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Solutions and Comments for the Problems

Problem Set 1
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Integrating by parts with u =y, dv = siny dy gives du = dy and v = — cos y:
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3. We change the order of integation because we do not know how to in-
tegrate e’ (indeed no elementary function differentiates to gives this). For a
fixed value of y, = varies from a lower value of 0 up to an upper limit of y? (for a
given value of y, the point on the boundary curve (z,y) satisfies y = v/x so that
x = y?). The range of y is then from 0 up to 1 Hence the integral is re-written

as
! v ! 3 a2
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4. The region of integration is a right-triangle bounded by the lines y = x,
y = 5 and the y-axis. The given limits have inner variable y. To reverse the



order of integration we use horizontal stripes. The limits in this order are (inner)
x from 0 to y; (outer) y from O to 5. Hence the integral becomes
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5. The region of integration is the right angled triangle with vertices (0, 0), (1,0), (1,2),

the sides being the lines y = 0, x = 1 and y = 2z. For a fixed value of z, y
ranges over the interval [0, 2x] as determining the inner limits of the transformed

integral. The alternative form integral is then:
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For the integral in = put u = 1 — 22 so that du = —2xdz so that xdx = —

x=1gives u =0 and = = 0 gives u = 1. Hence
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On the other hand, the volume is that of a tetrahedron with vertices (1,0, 0), (0,1, 0), (0,0, 1), (0,0, 0).
The base is an equilateral triangle T of side length /12 + (—1)2 + 02 = /2. The
altitude h of T' satisfies

L2 2 _ 2 2 _ 1_3 f\/é
(ﬁ) +h = (V2 = =2- o == h=

Hence the area of T is % V2 - @ = /12 = 2v/3. The vector v =i + j+k
is perpendicular to the plane and its direction is that of the line z = y = z,

which meets the plane z +y + 2 =1 at (%, %, %) Therefore the height of the

tetrahedron is 1/3(3)? = % Therefore the volume of the tetrahedron is

V=3V = 5
9. z=vV4—2a? £ =—a(4—2?)" z, g——Oandso
//,/ T dndy = /,/ _;623:*8/ =
= §8[arcsin 2]0 = 8[arcsm 3 arcsin 0] = 8(6 —-0)= ?

10. The surfaces meet when 2z = 8 = z = 4 and the region over which the
integration takes place is the circle R : 22 + y? = 8 = (2/2)2. We have z =

(@2 +y?) = & =1, 8—; =y. Thus S = [ [ \/1+ 2% + y2dxdy. Transforming
to polar coordinates we get:

2 p2V2 2V2
S = / rv 1+ r2drdf = 2« rv 1+ r2dr.
o Jo 0

Substituting u =1+ 7% we get 2du =rdr,r =0 —u=1,r=2V2 5 u =9,
giving
9
2 2 52
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Problem Set 2

1. We perform the calculation for cylindrical coordinates where the third
variable z is unchanged by the transformation. We then get

oc 0 o :
ar g0 9 cosf —rsinf 0
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=rcos®§ — (—rsin® ) = r(cos® O +sin 0) = r.

Hence |J| = |r| = r as we take r > 0.
2. First leaf has range of § of 0 < 6 < % and so our area A is given by:

5 r=sin 360 3 z .
A=3 / / rdrdf = = / (215" %0 de
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3, 3 (3 3, sin6 oz
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3. In polars, the variable r ranges from 0 to +o0o as the polar angle 6 runs
through a full sweep from 0 to 2. Replacing 22 + 32 by r? and dxdy by rdrdf
the integral I takes on the form:

2w pr R 1 27 R 1 2w 1
/ / re” " drdf = ——/ [e™"]5°dl = ——/ [0—1]d0 = =(27) = 7.
0 0 2 0 2 0 2

4. Let J = ffooo e~ dz. Now the integral I of Question 3 is equal to
(/Oo e_%’EQd:E)(/OO e_%yzdy) = J?
= /00 e 3 dy = /7.
5. Consider I = [*_e73""dz. Put = v2u to get dz = v2du, e 3% =

e—3(V2w)? = 6_5“2; the limits of +0o remain the same when passing to the
transformed variable u and so we obtain from the result of Question 4 that

I:\/ﬁ/ eféuzdu:ﬁw/E:\/Zﬂ'.

Therefore we gain the required conclusion, that being:

! /Oo 1y =1
— e xr = 1.
V2r Jo



YT+ =1 = 1

which is a semicircle, centred at (1,0) of radius 1. We have y? +2%2—2x+1=1

so that -
22+ =20 =12 =2rcosf = r=2cosf (0<0 < 5"

Hence our integral I becomes
I /’2r /20050 r(cos @ —2|— sinf) - rdrdd
o Jo r

/2 2cos9(c0s9+sin9)d9:/2(200s29+2sin900s9)d9
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2 1 1 .
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0
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7. The area is equal to the value of I where

0=2m r=1-4sin 0 1 0=2m .
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0 0 2 Jo
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the first term in this integral is 27” = 7 while the second is 0 as sin @ is periodic

with period 27. The third term is

1 21

2
S (1 —cos20)do = =L
4/0 (1 —cos20)d 1

as the second term in this integrand has period 7 and so also evaluates to 0.

