x1 = 1− 2c or in ve
tor form the solution

set is given by:

x = (1− 2c, c, −1, 1) = (1, 0,−1, 1) + c(−2, 1, 0, 0).

3.





1 1 1 1 0 0
3 4 5 0 1 0
3 6 10 0 0 1



 →





1 1 1 1 0 0
0 1 2 −3 1 0
0 3 7 −3 0 1



 →





1 0 −1 4 −1 0
0 1 2 −3 1 0
0 0 1 6 −3 1





→





1 0 0 10 −4 1
0 1 0 −15 7 −2
0 0 1 6 −3 1





hen
e

A−1 =





10 −4 1
−15 7 −2
6 −3 1



 .

4. |A| = (40− 30)− (30− 15) + (18− 12) = 10− 15 + 6 = 1.

|A1| =

∣

∣

∣

∣

∣

∣

6 1 1
22 4 5
31 6 10

∣

∣

∣

∣

∣

∣

= 6(40− 30)− (220− 155)+ (132− 124) = 60− 65+ 8 = 3;

|A2| =

∣

∣

∣

∣

∣

∣

1 6 1
3 22 5
3 31 10

∣

∣

∣

∣

∣

∣

= (220− 155)− 6(30− 15) + (93− 66) = 65− 90 + 27 = 2.

|A3| =

∣

∣

∣

∣

∣

∣

1 1 6
3 4 22
3 6 31

∣

∣

∣

∣

∣

∣

= (124− 132)− (93− 66) + 6(18− 12) = −8− 27 + 36 = 1.

Hen
e (x, y, z) = (3, 2, 1).
5. We have by Question 4 that |A| = 1. The entries of the 
olumns of A−1

are therefore given by

∣

∣

∣

∣

∣

∣

1 1 1
0 4 5
0 6 10

∣

∣

∣

∣

∣

∣

= 40−30 = 10,

∣

∣

∣

∣

∣

∣

1 1 1
3 0 5
3 0 10

∣

∣

∣

∣

∣

∣

= −(30−15) = −15,

∣

∣

∣

∣

∣

∣

1 1 1
3 4 0
3 6 0

∣

∣

∣

∣

∣

∣

= 18−12 = 6;

∣

∣

∣

∣

∣

∣

0 1 1
1 4 5
0 6 10

∣

∣

∣

∣

∣

∣

= −(10−6) = −4,

∣

∣

∣

∣

∣

∣

1 0 1
3 1 5
3 0 10

∣

∣

∣

∣

∣

∣

= 10−3 = 7,

∣

∣

∣

∣

∣

∣

1 1 0
3 4 1
3 6 0

∣

∣

∣

∣

∣

∣

= −(6−3) = −3;

∣

∣

∣

∣

∣

∣

0 1 1
0 4 5
1 6 10

∣

∣

∣

∣

∣

∣

= 5− 4 = 1,

∣

∣

∣

∣

∣

∣

1 0 1
3 0 5
3 1 10

∣

∣

∣

∣

∣

∣

= −(5− 3) = −2,

∣

∣

∣

∣

∣

∣

1 1 0
3 4 0
3 6 1

∣

∣

∣

∣

∣

∣

= 4− 3 = 1.
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∴ A−1 =





10 −4 1
−15 7 −2
6 −3 1



 .

6. Observe that the determinant of an integer matrix is an integer. Hen
e

if |A| = ±1 it follows from Cramer's rule that all the entries of A−1
are also

integers. Conversely, if bothA and A−1
are integer matri
es then both |A| and

|A−1| = |A|−1
are both integers and hen
e |A| = ±1. Therefore an integer

matrix A has an inverse that is also an integer matrix if and only if |A| = ±1.
7. If |A| 6= 0 then, by Cramer's rule, A−1

may be 
al
ulated. Hen
e if A

has no inverse then |A| = 0. Conversely, sin
e |A−1| = |A|−1
when
e it follows

that if A possesses an inverse then |A| 6= 0. Therefore A−1
exists if and only if

|A| 6= 0, that is to say A is non-singular.

8. Note �rst that S 6= ∅ as 0 ∈ S. Now let a ∈ S so that Aa = b and let

y ∈ S. Then

A(a+ y) =Aa+Ay =b+ 0 = b,

from whi
h it follows that all members of a+S are indeed solutions to Ax = b.

Conversely suppose that x is a solution to our system. Then x = a+(x− a)
and so to 
omplete the proof we need only 
he
k that x− a ∈ S. To this end:

A(x − a) = Ax−Aa = b− b = 0.

9. Suppose that the system has two distin
t solutions a and c say. Then let

y = λ(a − c). (λ 6= 0). We see that

Ay =Aλ(a − c) =λAa− λAc =λb− λb = 0.

Sin
e a− c 6= 0 it follows that the solution set S of the homogeneous system

Ax = 0 is in�nite. Therefore so is the solution set a+ S of the system Ax = b.

10. By Question 8, A is non-singular if and only if A−1
exists, in whi
h 
ase

we have

Ax = b ⇒ A−1Ax =A−1b ⇒x =A−1b

and in parti
ular A−1b is the unique solution of our system.

Conversely, sin
e the solution set of Ax = b has the form S + a where S

is the solution set of Ax = 0. Hen
e if one system has a unique solution then

so does the other, in whi
h 
ase 0 is the unique solution of Ax = 0. It follows

that λ = 0 is not an eigenvalue of A, whi
h is equivalent to the statement that

|A| 6= 0.
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Problem Set 3 Eigenvalues and Eigenve
tors

1. Our 
hara
teristi
 equation is

0 = (−17− λ)(18− λ) + 300 = λ2 − λ− 6 = (λ− 3)(λ+ 2)

and so, in as
ending order, the eigenvalues are −2 and 3.
2. For λ = 2, applying row redu
tion we obtain:

A− λI =

[

−15 30
−10 20

]

→
[

1 −2
0 0

]

giving the eigenve
tor (2, 1)T while for λ = 3 we get:

A− λI =

[

−20 30
−10 20

]

→
[

1 − 3

2

0 0

]

whi
h gives the eigenve
tor (3, 2)T .
3. From Question 2, our diagonalizing matrix is:

P =

[

2 3
1 2

]

⇒ P−1 =

[

2 −3
−1 2

]

⇒ A = PDP−1 =

[

2 3
1 2

] [

−2 0
0 3

] [

2 −3
−1 2

]

.

