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Solutions and Comments for the Problems

Problem Set 1

1(a) Let e € E(S) and a € S. Then ea = e?a, whence by left cancellation
we obtain a = ea, thus showing that e acts as an identity on the left in S.

(b) Let e, f € E(S). By part (a) and its left-right dual we have f = ef
as e is a left identity and ef = e as f is a right identity, so that f = ef = e.
Hence S has just one idempotent e, which is its identity element, so that .S is a
(cancellative) monoid.

2. Suppose first that S is a group. Let a,b € S and consider the equation
b = ax, which has (unique) solution in z = a~'b. Hence b € a.S and since b was
arbitrary it follows that S C aS. Since the reverse inclusion is clear we conclude
that aS = S for all a € S, which is to say that S is right simple. Reversing order
in the previous argument (so that b = xa is solved by x = ba~!) we conclude
similarly that Sa = S and so S is also left simple. Therefore if S is a group
then S is both left and right simple.

Conversely suppose that S is both left and right simple. Take a € S. Then
by right simplicity aS = S and there exists e € S such that ae = a. Now take
any b € S. By left simplicity b € Sa so there exists ¢ € S such that b = ca,
whence bx = cax = ca = b. Therefore e is a right identity element for S. By
symmetry S has a left identity f say, whence e = fe = f is the unique identity
of S, which is then a monoid. Finally, for any d € S the equation dx = e is
solvable in S. Then z = xe = xdx so that xd = xdzd = g € E(S). But then
there exists z € S such that gz = e whence e = gz = g%z = g(gz) = ge = g, and
so xd = dx = e, which is to say that x = d~!. We conclude that S is indeed a
group.

3(a) Clearly any right ideal containing A but contain all the products of
AS!. On the other hand (AS1)St = A(S')? = AS'. Therefore AS! is the right
ideal generated by A.

(b) Similarly any ideal containing A must contain S'(AS!) and S1(S1AS)S?
(S1)2A(S1)? = STAS! is the ideal generated by A.

4(a) By definition of function composition we have for any f, g, h € Tx that

z((fog)oh)) = (x(fog)h= (xf)g)h= (xf)(goh)=a(fo(goh)

so that (f og) oh = (f og) o h and the operation is associative. Moreover the
identity mapping € on X is a member of Tx and therefore Tx is a monoid under
function composition.

(b) Let f,g be constant mappings with ranges a and b respectively. Then
x(fog) = (xf)g =ag = bfor all z € X. Hence fog = g, and so the set



of constant mappings forms a right zero subsemigroup of 7x (with function
composition from left to right).

Comment Some authors prefer to maintain the calculus convention of com-
posing mappings from right to left. However, in algebra, left to right composi-
tion is often used as it is here. In semigroups in particular mappings are often
defined as a product of words over an alphabet, in which case left to right is the
natural direction to read the composition.

(c) Suppose that o € E(Tx). Then for any # € X we have za = za? =
(xa)a, and so we see that « acts identically when restricted to its range. Con-
versely if &|ranq is the identity mapping then the previous equation applies and
so we conclude that o € Tx is idempotent if and only if « acts as the identity
mapping when restricted to its range.

(d) Let o € T and 8 € Tx. Then Xfa C Xa so it follows that |Xfa| <
| Xa| <Y sothat Sa € I and so I is a left ideal of Tx. On the other hand,
let | Xaf| < |Xa| <Y also as, in general the cardinality of the range of any
function f : A — B never exceeds that of its domain. (To see this take any
y € Af. Map y — = where x € yf~'. This defines a one-to-one mapping from
Af into A so that |Af| < |A|.) Hence off € I also. Therefore I is both a left
and a right ideal, and therefore an ideal of Tx.

Comment The converse is also true as these are indeed the only ideals of Tx.
To prove this one just shows that the principal ideal generated by a mapping
«a € Tx consists of all mappings of the same rank.

5(a) Clearly if a subsemigroup U of S contains A then, by closure under
product and a simple induction on length, it follows that U must contain all
products of members of A of any (positive) length. Since this set is by its
very definition closed under the taking of products, it follows that the set of
all products of members of A is indeed the smallest subsemigroup of S that
contains the non-empty set A.

Comment In framing the previous argument we implicitly assume that a
product ajas - --ay, (n > 1) is unambiguous, which is to say that in the cases
where n > 3, the outcome is indepedent of the bracketing of the product. For
n = 3 this is simply the statement of the Associative law. To show that is true
in general requires an induction argument on n, which is itself a useful exercise.
As inductive hypothesis we take that for m < n any bracketing of ajas - - - a.n,
yields the same outcome as the particular bracketing aj(az(-- - (am))---) and
work from there.

(b) We are told that (a) = {a,a? a3, -} is finite so let a” be the first power
that is repeated in this otherwise infinite list and let m be the least positive inte-

ger t such that a” = a”*t. We claim that (a) = S = {a,a?,--- ,a",a"T},--- Ja"Tm 1}
By definition of r and m, all the powers a, a2, - - , a” are distinct from each other
and all the listed members of S. Consider the set K, = {a",a" ! ... ja"tm~1}

and suppose, contrary to what we claim, that "t = a"™* where 1 <t < s <
r+m—1. Putd=m—1—3s > 0. Then o'ttt = ¢"Tstd — o7+7m=1 where
r<r4+t+d<r+m—1. Butthen a" = a" Tttt = ¢"t™ contrary to the
assumption that m was the least power such that a” = a" ™. Therefore all the



listed members of K, are pairwise distinct and so the list S does indeed consist
of m distinct members, which collectively define {a).