Overall then we obtain [ = 7+ 3 = 2T

8. We have 2 = 4 —r% and 4 — r? = 0 when 7 = 2 so our volume integral is:

21 2 4—r2 21 2
V= / / / rdzdrdd = / / (4 —r*)r drdf
0 r=0J z2=0 0 0

27 4
= / 2% — TZ]LO df = 27(8 — 4) = 8.
0

9.
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using third row expansion and repeatedly using cos? + sin? = 1 we get
J = cos ¢(r? cos? 6 cos ¢ sin ¢-+12 sin? § sin ¢ cos ¢)+r sin ¢(r cos? § sin? p+r sin? § sin? ¢)
=12 cos® ¢sin ¢ + 2 sin® ¢ = r?sin ¢
and so |J| = r?sin¢ as sing > 0 for all 0 < ¢ < 7.
Comment Note that exchanging the order of the variables will swap rows
or columuns in the determinant. This may change the sign of J but leaves |J|

unaltered.
10.
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. 271'/0 sin ¢ dop = poagg[— cos ¢|f = %poag[—(—l) —(=1)]

iy
M = Zpoa®.
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Comment Cylindrical coordinates are useful in problems with cylindrical
symmetry such as cylinders and cones while spherical coordinates work well
with spheres. The difficulty with multiple integrals is often in determining the
limits of integration for the inner integrals. For example, in a triple integral
the innermost integral has limits that in general will be functions of the two re-
maining variables. Cylindrical and spherical coordinates, applied to appropriate
problems, leave you with limits that are simply constants.

Problem Set 3

1. Differentiating with respect to time we get

_ @ 2 do _ &()ii(t) — y(H)E(t)
tan(o(6)) = 238 = sect(o(e) 57 = O,

writing sec?(¢(t)) = 1+tan?(¢(t)) = 1+g—z and solving for % (while surpressing
the ¢ in the notation) now gives

do @i — i
dt @2 492"




e = G (=)
ds dt ds 2 + 72 P2+ g2
Ty — YR
@+ )8
3. x =acost, y =asint, (0 <t < 27). Hence & = —asint, § = acost, & =
—acost, j = —asint. This gives:

a?sin®t 4 a? cos® t a?(sin?t 4 cos t) a? a? 1
KR = = = - — = —

(a2sin?t 4+ a2cos2t)3/2  (a2(sin®t + cos2t))3/2  (a?)3/2 @ a’

Therefore the radius of curvature is p = % = a, the radius of the circle.

4. Herex=t, 2 =1,5=0,y=1% ¢ =2t, §j=2. Hence

o — 2-0 B 2
o (12 4 (2t)2)3/2 B (14 422)3/2°

5. y = In(cos z), (-3 <z < Z). Again we use x = ¢, y = In(cost) so that
51

nt

i=1,&=0,7=—22L = —tant, j = —sec®t. Hence
sec?t sec? t 1
o= - _ =— = —cos .
(12 + tan? t)3/2 (sec? t)3/2 sect

6. We have

x =a(t —sint), & = a(l — cost), y = a(l — cost), y = asint. Hence

L:/ \/g'c2+3;2dt:/ \/@2(1+0052t—2cost+sin2t)dt
0 0
:a\/i/ V1 — costdt.
0

Now 1 — cost = 2sin® £ and so
@ t t o
L=2 in —dt = —4 —8 =—4 ——1
a/o sin o alcos 2]0 alcos ) ]

= L =4a(1 — cos %) = 8a sin® %.
Putting o = 27 we get the length of one full arch of the cycloid is L = 8a.

7. We also need & = asint, § = acost. Hence

_ (&2 + 92)3/? B (a®(1 + cos® t — 2 cost + sin® t))3/2

Ty — Yx a?(cost — cos?t — sin? t)

2 — 2cost)®/? t
A C 1 10 P WV s ey B —4al sin = .
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8. The area A under one arch of the cycloid is given by:

m 2 2m

d

/ yd_fdt = / a(l —cost)a(l — cost)dt = a2/ (1 —2cost + cos® t)dt
0 0 0

2
=a*(27 + 3 / (1 + cos2t)dt = a®(2m + 1) = 3a*w
0

Comment: It is worth remembering that the integral of a constant is just
that constant times the length of the interval of integration and that the integral
of sinnz or cosnx (n=1,2,---) over an interval of length 2 is, by periodicity,
always 0. )

9. By the Fundamental theorem of calculus we have i(t) = cos(t?), y(t) =
sin(¢?) and so the required length L is:

L= ! V()2 +y(t)2dt = /to \/cos2(t2) + sin?(12)dt
0 0

to
0

10.

. 2t cos(t?) cos(t?) + 2t sin(¢?) sin(¢?)
B (cos?(t2) + sin(£2))2
2t(cos?(t2) + sin’(t?)) 1

13 1

Hence % = 2, is constant.