4.

A6 = (PDP−1)6 = PD6P−1 =
[

2 3
1 2

] [

64 0
0 729

] [

2 −3
−1 2

]

=

[

−6305 12738
−12994 26052

]

.

5. Suppose that Ax= λx for some non-zero ve
tor x. Let B = PAP−1
say

by similar to A. Then Px is an eigenve
tor of B with eigenvalue λ:

B(Px) = (PAP−1)Px = PAx = Pλx

= λPx.

Sin
e P is not singular it follows that Px is not the zero ve
tor. Also sin
e

A = P−1B(P−1)−1
, it follows that A is similar to B and so, by the same

argument, ea
h eigenvalue of B is also an eigenvalue of A. Therefore similar

matri
es share the same eigenvalue set.

6. We note that

BA = A−1(AB)A, AB = A(BA)A−1

and so by symmetry, if either of A and B is non-singular, then AB are similar

matri
es.
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Next take

A =

[

0 1
0 0

]

, B =

[

0 0
0 1

]

.

Then

AB =

[

0 1
0 0

]

= A, BA =

[

0 0
0 0

]

= Z;

Now for all invertible 2×2 matri
es P , sin
e P−1ZP = Z and A 6= Z it follows

that AB and BA are not only unequal but are not similar.

7. Write A = [aij ] and B = [bij ] say. Then

tr(AB) =
∑n

i=1

∑n

j=1
aijbji =

∑n

j=1

∑n

i=1
bjiaij = tr(BA).

8. Let A and B be similar with B = PAP−1
say. Then, using Question 7

we have

tr(B) = tr((PA)P−1)) = tr(AP−1P ) = tr(A).

9. Write Aij for the matrix obtained from A by deleting the ith row and jth


olumn of A. Taking the �rst row expansion of A we have

|A| = a11|A11| = a11Π
n
k=2akk = Πn

k=1akk,

where the se
ond equality above follows by indu
tion (the n = 1 
ase being

trivially true).

10. Consider B = A−akkI. Then B is also an upper triangular matrix with

bkk = 0. We show by indu
tion on n that for su
h a matrix B, |B| = 0 from

whi
h it follows that ea
h akk is an eigenvalue of A. The 
laim is 
lear for n = 1
so suppose that n ≥ 2. If k = 1 so that b11 = 0 then the �rst 
olumn of B is a

zero 
olumn and so |B| = 0. Otherwise k ≥ 2 and we have

|B| = b11|B11| = b11 · 0 = 0

where the se
ond equality follows by indu
tion as B11 is an (n − 1) × (n − 1)
upper triangular matrix with diagonal entry bkk = 0.

Conversely let µ ∈ R be su
h that µ 6= akk for all k = 1, 2, · · · , n. Then

A− µI is an upper triangular matrix and so by Question 9 we have

|A− µI| = Πn
k=1(akk − µ) 6= 0

as all terms in the produ
t are non-zero. Hen
e µ is not an eigenvalue of A

and we 
on
lude that the eigenvalues of A are exa
tly the entries on its main

diagonal.
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Problem Set 4 Eigenvalues and eigenve
tors appli
ation

1. From the de�nition we �nd that x0 = (1, 0, 0)T , x1 = (2, 1, 1)T .
2. Sin
e 3 ≡ 9 ≡ 0 (mod 3) and 7 ≡ 1 (mod 3), 2 ≡ 2 (mod 3) we get the

re
urren
e equations:

xn = 2xn−1+yn+zn, yn = xn−1+2yn−1+zn−1, zn = xn−1+yn−1+2zn−1 (n ≥ 1).

3. xn = Axn−1 where

A =





2 1 1
1 2 1
1 1 2





and n-fold repetition gives the equation xn = Anx0.

4. Put |A− λI| = 0 to give

(2− λ)((2 − λ)2 − 1))− ((2− λ)− 1) + (1− (2− λ)) = 0

⇒ (2− λ)3 − 2 + λ− 2 + λ+ 1− 1 + λ = 8− 12λ+ 6λ2 − λ3 + 3λ− 4 = 0

⇒ λ3 − 6λ2 + 9λ− 4 = (λ − 1)2(λ− 4) = 0.

Hen
e the eigenvalues of A are λ = 1 and λ = 4.
5. For λ = 1 we obtain:





1 1 1
1 1 1
1 1 1



x = 0 ⇒ (1, 0,−1)T , (0, 1,−1)T independent eigenve
tors,

for λ = 4 we obtain:





−2 1 1
1 −2 1
1 1 −2



x = 0 ⇒(1, 1, 1)T is an eigenve
tor.

6. A = PDP−1
where

P =





1 0 1
0 1 1
−1 −1 1



 , D =





1 0 0
0 1 0
0 0 4





and by a standard 
al
ulation we also get

P−1 =
1

3





2 −1 −1
−1 2 −1
1 1 1



 .

7.

An = PDnP−1 =
1

3





1 0 1
0 1 1
−1 −1 1









1 0 0
0 1 0
0 0 4n









2 −1 −1
−1 2 −1
1 1 1



 =

9



1

3





1 0 4n

0 1 4n

−1 −1 4n









2 −1 −1
−1 2 −1
1 1 1



 =
1

3





4n + 2 4n − 1 4n − 1
4n − 1 4n + 2 4n − 1
4n − 1 4n − 1 4n + 2



 .

8. We require Anx0 whi
h is:

xn =
1

3





4n + 2
4n − 1
4n − 1



 .

9. Question 8 gives the 
orre
t result (x0, y0, z0) = (1, 0, 0) (and (x1, y1, z1) =
(2, 1, 1)). By indu
tion we then get

xn = 2xn−1 + yn−1 + zn−1 =
1

3
((2 · 4n−1 + 2 · 2) + (4n−1 − 1) + (4n−1 − 1))

=
1

3

(

4 · 4n−1 + 2
)

=
1

3

(

4n + 2
)

and so the indu
tion 
ontinues.

Similar indu
tive 
al
ulations for yn and zn give the result.

10.

A =

[

0 −1
1 0

]

, A2 =

[

−1 0
0 −1

]

, A3 =

[

0 1
−1 0

]

, A4 =

[

1 0
0 1

]

.