Comment Since distance equals time along this curve, a vehicle following
this curve at constant speed has constant angular acceleration.

Problem Set 4

1. By definition, for some bound B,
f=0(1)< f(z) <K-1=K for some K € R.

On the other hand




3. We apply L'Hopital’s rule twice:

cosecx — cot x . l—cosx . sinx
B e . = m T T——
z—0 x z—0 rsSInx z—0 SINT + T COST
CcoS X 1

z—02cost —xsinxr 2

In particular this shows that cosecx — cotx ~ § as z — 0.

4. Let h = O(f) and k = O(g) so that h + k is a typical function in
O(f) 4+ O(g). Then, by definition |h(z)| < K f(x) and |k(z)| < Mg(zx) say, and
S0

[(h+k)(@)] = [h(z) + k(2)] < [h(2)] + |k(2)] < K f(z) + Mg(z).

Let N = max{K, M}. Then we have

I(h+ k) (2)] < N(f(z) + g(x)) = N(f + g9)(2)
so that h + k = O(f + g).
Conversely let h = O(f + g) so that
Ih(z)] < K(f+g)(x) = K(f(z)+g(x)) = Kf(z)+Kg(x) < 2max{K f(z), Kg(z)}

)
Hence |h(z)| < 2K f(z) and |h( )| < 2Kg(z) and so h(zx) = O(f(x)) and
h(z) = O( (z)). It follows that |3h(z)| < K f(z) and |$h(z)| < Kg(z) so that
h(z) = 3h(z) + sh(z) = O(f) + O(9)-
5. Continuing with the notation of Question 4, we have hk = O(f)O(g) so
that
|(hk) ()| = |h(2)k(z)| = [h(z)] - [k(2)] < Kf(x) - Mg(z)
= KM - f(z)g(x) = (KM)(fg(x))
so that hk = O(fg).
Conversely suppose that h = O(fg) so that for some constant K we have
[h(z)] < K(fg)(z) = Kf(x) - g(x)

then
la)
g9(x)

- g(x) with Zgzg = O(f) and g(z) = O(g) and therefore

| < Kf(x), g(x) <1-g(x)

so that h(z) = ZE;”;
h(z) = O(f)O(g)-

6. Let h = O(f)o(g) so we may write h(z) = r(x)s(z) say with |r(z)| <
K f(z) and ZE;”; — 0 (as * — oo let us say). Then

ha) _ h@)] _ @) ls@)] o Kf@)]s(@)] _ Kls@)]
(f9)(@) = (f9)() f@)g(x) = fl@)g(=) g(x)
| Tim h(x) |s(z)] s(x)

300 (fg)(:c)| = Kaclggo g(x) - Kmlggo |Tx)|

hence

10



= K| tim 2| o=
= K| Jim Zo5[ = K-0=0

z—00 g(x
. h(z)
oL lim =
e=oo (fg)(x)
so that h = o(fg), as required.
Conversely, suppose that h = o(fg) so that

o h@) o b))
i (f9)(x) A f(z)g(x) !

(h(x)/f(x)) _

= 9(x)
and hence hz)
h(z) = f(z) m

with f = O(f) and % = o(g), as required.
7. We are given that f ~ g, which is to say that lim, f(wg = 1. Take

g(=
h = o0(g) so that limg_, % = 0. Then

. f(x)*'h(‘r)i imM im M: =
zhﬁngo 79(36) = zlﬁoo (@) + zlﬁoo e 140

so that f + h ~ ¢ and since h was an arbitrary function in o(g) we conclude
that if f ~ g and h = o(g) then f +o(g) ~ g.
8.

F@) =3 anle — zo)"
n=0
= f(z) —ap — a1(z — zo) = (z — ) Z an(x — 20)" !

_f@)—ag—ai(r—x0) | n—1.
= lim —mlirgogan($—fo) ;

T—TQ r — X

since the function defined by this series is continuous we may exchange the limit
and the infinite sum to get

o0

g an lim (2o — )" "' = 0.
r—rxo

n=2

Comment Tt follows that we might write f(x) = ao+a1(x — zo) +o(z — z9).
9. Suppose that I(z) = a + b(x — o). Then lim,_,,, %

o (@t b@ o) 3, an(e - z0)"
T—xT( T — X9 T—To T — Xo

11



now, as in Question 8, the second limit is equal to 0 while the first limit is

apg — a

lim + (a1 —b).

=T T — X
Now the first limit is undefined unless a = ag, in which case it is 0 (and I(zg) =
f(zo) = ap) while the second limit is 0 if and only if b = a4, from which the

result follows from these observations and Question 8.
f(=)

Comment Note that lim; .z, 222~ = limy—z,—0 %ﬁom”)) = f(xg) =
limg 4, ml(_zm)o = b so that the the tangent line to the graph of f(z) at = z¢ is

the unique linear function /() that matches both the value of the function and
it derivative at the given value x = xy. We can thus write f(z) = I(z)+o(z—x0)
as r — Ig-
10.
(n+ O(n%)(n + O(logn))?

= n3+n2(0(n?)+20(log n))+n((20(n?)O(log n)+0?(log n))+0(n?)O?(log n)
=n®+ 0(n),

where we have used considerations such that nQO(n%) = O(n%) using the rule
O(f)o(g) = o(fg); 20(logn) = o(n®) for any 0 < « so that n? - 20(logn) =
n2o(n®) = o(n>t), which can then be absorbed into the O(n?) term by taking
o < 3, and so forth.

Problem Set 5

Az—0 Ax

b b
g (z) = lim L(/ f(a:—l—Aa:,t)dt—/ f(w,t)dt)

= lim / f‘T“LA“ F@0 44— lim /b S, t) + 2R A + o(Ax) — f(at)
Az—0

Az—0 Az
. Bf(:v,t) o(Az), . ["Of(x.1) "o(Ax)
- Alalvrgo a ( Or + Ax ) dt = /a Or di + 11—)0/ Az dt;

but as Az — 0 the integrand approaches 0 independently of ¢, this latter limit
is 0 and therefore we may differentiate inside the integral:

b T
g (z) :/ Lféx’ t dt.

Comment It may be shown by similar arguments that more generally for
b(x
g(x) = [0 f(w,t)dt we get

b(x) T
3'(2) = Fasbe) )~ floae)e' )+ [ LD g

a(zx) ox

12



F(b) :/b%db —log(b+1) + C.

3. Putting b = 0 gives

1 0_1
/ i dxr =logl+C = C =0 and so f(b) =log(b+1).
o logzx

4. Putting b = 2 now gives

1 2
-1
/ 33 dz =log 3.
o logx

5. First

007m 17moo 1 1
o) = [ e trdn = e e = - —7) = 7.

Since g(t) = t~1 it follows that

g™ (t) = (~1)"nle ! 1)
for any n > 0. On the other hand, n-fold differentiation through the integral
gives

o gn(,—tx jee}
gM(t) = / ) gy = / (=) z"e~ dx (2)
0 dt 0

Equating (2) and (1) and putting ¢ = 1 now gives

oo
/ z"e " dx = n!
0

f(b) :/ ST —be gy = 1 (b) = —/ sinz e dz.
0 0

x

_ smmesz

Let I = [sinze " dz. Integrating by parts once gives I =
7 [ cosze " dz, and a second time gives

i 1 1 1
I = —Slgxe’b”” — E(_ Ecosxe*bgﬂ— E/sin:z:e’bm dz)

bx

1 i 1
= (14 b—2)I = —Slrgxe_bw + b—zcos;ve_

13



b 1
=]=———sinze "+ cosze
b2 +1 b2 +1
bsi
=1= —781]&[;5 _—:: ;os;ve_bw' Hence
bsinz + cosx oo 1 1
;o= 241 }0 b2 + 1 241

= f(b) = —arctand + C.

7. Let b — oo in Question 6 gives 0 = 3 + C so that C'= 7.
8. Since

sin x
T

/ Smxdx:2/ Smxdx:2(ﬁ—arctan0):7r.
X 0 2

T

is even we have upon putting b =0

— 00

9. Let f(z) = cosz — 1+ %, Then f(0) =1—1+40 = 0. Also f'(z) =
x —sinz > 0 for all © > 0. Hence f(z) > f(0) =0 for all x > 0.

Comment A rigorous justification of this final claim follows by applying the
Mean Value Theorem, which will be one of the main topics in MA205 Real
Analysis.

10. No. By Question 9 we have that for z > 0, cosz > 1 — % so that for
0 < e <1 we have

1 1 2
CosST 1 =z T

dz > 2 —Ddzr=[lnx — =]

/a x x_/a(ﬂf 2):10 i 4]5

1 5 g2 -1
:(O—Z)—(lns—z):

and as € — 0 the final term approaches co.

Problem Set 6

1. - -
rt+1)= / rle ™ dx = —xle "|° —|—/ te' e " da
0 0
=—[0—0] —|—t/ ' le™ dx = tI(t).
0
In particular I'(n 4+ 1) = nI'(n) = n(n — HI'(n —1) = --- =n(n —1)---2I'(1).

Now I'(1) = [[P e dx = —e~*|3° = —[0 — 1] = 1. Hence I'(n+ 1) = nl.
Comment See Question 5 on Set 5 for an alternative calculation.
2.