Hen
e

(tA)n

n!
=

tn

n!
I2 if n ≡ 0(mod 4),

(tA)n

n!
=

tn

n!
A if n ≡ 1 (mod 4)

(tA)n

n!
=

tn

n!
A2

if n ≡ 2(mod 4),

(tA)n

n!
=

tn

n!
A3

if n ≡ 3 (mod 4).

Hen
e the entries at (1, 1), (1, 2),(2, 1) and (2, 2) in etA respe
tively are:

∞
∑

n=0

t4n

(4n)!
−

∞
∑

n=0

t4n+2

(4n+ 2)!
=

∞
∑

n=0

(−1)nt2n

(2n)!
= cos t,

∞
∑

n=0

−t4n+1

(4n+ 1)!
+

∞
∑

n=0

t4n+3

(4n+ 3)!
= −

∞
∑

n=0

(−1)nt2n+1

(2n+ 1)!
= − sin t,

∞
∑

n=0

t4n+1

(4n+ 1)!
−

∞
∑

n=0

t4n+3

(4n+ 3)!
=

∞
∑

n=0

(−1)nt2n+1

(2n+ 1)!
= sin t,

∞
∑

n=0

t4n

(4n)!
−

∞
∑

n=0

t4n+2

(4n+ 2)!
=

∞
∑

n=0

(−1)nt2n

(2n)!
= cos t.

∴etA =

[

cos t − sin t
sin t cos t

]

.
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Problem Set 5 Positive de�nite matri
es and quadrati
 forms

1 & 2. Clearly In is symmetri
 and equal to its 
onjugate transpose. More-

over for any z = (z1, · · · , zn) ∈ C
n
we have

z∗T Inz = z∗T z =z1z1 + · · ·+ znz = |z1|2 + · · ·+ |zn|2 > 0,

as z 6= 0, as required.

3. Let x = (x, y, z) ∈ R3
. Then

xTAx =
[

x y z
]





2 −1 0
−1 2 −1
0 −1 2









x

y

z



 =
[

2x− y −x+ 2y − z −y + 2z
]





x

y

z



 =

= (2x2 − xy) + (−xy+2y2 − yz)+ (−yz+2z2) = 2(x2 + y2 + z2)− (2xy+2yz)

= x2 + z2 + (x− y)2 + (y − z)2 > 0.

4. Let x = (x, y). Then

xTAx = x2 + 4xy + y2 = (x+ y)2 + 2xy.

Hen
e if we take y = −x 6= 0 then the out
ome will be negative and so A is not

positive de�nite. In parti
ular, taking x = [1 − 1]T gives xTAx = −2 < 0.
5. Suppose that x is an eigenve
tor of the positive de�nite matrix A with

eigenvalue λ. Then

0 < xTAx = xT (λx) = λxTx.

Sin
e xTx > 0 it follows that λ > 0.
6&7. Let the entries of A be a, b, c and d in the usual way. Equating xTAx

with Q(x, y) then gives

ax2 + (b+ c)xy + dy2 = 5x2 − 10xy + y2.

Hen
e we need a = 5, d = 1 and b and c 
an be any numbers subje
t to the


onstraint that b + c = −10. In Question 7 we demand that A is symmetri
 so

that b = c = −5. Hen
e the unique symmetri
 solution to our equation is:

A =

[

5 −5
−5 1

]

.

8. In general, taking M = (aij) and writing the 
oe�
ient of xixj in

q(x1, x2, · · · , xn) to be bij we see that bij = aij + aji. Hen
e we 
an take

M to be symmetri
 by putting aij = aji =
bij
2
.

9. Using the fa
t that A is symmetri
 and that the transpose of a 
onstant

is itself we have the sequen
e of equalities:

vT
1 Av2 = vT

1 λ2v2 = λ2v1 • v2 = λ2v2 • v1

11



= (Av2)
Tv1 = vT

2 A
Tv1 = vT

2 Av1 = vT
2 λ1v1

= λ1v2 • v1 = λ1v1 • v2

and so we 
on
lude that

λ1(v1 • v2) = λ2(v1 • v2).

10. We dedu
e at on
e from the result of Question 9 that

(λ1 − λ2)v1 • v2 = 0

and so given that λ1 6= λ2 we may 
an
el that fa
tor to 
on
lude that v1•v2 = 0,
whi
h is to say that eigenve
tors of distin
t eigenvalues of a symmetri
 matrix

are mutually orthogonal.

Problem Set 6 Matri
es and Analyti
al geometry

1. In two dimensions, the standard basis ve
tors are u = (1, 0)T and v =
(0, 1)T . We get the 
olumns of A and of A−1

respe
tively by rotating ea
h of

them in turn through −30◦ and 30◦ to give the transformation matri
es:

A =

[√
3

2

1

2

− 1

2

√
3

2

]

A−1 =

[√
3

2
− 1

2
1

2

√
3

2

]

.

2. This is a linear transformation of the plane and so the 
olumns of the

transformation matrix A are the images of the respe
tive standard basis ve
tors,

u =
(

1

0

)

and v =
(

0

1

)

under the mapping. We see that umaps onto the unit ve
tor

making an angle of 2× π
8
= π

4
with the axes, whi
h is

1√
2

(

1

1

)

, while re�e
ting v

in the line θ = π
8
maps it into the dire
tion θ = π

8
−

(

π
2
− π

8

)

= −π
4
, when
e v

is mapped to

1√
2

(

1

−1

)

. Hen
e the required matrix is:

B =
1√
2

[

1 1
1 −1

]

.

3. The 
olumns of A are the respe
tive images of the standard basis ve
tors

(

1

0

)

and

(

0

1

)

. The former is mapped by this shearing transformation to
(

1

−5

)

while

the latter is invariant (�xed) by this linear transformation.

A =

[

1 0
−5 1

]

.

4. Following the pro
edure of the �rst two questions, we see that in general

the matrix for a rotation of θ anti-
lo
kwise about the origin is given by:

Rot(θ) =

[

cos θ − sin θ
sin θ cos θ

]

.
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Geometri
ally it is 
lear that Rot(θ)Rot(φ) = Rot(θ + φ). This 
an be veri�ed

algebrai
ally as well:

[

cos θ − sin θ
sin θ cos θ

] [

cosφ − sinφ
sinφ cosφ

]

=

[

cos θ sinφ− sin θ sinφ − cos θ sinφ− sin θ − sin θ cosφ
sin θ cosφ+ cos θ sinφ − sin θ sinφ+ cos θ sinφ+ cos θ cosφ

]

=

[

cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

]

.

5. And for re�e
tion in the line making an angle θ:

Ref(θ) =

[

cos 2θ sin 2θ
sin 2θ − cos 2θ

]

;

for example, to �nd the se
ond 
olumn entries we need the 
oodinates of the

tip of the position ve
tor v =
(

0
1

)

after re�e
tion in the line. For 0 ≤ θ ≤ π
2
, the

angle of the image ve
tor is

π
2
− 2(π

2
− θ) = 2θ − π

2
. Hen
e the respse
tive x-

and y-
oordinates are:

cos(2θ − π

2
) = cos 2θ cos(

π

2
) + sin 2θ sin(

π

2
) = sin 2θ;

sin(2θ − π

2
) = sin 2θ cos(

π

2
)− cos 2θ sin

π

2
= − cos 2θ.

For

π
2
≤ θ ≤ π the angle of the image ve
tor is

π
2
+ 2(θ − π

2
) = 2θ − π

2
, whi
h

yields the same result.

6. The transformation matrix is the produ
t:

[

cos 2φ sin 2φ
sin 2φ − cos 2φ

] [

cos θ − sin θ
sin θ cos θ

]

=

[

cos 2φ cos θ + sin 2φ sin θ − cos 2φ sin θ + sin 2φ cos θ
sin 2φ cos θ − cos 2φ sin θ − sin 2φ sin θ − cos 2φ cos θ

]

=

[

cos(2φ− θ) sin(2φ− θ)
sin(2φ− θ) − cos(2φ− θ)

]

,

whi
h is the transformation of Ref(φ − θ
2
).

7. In this 
ase we put θ = −π
6
and φ = π

8
so the produ
t of the 
orresponding

matri
es represents the transformation Ref(φ − θ
2
) = Ref(π

8
+ π

12
) = Ref(5π

24
).

The matrix of the transformation is

1

2
√
2

[

1 1
1 −1

] [√
3 1

−1
√
3

]

=
1

4

[√
6−

√
2

√
6 +

√
2√

6 +
√
2

√
2−

√
6

]

,

and therefore we may infer that the respe
tive values of cos(2φ − θ) = cos 5π
12

and sin 5π
12
:

cos
5π

12
=

√
6−

√
2

4
, sin

5π

12
=

√
6 +

√
2

4
.

Comment These values 
an be veri�ed dire
tly. For example:

cos
5π

12
= cos(

π

4
+

π

6
) = cos

π

4
cos

π

6
− sin

π

4
sin

π

6

13



=
1√
2

(

√
3

2
− 1

2

)

=

√
6−

√
2

4
.

8. Reversing the order of the produ
t from Question 6 gives

[

cos θ − sin θ
sin θ cos θ

] [

cos 2φ sin 2φ
sin 2φ − cos 2φ

]

=

[

cos θ cos 2φ− sin θ sin 2φ cos θ sin 2φ+ sin θ cos 2φ
sin θ cos 2φ+ cos θ sin 2φ sin θ sin 2φ− cos θ cos 2φ

]

=

[

cos(2φ+ θ) sin(2φ+ θ)
sin(2φ+ θ) − cos(2φ+ θ)

]

,

whi
h is the matrix of Ref(φ + θ
2
).

9. By Question 5, the matrix for Ref(φ)Ref(θ) is

[

cos 2φ sin 2φ
sin 2φ − cos 2φ

] [

cos 2θ sin 2θ
sin 2θ − cos 2θ

]

=

[

cos 2φ cos 2θ + sin 2φ cos 2θ cos 2φ sin 2θ − sin 2φ cos 2θ
sin 2φ cos 2θ − cos 2φ sin 2θ sin 2φ sin 2θ + cos 2φ cos 2θ

]

=

[

cos(2(φ− θ)) sin(2(θ − φ))
sin(2(φ− θ)) cos(2(φ− θ))

]

=

[

cos(2(φ− θ) − sin(2(φ− θ))
sin(2(φ− θ)) cos(2(φ− θ))

]

.

Hen
e Ref(φ)Ref(θ) = Rot(2(φ− θ)).
10.

A =





0 0 1
1 0 0
0 1 0





The inverse A−1
will represent the linear transformation su
h that i 7→k 7→ j,

whi
h gives:





0 1 0
0 0 1
1 0 0



 .

To �nd the eigenvalues λ we solve |A− λI| = 0 ⇔
∣

∣

∣

∣

∣

∣

−λ 0 1
1 −λ 0
0 1 −λ

∣

∣

∣

∣

∣

∣

= 0;

Expanding by the �rst row gives the equation:

⇔ −λ(λ2 − 0)− 0 + (1− 0) = 0 ⇔ λ3 = 1 ⇔ λ = 1.

To �nd the 
orresponding eigenspa
e we solve (A − I)x = 0, whi
h yields the

equations −x+ z = x− y = y− z = 0 ⇔ x = y = z. Hen
e eigenve
tors are the

non-zero multiples of x = (1, 1, 1)T .
Comment The a
tion of this linear transformation is that of rotation through

2π
3
about the axis x = y = z. Any linear mapping that is a rotation will �x its

axis of rotation pointwise and so must have 1 as an eigenvalue and the axis of

rotation as the 
orresponding eigenspa
e, with no other eigenve
tors.
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Problem Set 7 Linear Independen
e and bases

1. We determine the rank of the matrix of ve
tors.









−1 −2 2
2 1 4
0 1 −1
−3 2 3









→









−1 −2 2
0 1 6
0 1 −1
0 6 −3









→









1 2 −2
0 1 6
0 0 −7
0 0 3









,

whi
h is rank 3 so the given set of 3 ve
tors is independent.

2.

M =









1 −1 3 2
−1 3 −2 2
2 1 2 −1
−1 0 2 7









→









1 −1 3 2
0 2 1 4
0 3 −4 −5
0 −1 5 9









→









1 −1 3 2
0 1 −5 −9
0 2 1 4
0 3 −4 −5









→









1 −1 3 2
0 1 −5 9
0 0 11 22
0 0 11 22









→









1 −1 3 2
0 1 −5 9
0 0 1 2
0 0 0 0









.