1 e
I‘(§):/O eﬁd:t, putu = /zso that du = 4£

14



1 [ee)
= F(i) = 2/0 e v du,

the latter is the Gaussian integral with value /7, thus giving that I'(3) = /7.
3. The n = 0 case follows from Question 2. Next we integrate by parts as
follows:

I‘(—+n)=/ 2" 2e " dr put u = 2" 2, dv = e *da
0

1 > 2n —1 1
= —x"’%e*z|8°+(n—§)/ 2" re T dy = n2 F(n—i), which by induction equals
0
2n—1 (2(n—1))! ~ (2n)!
2 4n=1(p —1)! V= 4nn) v

4. The n = 0 case again follows from Question 2. Next we integrate by parts
as follows:

1 [e’e}
F(E -n)= / 20T dy put u=e"%, dv = e = v = 1,22711“_""'%
0
2 9 0o ) .
—1_ 2nl”"+%671|8°—2n 1 /0 2T gy = 5 1I‘(§—(n—1)), which by induction equals
2 )" ‘(=1 —  (=4)"n!
1 e VT e VT
5. o
F(I)F(y) :/ / e*ufvumflvyfl dudv.
0 0
6.
du  du " .
Bt ot -t —z

Next we note that u+v = zt+2(1 —t) = z, so that the range of zis 0 < z < oo.

On the other hand ¢ = 7 = ULJFU sothat 0 <t <1.

7. From Question 6 we get through the given substitutions:

Ix)'(y) = /000/0 e ()" M z(1 — 1))Y Lz dtdz
1

= (/OOO e~ 7y ty—1 dz)(/ t" Y1 —t)vtdt) = '(x +y)B(z,y),

0
L)' (y)

. B(z,y) = m

15



8. Substitute u = ﬁ in the beta integral. Hence range of u is (0,00). We

have u — ut — ¢t = 0 so that ¢t = +1,dt (+ﬁ2and1—t_1—u—_|r1:u+rl.

Hence we obtain:

< 1 du o gl
B — z—1 y—1 — /

9. Questions 7 and then 1 allow us to write:

P@)l(y+1)+T(x+ 1)I(y)

B(z,y+1)+ Bz +1,y) =

Fez4+y+1)
_yI@l(y) + 2@ (y) _ (2 +y)(C(@) +T(y)
(z+y)T'(z+y) (z+y)T(z+y)

_M@)+TW) _ 5.

- I'(z+vy) = B(@.y).

10. Similarly
CTe+1)I(y) 2(@)(y) T
Bz +1,y) = Tyl Gyt D = B(x,y) s

Problem Set 7

1. To(cosf) = cos0 = 1, so that To(x) = 1. Ti(cosd) = cosl = T (x) = x.
2. Ty(cos ) = cos20 = 2cos® 0 — 1 = Ty(x) = 222 — 1.

Ts(cos #) = cos 30 = cos 6 cos 20 — sin 0 sin 20 = cos O cos 20 — 2 cos fsin? §
=2(22% — 1) = 22(1 — 2?) = 22 — 2 — 22 + 2% = 423 — 3z = x(42? - 3).
3. The given identity can be written as

cos(n+1)0 = 2 cos § cos nf—cos(n—1)8 < cos(n+1)8+cos(n—1)0 = 2 cos 0 cos nf.

Now applying the general identity cos A+ cos B = 2 cos A"’—B cos 48 B to the left

hand side of the previous equation gives:
nf+6+nb—90 nd +60 —nb + 0

2 cos 5 cos 5 = 2cosf cosnb

in agreement with the right hand side, as we require.
4. Hence

Ta(z) = 22T3(x)—To(x) = 2x(423—32)— (207 —1) = 8x*—62° 222 +1 = 82 -8z +1.
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T (Tin(cos 0)) = T, (cosmB) = cosn(mb) = cosnmb = Ty (cos )

andGSo Tn(Tn () = T ().
2, (z) = Ty(z) = (222 — 1) =4z = Uy (z) = 4; = 2z.

3Us(z) = T(z) = (42° — 32)" = 1222 — 3 = Us(w) = 42* — 1.
AU3(z) = Ty () = (821 =822 +1) = 3223 —8x = Us(x) = 823 —4x = 4x (222 —1).
7. We have

dx . df 1
Tz = cosf = @ = —sinf = E = —m Hence
d(cosnf) 1 nsinnd
T/ = - . =
n(@) do sin 6 sin @
= U (2) lT’( ) sin nd
n_1(x) = =T/ (z) = — .
! n " sin 6

8. Using Question 7 we have

sin(n +1)§ cosflsinnd _ sinfcosnb + cos@sinnb — cosf sinnf

Un - Un— = N N — N
()= 1@) sin 6 sin 6 sin 6

= cosnb = T, (x).
9. Again using Question 7:

_sin(n+1)0  sin(n—1)0
Un(@) = Un—2(@) = sin @ sing

sin 6 cos nf + cos @ sin n — (sinnb cos @ — cosnd sin H)

sin 0

2sin6 0
ZIMUCSTY _ 9 cosnd = 2T, ().

sin 0
10.
() n?cosnfsinf —ncosfsinnfd 1 ncosfsinnd — n? sin § cos nf
xTr) = — . =
" sin? 0 sin 0 sin® @

” 0 si 0 — 2 & 0 0
= (1—22)y" (z) = sin? 0T () = LEOSYSMNT — W ST COsny,

sin @ '
n cos 0 sin nd

ry = ————— n?y =n?cosnd.