Hen
e the subspa
e has dimension 3 and has a basis {(1,−1, 3, 2), (0, 1,−5, 9), (0, 0, 1, 2)}.
3. Put x2 = c1, x3 = c2, x4 = c3 so that the solution of the equation of the

hyperlane is

x = (
3

2
c1 − 2c2 +

1

2
c3, c1, c2, c3)

= c1(
3

2
, 1, 0, 0) + c2(−2, 0, 1, 0) + c3(

1

2
, 0, 0, 1).

Therefore a basis for the hyperplane is, for example

{(3, 2, 0, 0), (−2, 0, 1, 0), (1, 0, 0, 2)}.

4. Suppose that

u = a1u1+a2u2 + · · ·+ akuk = b1u1 + b2u2 + · · ·+ bkuk

⇒ (a1 − b1)u1 + (a2 − b2)u2 + · · ·+ (ak − bk)uk = 0,

and sin
e {u1,u2, · · · ,uk} is an independent set, a1 − b1 = a2 − b2 = · · · =
ak − bk = 0, whi
h is to say that a1 = b1, a2 = b2 · · · , ak = bk.

5. Let A = {u1,u2, · · · ,uk} be a �nite subset of a ve
tor spa
e V and

suppose that uj = a1u1 + · · ·+ aiui for some 1 ≤ i < j ≤ k. Then

a1u1 + · · ·+ aiui + 0ui+1 + · · ·+ 0uj−1 − uj + 0uj+1 + · · ·+ 0uk = 0

showing that A is not linearly independent. It follows by the 
ontrapositive that

if A is linearly independent then no member of A is a linear 
ombination of its

prede
essors.
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Conversely, suppose that A is not linearly independent so that we have

a1u1 + a2u2 + · · ·+ akuk = 0

with not all the ai equal to zero. Let j be the greatest subs
ript i su
h that

ai 6= 0. Note that j ≥ 2 as u1 6= 0. Then

uj = −a1

aj
u1 −

a2

aj
u2 − · · · − aj−1

aj
uj−1

so that uj is a linear 
ombination of its prede
essors in the list. Hen
e it follows

that if no member of A is a linear 
ombination of the prede
essors in the list,

then A is independent.

6. Let R = 〈r1, r2, · · · , rn〉 where A = {r1, r2, · · · , rn} is the set of row

ve
tors of M . Swapping two rows does not alter the generating set A of R

and so does not alter the subspa
e generated by that set. Suppose next that

ri is repla
ed by ari for some a 6= 0. Then for any linear 
ombination u =
a1r1 + a2r2 + · · ·+ anrn of the members of A we have

u = a1r1+a2r2 + · · ·+ ai

a
(ari) + · · ·+ anrn

so that R ⊆ S = 〈r1, r2, · · · , ari, · · · , rn〉. By the same argument, repla
ing the

generator ari by ri shows that S ⊆ R. Therefore R = S so that the row spa
e

is un
hanged by this row operation.

Finally, let us repla
e the generator rj of A by r = rj+ari, again 
alling the

subspa
e generated S . Then sin
e r ∈ R it follows that S ⊆ R. However,

sin
e rj = r− ari it follows in the same way that ea
h member of A lies in the

subspa
e S so that R ⊆ S and on
e more we have the required equality R = S

of subspa
es.

7. By Question 6, the row spa
e R of M and of its e
helon form E are the

same. The dimension of R equals the size of any maximal independent set of

rows of either matrix as any su
h set is a basis for R. Clearly E is spanned by

its non-zero rows, whi
h number m−k, so that the 
ommon row rank of M and

E is m− k.

8. Ea
h non-zero row of the e
helon form E ofM has one pivotal 1. Consider
the 
orresponding set B of 
olumns of E. Ea
h su
h 
olumn C has a unique

non-zero entry in its pivotal 1 in row i say. Sin
e every other member of B has a

zero in row i, it follows that C is not a linear 
ombination of the other 
olumns.

Sin
e this applies to ea
h member of B, it follows from Question 7 that B is an

independent set.

9. From Question 8 it follows that the 
olumn rank of E is at least m− k,

the 
ommon value of the row rank of E and M . In parti
ular the row rank of

M is less than or equal to the 
olumn rank of M .

10. By Question 9 we have that


olrankM = rowrank(MT ) ≤ 
olrank(MT ) = rowrank(M);
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therefore it follows from this and Question 9 that the row rank and 
olumn

ranks of M are equal and that their 
ommon value is m − k, the number of

non-zero rows in the e
helon from of M .

Comment This 
ommon value 
an therefore be referred to simply as the rank

of the matrix M .

Problem Set 8

1.

L(0) = L(0+ 0) = L(0) + L(0)

whereupon, subtra
ting L(0) from both sides gives L(0) = 0.

Comment Bear in mind that this is saying that L(0U ) = 0v, the zeros of the

respe
tive domain and range spa
es.

2. The 
ase where k = 2 is given and the k = 1 
ase follows from this by

taking a2 = 0. Hen
e assume that k ≥ 3. We then bra
ket as below and apply

the k = 2 
ase, and then the indu
tive hypothesis for the k − 1 
ase as follows:

L(a1u1 + a2u2 + · · ·+ akuk) = L(a1u1 + (a2u2 + · · ·+ akuk))

= a1L(u1) + L(a2u2 + · · ·+ akuk)

= a1L(u1) + a2L(u2) + · · ·+ akL(uk).

Comment In the same way we 
an show that if a set is 
losed under the

taking of linear 
ombinations of two ve
tors, then the same is true of arbitrary

linear 
ombinations.

3. By Question 1, L(0) = 0 so that the kernel of L is not empty. Suppose

now that L(u) = L(v) = 0 and that a, b are s
alars. Then

L(au+ bv) = aL(u) + bL(v) = a0+b0 = 0+ 0 = 0.

Hen
e ker(L) is a subspa
e of the domain spa
e U .

4. By Question 1, the range set L(U) 
ontains 0V and so is not empty. Let

x,y ∈ L(U) so that x = L(u) and y = L(v) say and let a, b be s
alars. Then

L(au+ bv) = aL(u) + bL(v) = ax+ by

and so L(U) is 
losed under the taking of linear 
ombinations and is therefore

a subspa
e of the 
odomain spa
e V .

5. Suppose that L is one-to-one and that u,∈ ker(L). Then by Question 1 we
then have L(u) = L(0) = 0 and sin
e L is inje
tive (one-to-one) it follows that

u = 0. Therefore if L is inje
tive then ker(L) = {0}. Conversely suppose that

L(u) = L(v). Then by linearity of L we hav that L(u− v) =L(u) − L(v) = 0

so that u − v ∈ ker(L). If we suppose now that ker(L) is the trivial subspa
e
{0} then we have u − v = 0 so that u = v and therefore L is one-to-one. In
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on
lusion a linear mapping L is one-to-one if and only if the kernel of L is

trivial.

6. A typi
al member of the range isMu where uT = (u1, u2, · · · , un) say. We

then have that the ith entry of the ve
tor Mu equals ai1u1+ai2u2+ · · ·+aimun

and so, writing cj for the jth 
olumn of M we infer that:

Mu =u1c1 + u2c2 + · · ·+ uncn.

Hen
e the range spa
e L(U) is 
ontained in the span of the 
olumns of M .

Conversely taking ui = 1 and uj = 0 for all j 6= i we see that ea
h cj lies in

L(U). Therefore the 
olumns of M form a aspanning set for the range spa
e

L(U).
7. Let cj = L(ej), where ej is the jth standard basis ve
tor of Rn

. Let M

be the m× n matrix whose jth 
olumn is cj . Then we have using Questions 5

and 6:

L(u) = L(u1e1 + u2e2 + · · ·+ unen) = u1L(e1)+u2L(e2) + · · ·+ unL(en)

= u1c1 + u2c2 + · · ·+ uncn = M(u).

Therefore the a
tion of L is that of the matrix M the 
olumns of whi
h are the

images of the ea
h of the standard basis ve
tors taken in the natural order.

8. Sin
e U and W are subspa
es of V we 
ertainly have 0 ∈ U ∩ W . Let

u,v ∈ U ∩ W and take s
alars a, b. Then, again sin
e ea
h is a subspa
e,

au+ bv ∈ U ∩W , when
e it follows that U ∩W is a subspa
e of V .

9. We have A ⊆ 〈B〉. Take an arbitrary member of 〈A〉, whi
h may be

written as u = a1u1 + a2u2 + · · · + anun where ea
h ui ∈ A. Then ea
h

ui ∈ 〈B〉 and sin
e 〈B〉 is a subspa
e it is 
losed under the taking of arbitrary

linear 
ombinations so that, in parti
ular, u ∈ 〈B〉. Sin
e u was an arbitrary

member of 〈A〉 it follows that 〈A〉 ⊆ 〈B〉, as required.
10. Sin
e B1 is independent and B2 is a spanning set for V , it follows

that |B1| ≤ |B2|. Inter
hanging B1 and B2 is the previous reasoning gives the

opposite inequality and so |B1| = |B2|. Therefore all bases of V have the same

number of elements, the dimension of V .

Problem Set 9

1. Certainly 0 = 0+ 0 ∈U +W so U +W 6= ∅. Let x1,x2 ∈ U +W so that

x1=u1 + v1 say and x2 = u2 + v2. Take s
alars a,b. Then

ax1 + bx2 = a(u1 + v1) + b(u2 + v2) = (au1 + bu2) + (av1 + bv2) ∈ U +W,

and so U +W is a subspa
e of V .

2. The dimension of the domain spa
e is given as n and, by Question 7 of

Set 8 it follows that the dimension of the range spa
e L(U) is the rank m ≤ n
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of M . Now the kernel of L is the solution spa
e of the system Mx = 0, whi
h

is that of Ex = 0, where E is the e
helon form of M . Ea
h unknown xi for

whi
h the ith 
olumn of E is not a pivot 
olumn may be assigned freely, with

the other unknowns expressed in terms of these free variables. This leads to a

basis of order n−m for the kernel of L. Therefore

dim(kernel(L)) + dim(range(L)) = dim(domain(L)).

3. Sin
e A = {u1,u2, · · · ,uk} is an independent subset of V and S =
{v1,v2, · · · ,vm} spans V we know from the Ex
hange Lemma that k ≤ m. If

A does not span V then some member of S, without loss we may assume it is

v1, does lie in 〈A〉. Then A ∪ {v1} = {u1,u2, · · · ,uk,v1} is independent as no

member of the set is a linear 
ombination of its prede
essors. We may repeat

this argument as often as required until we have extended A to a basis B of V .

Therefore any independent subset of a �nite dimensional ve
tor spa
e may be

extended to a basis for V .

4. Let u and v respe
tively be solutions to the systems Ax = 0 and Ax = b.

Then

A(u+ v) = Au+Av = 0+b =b

so it follows that U +v 
onsists of solutions of the inhomogeneous system Ax =
b, where U is the subspa
e of solutions of the homgeneous system.

Conversely let w be any solution of Ax = b. Then

A(w − v) = Aw −Av = b−b = 0

so that v −w ∈ U and sin
e w = (w− v) + v ∈ U + v. Therefore the solution

set of Ax = b is U + v where U is the subspa
e of solutions of Ax = 0 and v is

any solution of the system Ax = b.

5. Let U be a subspa
e of V . By Question 3, any basis B of U may be

extended to a basis B′
of V . Hen
e dim(U) ≤ dim(V ). Moreover if we have

equality then sin
e B may be extended to a basis for V and all bases for V have

the same number of elements, it follows that B is a basis for V and so U = V .

Therefore a subspa
e U of a �nite dimensional ve
tor spa
e V has dimension no

larger than that of V with equality of dimension if and only if U = V .

6. Let S = {u1,u2, · · · ,uk} be a spanning set for V and let B be a maximal

independent subset of S. If B were not a basis for V there would exist some

ui ∈ S su
h that ui 6∈ 〈B〉 as otherwise S ⊆ 〈B〉 and then V = 〈S〉 ⊆ 〈B〉 in
whi
h 
ase B would be a basis for V . But then B ∪ {ui} is an independent set

that stri
tly 
ontains B as, atta
hing ui to the end of any list of the elements of

B gives a set in whi
h no members is a linear 
ombination of its prede
essors.

However this now 
ontradi
ts that B is a maximal independent subset of S.

Therefore any maximal independent subset of a spanning set for V is a basis for

V .

7. By Question 5, U ∩ W is a �nite dimensional with basis B1say with k

elements. By Question 4, B1 = {u1, · · · ,uk} 
an be extended to a �nite basis

B2 = B1 ∪ C where C = {c1, · · · , cm} say of U and extended to a �nite basis
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B3 = B1 ∪D where D = {d1, · · · ,dn} say of W with both these unions being

disjoint, meaning that B2 ∩ C = ∅ = B3 ∩D. Note also that C ∩D = ∅ as no

member of C ∪D lies in U ∩W . We 
laim that B = B1 ∪ C ∪D is a basis for

U +W . First we show that B is independent. To this end 
onsider the set B

listed in the order

B = {u1, · · · ,uk, c1, · · · , cm,d1, · · · ,dn}.