sin 0

Summing the terms gives
n cos 0 sinnf — n? sin 0 cosnd — n cos b sinnb + n? sin 6 cos nd

1=V — 21/ +n2y = =0.
(1=2%)y" —ay'+ny o
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Problem Set 8

{1} = /OOO et = [ = 10— 1] = -

S

2. The n = 0 case that anchors the induction is Question 1, so suppose
that n > 0 and consider L{t"*1} = [[* e™*t"T1dt. Integrating by parts with

u=t"t" = du = (n+ 1)t", dv = e~'dt = v = —Le " we obtain
tn-‘rl [e's) 1 oo
LT = ———e75t 4 i/ the Stdt
S 0 S 0

which by induction is equal to

|
n+1£{t"}— +1 n :(n—i—l).
s

SnJrl Sn+2

0—(=0)+

and the induction continues, thus showing that for all positive s,

L{t"} = Sn_;_l Yn >0.

3. For s > a we obtain:
1 1

L{e™} = / ettt = / ele=tgp = L _ela=1t™ o —
0 0

a—s 0 a—s S—a

4. Integrating by parts with du = e™*" = v = —1e¢™*dt and v = sinat dt =
dv = acosat gives

L{sinat} = / e 'sinatdt = —~e ' sin at‘ + - / e * cosat dt
0 S 0 S Jo

a oo
= —/ e~ cos at dt.
s Jo

Integrating by parts a second time with du = =% = u = —%e‘s

cosatdt = dv = —asinat gives

tand v =

. a 1 o g [ .
L{sina} =—(—-e **cosat| —-— e Stsintdt
sY s o sy

a? 52 a a

= (1 + — )L{sinat} = — = L{sinat} = popp il Rl st > 0.
d.
L{(af(t)+bg(t)} = /Oo e ! (af(t)+bg(t))dt = a/ooo e f(t)dt+b /Ooo e *'bg(t)dt

18



=al{f(t)} +bL{g(t)}.
6. Again, we integrate by parts with u = e %' = du = —se %t dt and
f'(t) =2 = f(t) = v, to obtain

L{f'(t)} = /Ooo e S (t)dt = e*stf(t)‘zo + s/e*stf(t)dt

= L{f'()} = sL{f(1)} = £(0).
7. Applying Question 6 to f'(t) we obtain:
L{f" ()} = sL{f' (1)} — '(0) = s(sLLF (1)} = f(0)} = f/(0)
= s(sL{F(6)} = f(0)} = f/(0) = s”L{f (1)} — s£(0) = £'(0).
Comment A natural inductive argument now gives that
LMW} =" LL 0} = "7 (0) = - = s [T (0) = F7V(0).

8. Taking the Laplace transform of both sides gives £{y"” — ¢y’ — 2y} =
L{y"} — L{y'} — 2£{y} = L£{0} = 0, hence using Questions 6 and 7 and write
Y =Y (s) for L{f(t)}we have:

s2Y — sy(0) —y/(0) —sY +y(0) —2Y =0 = Y (s* —s—2) = (s — 1)y(0) +¢'(0)
(s=1)(1)+0  s-1

=Y = = .
s2—5—2 s2—5—2
9. Factorizing the denominator and using the ’Cover-up’ method gives:
s—1 s—1 _@2-n/2+1)  (-1-1)/(-1-2) 1/3+2/3
2—s5—-2 (s—2)(s+1) s—2 B s+1 C5—2 s+1°

10. We take the inverse and use the result of Question 5 in particular to
obtain:

L1/3 23 1., 1 2 1
Al _ 1,1 |
U b e DAt T b e G b

1 2
" Lo, 4 ¢
= y(t) 3¢ +3e

Problem Set 9

. . . . s
1. As 22 is even, we get a cosine series only with wa, = 2f0 z% cos nxdz.

For n = 0 we get 2[12%]7 = 27% = qo = % Otherwise, integrating by parts
twice we obtain:
222

a, = — sinnc
n

™

S|

o 4 T
rsinnrdr = ——( — — cosnx
0

n n

bis 1 ™
+ — / cosnazdaz)
0

0 0 n
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2. Put z = 0 in the series of Question 1 gives:

i _ ™ L1 o
—~ 12 22 ' 32 127

3. Put z = 7 in the series of Question 1: now cosnm = +1 according as n is
even or odd. Hence the term (—1)" cosnm = 1 for all n and we obtain:

2

2 o0 o0
2 _ ™ Zi Zif 2l _1y_ ™
7T_3“L4n:1n2:>n:1n2_ﬁ(4 )=

4. Again, we get only a cosine series with 7a,, = 2 foﬂ zcosnxdr. Forn =20
we get mag = 2%2 so that ag = m. For n # 0 we integrate by parts and obtain

T s
1 . x 1 .
xcosnrdr = —zsinnz|j — — sinnzdr =
0 n nJo

2
— 3 n odd

and the integral is 0 for even positive integers. Consequently
_r 4 Z cos(2n — 1)z
B (2n —1)2
Finally we put z = 0 and obtain
—~ 2n - 1)? 32 " 52 -8

5. Again since f(z) is even, we will get a cosine series only. We have
Tag =2 [ cos px dv = #[Sln ]y = %sm U

™ 1 ™
a, = = / cos ux cosnw dr = — / (cos((r +n)z) — cos((n — n)x) dz
0 ™ Jo

™

_sin((p+n)m) | sin((u—n)m)
(n+n)m p—n
_ sinpmcos nw(p —n) + sin um cosnm(u + n)
(n+n)(p—n)m
2p(=1)"

= m sin M.