Sin
e B2 spans U and B3 spans W it follows that B = B2∪B3 spans the ve
tor

spa
e U +W . We next show that B is independent. Sin
e B2 is an independent

set, no ui or cj is a linear 
ombination of its prede
essors in the above list for

B. Suppose however that for some di we have

di = a1u1+· · ·+akuk+ak+1c1+· · ·+ak+mcm+ak+m+1d1+· · ·+ak+m+i−1di−1

(1)

⇒ di−ak+m+1d1−· · ·−ak+m−idi−1 = a1u1+· · ·+akuk+ak+1c1+· · ·+ak+mcm
(2)

However the RHS of (2) lies in U while the LHS lies in W so that both sides

represent a 
ommon member x ∈ U∩W . Hen
e the RHS of (2) may therefore be

written as a linear 
ombination of the ve
tors of B1 it follows that di is a linear


ombination of u1, · · · ,uk,d1, · · · ,di−1, 
ontradi
ting that B3 is a basis for W .

It follows that B is indeed an independent set and therefore a basis for U +W .

Moreover it now follows that the order of B is k+m+n = (k+m)+(k+n)−k,

whi
h is equivalent to the required statement:

dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ).

8. Let x = u + v where u ∈ U and v ∈W and let y ∈U ∩ W . Then

y,−y ∈U ∩ W so that u+y ∈U and u− y ∈W and so x =(u+ y) + (v − y).
It follows that if the representation of any member x ∈ U +W is unique then

U ∩W = {0}.
Conversely suppose that U ∩W = {0} and let x =u1 + v1 = u2 + v2where

u1,u2 ∈ U and v1,v2 ∈ W . Then u1 − u2 = v1 − v2 ∈ U ∩W = {0} so that

u1 = u2 and v1 = v2.

9. Certainly 0 ∈ U⊥
so that U⊥ 6= ∅. Take any v,w ∈ U⊥

and s
alars a, b.

Then for any u ∈ U we have

u•(av + bw) = u•(av) + u•(bw)

= a(u • v) + b(u •w) =a0 + b0 = 0.

Therefore U⊥
is a subspa
e of V . Moreover if v ∈ U∩U⊥

then v • v =0, when
e
v = 0 and so U ∩ U⊥ = {0}.

10. Let A = {u1,u2, · · · ,uk} be a basis of U . Then U⊥
is exa
tly the

solution set of Mx = 0 where the rows of M are exa
tly the members of A. The

solution spa
e is the kernel of the linear mapping de�ned by left multipli
ation

by M , the rank of whi
h, sin
e A is independent, is k. It follows by Question

6 of Set 8 that the dimension of U⊥
is given by n − k. It now follows from
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Question 6 that dim(U ⊕ U⊥) = k+ (n− k)− 0 = n. Therefore, by Question 4

we 
on
lude that

U ⊕ U⊥ = V.

Problem Set 10

1. Let us write

v = a1v1+a2v2 + · · ·+ akvk

⇒ v•v1 = a1v • v1 + a2v • v2 + · · ·+ akv•vk

= a1||v1||2 + a2(0) + · · ·+ ak(0) = a1

And so we see that a1 = v • v1 and by the same argument we obtain generally

that ai = v•vi (1 ≤ i ≤ k), as required.
2. Suppose that

v = a1v1+a2v2 + · · ·+ akvk = 0.

Then ai = v • vi = v • 0 = 0, for all 1 ≤ i ≤ k, and therefore {v1,v2, · · · ,vk}
is independent.

3.

||v1|| =
1

22
(3 + 1) = 1, ||v2|| =

1

22
((−1)2 + 3) = 1,

so both ve
tors are unit ve
tors. Moreover v1 •v2 = 1

22
(−

√
3+

√
3) = 0 so that

the pair B = {v1,v2}form an orthonormal set of order 2. By Question 2, B is

independent and is therefore B is a basis of the 2-dimensional ve
tor spa
e R2
.

Given v = (-2,3) we have the B-
oordinates of v are given by

(v • v1,v • v2) = (−
√
3 +

3

2
, 1 +

3
√
3

2
).

4. We �rst verify that W = {w1, · · · ,wk} is an orthogonal set of ve
tors.

The equations are:

w1 = v1, wi = vi−
vi •w1

w1 •w1

w1−
vi •w2

w2 •w2

w2−· · ·− vi •wi−1

wi−1 •wi−1

wi−1, 2 ≤ i ≤ k.

(3)

Suppose indu
tively that for all j < i we have wi • wj = 0, whi
h holds by

default when i = 1. Now take i ≥ 2 and suppose that the 
laim holds for all

lesser values of i. Then from (3) and the indu
tive hypothesis we have

wi •wj = vi •wj −
vi •wj

wj • wj

wj •wj = 0,

and so the indu
tion 
ontinues and therefore the set W 
onsists of mutually

orthogonal ve
tors. To 
omplete the proof we need to prove that no member of
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W is the zero ve
tor, whi
h is true for w1 = v1 as the orginal set of ve
tors is

independent. Again we may now 
he
k this indu
tively. By 
onstru
tion, the

set {w1, · · · ,wi−1} lies in the span of {v1, · · · ,vi−1}. If now wi = 0 it would

follow from (3) that vi was in the span of {w1, · · · ,wi−1} and hen
e in the

span of {v1, · · · ,vi−1} 
ontrary to the independen
e of the original basis set

{v1, · · · ,vk}. Therefore the set W is an orthogonal set of non-zero ve
tors and

the 
orrepsonding set of unit ve
tors forms an orthogonal basis of the ve
tor

spa
e spanned by {v1, · · · ,vk}.
5. The given homogeneous system of equations gives rise to the row redu
tion

as follows:

x + y + z + w = 0
−x + y + w = 0

[

1 1 1 1 0
−1 1 0 1 0

]

→
[

1 1 1 1 0
0 2 1 2 0

]

→
[

1 0 1

2
0 0

0 2 1 2 0

]

;

→
[

1 0 1

2
0 0

0 1 1

2
1 0

]

putting z = 2c and w = d for arbitrary 
onstants c and d gives x = −c, y =
−c−d. Hen
e the solution ve
tor x is given by x = c(−1,−1, 2, 0)+d(0,−1, 0, 1).
Hen
e as a basis for the solution spa
e we may 
hoose {v1,v2} ={(1, 1,−2, 0), (0, 1, 0,−1)}.