20



Combining these results gives

sinpm o= 2u(—1)" sin px
cos pux = a E a 5 2” - cos N
pr = w(p? —n?)
2usinpm , 1 cos T cos 2x
= = ...
Cos px - (2M2 12— 12 +M2—22 )

6. We now put = m, divide both sides of the final equation in Question 6
by sin ym and write the symobl z instead of p to obtain:

¢ 2.%'( 1 1 n 1 n 1 n )
cotmr = — (—
T V222 2 —-12 g2 -922 g2 32
~ cot 1 2.%'( 1 1 1 n )
cotmr — — = ——
T w12 — g2 22 g2 32— 2

7. For n = 0 both sides of the identity return % = % (u # n7 so denominator
is well-defined), thereby anchoring the induction. Now let n > 1. By induction
the expression on the left may be replaced by

sin(n — 1)u N sin(n — 1)u + 2sin % cosnu
——=" tcosnu = -
2sin 2 2sin 2
2 2
sinnu cos 5 — cosnusin 5 + 2sin g cosnu

: u
2 sin 5

u

sinnucos% + cosnusin%  sin(n+ 3)u

. u . u b
2s1n§ 2s1n§

and the induction continues.

8. Putting z = ™ in the standard geometric series we obtain:
1— ei(n-i—l)u
1 — et

1+eiu+e2iu+.“+eniu:

The real part of the LHS is 1 + cosu + cos2u + - - - + cosnu, while multiplying
hp
the RHS top and bottom by e~ 2" gives:

e—%iu _ ei(n-{-%)u 'e—%iu _ e—i(n-i—%)u
=1 N
- - -

e~ 2 _ g3iu 2sin 5

)

taking the real part of this expression we obtain

sin % + sin(n + 3)u 1 sin(n+ u

: U : U
281115 2 281115

from whence the Lagrange identity follows.
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9. Taking the sum suggested we obtain f(¢) +ig(t) =

1+ ae™ +a%e? +aPe® ... = T oot (as |a| < 1).
10. The RHS of the answer to Question 9 is:
B 1 (I —acost) +iasint 1 —acost+iasint
" 1—acost—iasint (1 —acost)? +a2sin?t  1—2acost+a? ’

the real part of this expression is f(t) thereby giving,

> 1 —acost
Za”cosntz —, (—l<a<1).
o 1 —2acost+a

Problem Set 10

1. We use z as the ¢ parameter in that we put z(t) = t,y(t) = t? for
—1 <t <1. We thus get ©(t) = 1, y(t) = 2t and so
1 2\ 3
1+ 4t
( + )2 ]1,1 =0.

/ :z:ds:/ t1+4t2) 2 dt = [ — 2
c -1 12
Z so that

2. We parametrize C' as z(t) = cost, y(t) = sint with 0 <t <
—sint, y(t) = cost. We then get for our integral I:

(1) =
3 3
I:/ costsint\/(cost)z+(—sint)2dt:5/ sin2t- 1dt
0 0
1 z 1 1
= —Zleos2t) = —Z[-1—-1]==.
feos 2] = —1[-1-1] = 3

3. The curve C has two parts, parametrized as follows:

Cy:r(t) = (2cost,2sint), (0<t<m), Cy:7(t) =(—-2+4¢t0), 0<t<1.

Cy @ 2(t) = —2sint, §(t) = 2cost, \/ = (4sin®t + 4 cos® t)? = 2.

Hence
flz,y)ds = / (2cost + 4sin®t)2dt = 4/ (cost + 1 —cos2t)dt
0 0

Cy
1
=4[sint +¢ — =sin2¢]f =4[(0+ 7 —0) — (0+ 0 —0)] = 4.
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Cs 1 i(t) =4, y(t) =0, so,/ =4 and

1 1
X = — 2 = —
/sz( ,y)ds /O( 2 4 4t +0%)4dt 8/0(2t 1)dt

=8[t* —t]p =8[(1 1) — (0 —0)] =0.

.'./Cf(x,y)da:_/Clf(x,y)ds%—/@f(x,y)d:z:_47T+0—47T.

Comment Remember that the directed line segment between points with

position vectors a and b can be parametrized as r(t) = b + (1 — t)(a — b)
0<t<1).

4. We have (1)

—sint, g(t) = cost and 2(t) = 3. Hence

b
/ Fy, 2) ds = / Fla(t), y(b), =(6) /E(E) T 5200 + 220 e
C a
4

4
14
/ costsint(3t)\/(—sint)2 + (cost)? + 32dt = \/1—0/ % sin 2t dt.
0 0

Ignoring the constant multiplier of BT\/E for the moment, we integreate by parts
(u=t,dv =sin2t,s0 that v’ = 1 and v = —<%2%) to obtain

4m
2t
(- cos2n)2fy™— [ -5 ar
0

— tcos2t sin2t

2 4
and putting back our constant factor reveals the full answer

167

=5 l(=5 = 0) = (0-0)] = ~3v10r.

_ '@ ds
5. The vector T = IHGIR Moreover

@ = V() +92(t) = [|r(2)]|- Hence

d
/Fodr:/ Fo—rdt:/FoT||r(t)||dt:/Fons.
c c dt c c

F(r(t)) = 8t2(t*)(t*)i + 5(t%)j — 4t(t*)k = 8t"i + 5t3] — 4t°k.

Next we obtain r'(t) = 1i+2tj+3t°k. Then we have [, Fedr = f; F(r(t))er’(t)dt

1 1
= / (87 x 1) + (5¢3 x 2t) + ((—4t®) x 3t%) dt = / (87 +10t* — 12t°) at
t=0 0

=[t¥+2t° -2t _,=(1+2-2)—(0+0-0) = 1.
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7. We need to parametrize the line segment in the given direction:
I‘(t) = (_15 27 0) + t((3a 07 1) - (_15 27 0) I‘/(t) = ((45 _25 1)

F(r(t)) = (4t — 1)ti — (2 — 2t)tk = (4t* — t)i — (2t — 2t*)k

b
/CFodr = /t:a F(r(t)) er'(t)dt
= /1((4152 — 1) x 4) + (0 x (=2))+) — (2t — 2t*) x 1) dt
0

= /1(18t2 — 6t)dt = [6t> — 3t?]p = (6 — 3) — (0 —0) = 3.
0

8. Using the parametrization of C' by ¢ we have by definition

d:z:
I—/nyd;v—/P Edt

We re-write the integral using the substltution t = a(u) so that dt = o/ (u)du,
b=a"1(d),a=a"1(c); we replace 9 by dzdu _ dr a/%u) so that by the Chain
rule:

o« dr 1
I= /al(a) P(x(a(u),y(a(u))ama (u)du

- / P(i(u), (1)) d.

which is the line integral I now expressed in terms of the parametrization of
C by u. The same calculation with the variable = replaced by y also holds,
showing that the line integral of F(z,y) = P(x,y)i + Q(z,y)j has value that is
independent of the parametrization of the curve of integration C.

9. Similarly let I = [ f(z,y)ds so that, using the parametrization of C' by

t
/ f(z NN @2 () + 92 (¢t)dt.
Now @(t) = 4 = dodu — j(u)m and similarly % = g](u)a%u). Hence

making the substituion ¢ = «(u) allows us to re-write I as

d 2
1= [ . gt [ ) du - / F (@), 5) v/ Fw) F 52(0) du

which is the line integral for the real-valued function f(x,y) expressed in terms
of the alternative parametrization of C'.

10. We have (z(t),y(t)) = (t+3,t2 —t+2) = (u,u? — Tu+14) = (Z(u), §(u))
with —3 <t < 2. If this is two parametrizations of the same curve we must have
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u = t+ 3 so inverting we get ¢ = u — 3 so that, in our notation ¢t = a(u) = u— 3.
We need to check that y(t) = y(a(u)) = g(u);

yla) =y(u—3)=(u—3)2— (u—3)+2=1u?—Tu+ 14 = j(u)

as required. Also o/(u) = 1 > 0 so passage from ¢ to u does give another
parametrization of our curve with endpoing a = a(c) = —3 = ¢—3 sothat ¢ =0
and b = a(d) = —2 = d — 3 so that d = 1. We note that Z(0),3(0)) = (0, 14)
and (£(1),9(1)) = (1,8), which return the correct endpoints of C. Hence,
by Question 8, the integral fc Fedr should yield the same result with both
parametrizations. Now r’(t) = (1,2t — 1) and so

—2

/Fodr(t)_/2(2(t+3)2,—t2+t—2)o(1,2t—1)dt_/ (2(t+3)—(t*—t+2)(2t—1)) dt
C

-3 -3

-2 4 3 2
53 Tt
:/ (=263 4+ 512 + Tt + 20) dt = [—= + — + — + 20t] 2

s 2 '3 "2
40 81 63 2
=[(-8 — — + 14— 40) — (—— — 45 + — — 60)] = 66=.
(-8- 5+ 0) — (—5 — 45+ 5 — 60)] = 663

and so

1
/ Fedr(u) :/ (2u?, —u? + Tu — 14) @ (1,2u — 7) du
C 0

1 1
= / (2u® 4+ (2u — 7)(—u? + Tu — 14) du = / (—2u® 4 23u? — T7u + 98) du
0 0

1 23 77 2
+ 98ul} = (—5+7 —?+98)—(0) = 663.

_ [ u? n 232 T7u?
Tt 2 3 2
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