Applying the Gram-S
hmidt equations we have w1 = v1 = (1, 1,−2, 0).
Using the Gram-S
hmidt equation we then have:

w2 = v2 −
v2 •w1

w1 •w1

w1 = (0, 1, 0,−1)− 0 + 1 + 0 + 0

1 + 1 + 4 + 0
(1, 1,−2, 0)

= (0, 1, 0,−1)− 1

6
(1, 1,−2, 0) =

1

6
(−1, 5, 2,−6).

Hen
e ||w1|| =
√
1 + 1 + 4 + 0 =

√
6 and ||w2|| = 1

6

√
1 + 25 + 4 + 36 = 1

6

√
66. =

The 
orresponding orthonmormal basis for the solution spa
e of the system

therefore is

{ w1

||w1||
,

w2

||w2||
} =

1√
6
(1, 1,−2, 0),

1√
66

(−1, 5, 2,−6).

6.













−4 1 1 1 0 0
5 −3 −2 0 1 0
−1 2 1 −1 −1 0
0 2 1 0 0 1
−1 5 3 4 3 5













→













1 −2 −1 1 1 0
5 −3 −2 0 1 0
−1 2 1 −1 −1 0
0 2 1 0 0 1
−1 5 3 4 3 5













→













1 −2 −1 1 1 0
0 7 3 −5 −4 0
0 0 0 0 0 0
0 2 1 0 0 1
0 3 2 5 4 5













→













1 −2 −1 1 1 0
0 2 1 0 0 1
0 7 3 −5 −4 0
0 3 2 5 4 5
0 0 0 0 0 0













→













1 0 0 1 1 1
0 2 1 0 0 1
0 0 − 1

2
−5 −4 − 7

2

0 0 − 1

2
5 4 7

2

0 0 0 0 0 0













→













1 0 0 1 1 1
0 2 1 0 0 1
0 0 1 10 8 7
0 0 0 0 0 0
0 0 0 0 0 0












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→













1 0 0 1 1 1
0 2 0 −10 −8 −6
0 0 1 10 8 7
0 0 0 0 0 0
0 0 0 0 0 0













→













1 0 0 1 1 1
0 1 0 −5 −4 −3
0 0 1 10 8 7
0 0 0 0 0 0
0 0 0 0 0 0













.

Hen
e the 
hange-of-basis matrix from B- to C-
oordinates is

P =





1 1 1
−5 −4 −3
10 8 7



 .

Comment This 
al
ulation that both sets are independent and generate the

same spa
e as the row redu
ed matrix has exa
tly two rows of zeros.

Continuing our question, the ve
tor v = 2(1, 0,−1, 0, 4)T−(0, 1,−1, 0, 3) has
B-
oords 2(1, 0, 0)− (0, 1, 0) = (2,−1, 0) and so the C-
oordinates of vis Pv

=





1 1 1
−5 −4 −3
10 8 7









2
−1
0



 =





1
−6
12



 .

7. First we �nd the eigenvalues of the transformation:

∣

∣

∣

∣

1− λ 5
2 4− λ

∣

∣

∣

∣

= (1 − λ)(4 − λ)− 10 = 0

⇒ λ2 − 5λ− 6 = (λ+ 1)(λ− 6) = 0,

so that λ ∈ {−1, 6}. The equation for an eigenve
tor with λ1 = −1 is 2x+5y = 0
so that v1=(5,−2)T . For λ2 = 6 the equation is −5x + 5y = 0 so that v2 =
(1, 1)T is an eigenve
tor. Hen
e our matrix P of eigenve
tors and its inverse

P−1
are given by

P =

[

5 1
−2 1

]

P−1 =
1

7

[

1 −1
2 5

]

D =

[

−1 0
0 6

]

and so A = PDP−1
as 
an be 
he
ked dire
tly. Dire
t 
al
ulation now gives

that for any ve
tor v = (a, b)T :

Anv = PDnP−1v =
1

7

[

(−1)n5(a− b) + 6n(2a+ 5b)
2(−1)n+1(a− b) + 6n(2a+ 5b)

]

.

Hen
e, as long as 2a+5b 6= 0, whi
h is to say v is not a multiple of the eigenve
tor

of the smaller eigenvalue, for large n, the dire
tion of Anv approa
hes that of

v2 = (1, 1)T .
8. Let {u1, · · · ,un} denote an orthonormal basis for Rn

. Write v = a1u1 +
· · · + anun and w = b1u1 + · · · + bnun so that, by orthogonality and the fa
t

that ui • ui = 1 we have

v •w = a1b1 + · · ·+ anbn = (v • u1)(w • u1) + · · ·+ (v • un)(w • un).
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Putting w = v is this result gives

v • v = ||v||2 = (v • u1)
2 + · · ·+ (v • un)

2.

9. We extend the orthonormal set {u1, · · · ,uk} to an orthonormal basis

{u1, · · · ,un} for Rn
by the Gram-S
hmidt algorithm as this will not alter the

�rst listed set of k orthonormal ve
tors. All the terms on the right in Parseval's

equality are non-negative and so, deleting all but the �rst k terms gives Bessel's

inequality:

(v • u1)
2 + · · ·+ (v • uk)

2 ≤ ||v||2.
10. The least squares approximation to a set (x1, y1), · · · , (xn, yn) is the line

y = mx+ b where for 1 = (1, 1, · · · 1), x = (x1, · · · , xn), y = (y1, · · · , yn)

m =
(1 • 1)(x • y) − (1 • x)(1 • y)

(1 • 1)(x • x)− (1 • x)2
b =

(x • x)(1 • y)− (x • y)(1 • x)
(1 • 1)(x • x)− (1 • x)2 .

In this example x = (−1, 1, 3, 5) and y = (1,−1,−4,−4) and so

m =
(4)(−34)− (8)(−8)

(4)(36)− 82
= − 9

10

b =
(36)(−8)− (−34)(8)

(4)(36)− 82
= −1

5
.

The line of best �t is therefore y = − 9

10
x− 1

5
.
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