Next we note that aK, = Kea = {a" 1, a" 2 ... "t~ gmtm = ¢} =
K,, whence it follows that K, is a subsemigroup of (a) that is both left and
right simple, whence by Question 2, K, is an (abelian) group.

(c) Since K, is a group, there is a unique power ¢ (r < t < m — 1) such
that a® is idempotent. By the above argument, for any a® € K, we have that
a®* = a*t™ and a® # a*TP for any 1 < p < m — 1. Hence we have

so that m|t. Hence t is the least integer p > r such that m|p. In other words ¢
is the unique integer p such that r < p <r +m — 1 such that p = 0 (mod m),
which exists and is unique as r,r + 1,--- ,7 +m — 1 is a set of m consecutive
positive integers.

(d) Finally put s = ¢+ 1 and consider the set S = {a®, a®*,--- ,a™*} C K,.
We show that the members of the list S are pairwise distinct, and since there
are m members listed, it will follow that S = K, so that K, is indeed a cyclic
group with a’*! as a generator. To this end, suppose that for two members, a**
and a¥® with 1 < u < v < m we have a%® = a?. Then since a' is the identity
element of K, we obtain a“t% = "'+, whence a'!** = a!*?, whence u = v
(mod m). This implies that « = v as required to prove our claim. Therefore
K, is indeed a cyclic subgroup of (a) with idempotent a* where ¢ > r and m|t.

6(a) A simple induction gives ran(a*) = {k,k + 1,---,7 +m — 1} for all
k =0,1,---,r. Hence the index of a is at least . On the other hand a|gk,
where K, = {r,r+1,--- ,r+m—1} is a cyclic permutation, whence a” = a"+t™
and so r and m are the respective index and period of a.

(b) Let a* € E({(a)). Then we have m|t and r < t. Since r +m =n +1
(where n = |(a)|) we have m|t and m > n+ 1 —¢. In this case t = 8, n = 11
so that m|8 and m > 11+ 1 — 8 = 4. Hence m = 4 or m = 8, yielding two
monogenic semigroups with r = 8, m =4, or r =4, m = 8 , which we write Sg 4
and Sy g.

(c) The mapping a has two components with vertex sets {1,2,---,8} and
{9,10,11,12} respectively. The index of a is the greatest of the two indices of
each of the maps represented by these components, which is max{4.3} = 4. The
period m is the least common multiple of the cycles of each component, which
is the lem{3,1} = 3. Hence (a) = S43.

The idempotent power a! satisfies m|t and r <t < r+m — 1, that is 3|t and
4 <t <6, so that t = 6. The idempotent of (a) is a®. Since K, = {a*, a°,a® =
e}, which is a copy of Z3, which is the only non-trivial subgroup of (a).

7(a) Certainly the mapping defines a binary operation on C\ {0}. For three
complex numbers a, b and ¢ we have

(aob)oc=laocblec=||ap])c= (la|[b])c = |al(|b|c)

= lal(boc) =ao(boc),



and so we have a semigroup.

(b) z € E(S) if and only if z 0 z = |z]z = 2, which is to say that |z| = 1.

(¢c) We need to show that we may always solve the equation a o x = b
(a,b € C\ {0}), which is to say |a|z = b, which, since a # 0, gives the unique
solution = = Tz\ and so S is right simple.

Next suppose that a ob = a o ¢ and so |a|b = |a|c, whence b = ¢ and a # 0.
Hence S is also left cancellative.

8(a) Let S be a finite subsemigroup of a group G. Then S inherits can-
cellativity from the containing group G. Let a € S and consider the right
translation map p, : S — Sa whereby x — za. Then p, is one-to-one for if
za = ya (x,y € S) then x = y by right cancellativity in S. Since p, is clearly
onto we have that p, is a bijection, whence |S| = |Sa|. (To this point the finite-
ness hypothesis has not been used.) However, since S is finite and Sa C S it
follows that Sa = S and so S is right simple. By the dual argument, S is also
left simple and therefore S is a group by Question 2.

(b) Let G = (Z,+) and let S = (N, +) be the subsemigroup of all positive
integers. Then S is embedded in a group but is not itself a group.

9(a) Let a, 8 € S. Then af is also one-to-one and Xaf C X, whence
X\ XaB D X\ XS sothat | X\ Xag| > |X \ XS], and so both sets are infinite.
Hence S < Tx, and indeed this shows that S is a left ideal in the semigroup of
all one-to-one mappings on X.

(b) Suppose that « is any one-to-one mapping in E(7x). Then by Question
4(c), a|xq is the identity mapping. Suppose that there existed z € X \ Xa.
Then za € X \ {z}, whence za = (za)a, contradicting that « is one-to-one.
Hence Xa = X and so « is the identity mapping. In particular, it now follows
that o € S and so S is idempotent-free.

(c) Let a, 8 € S . We construct v € S such that ay = 8. Necessarily
this requires that for each € X we put (za)y = 3, thus defining v on Xa.
The sets Y = X \ Xa and Z = X \ X are both countably infinite and so
we may take v to act on X \ X« in a one-to-one fashion, mapping onto some
infinite subset W C Z such that Z \ W is also infinite. This completes the
definition of a mapping ~ that satisfies ay = 8 and | X \ X~| = Z\ W, which is
infinite. It remains only to check that v is injective. For za, yo € Xa (2,y € X)
suppose that (za)y = (ya)y. Then 8 = yfS and so © = y as ( is one-to-one,
whence za = ya, thus showing that ~ is one-to-one on X«. By construction,
~v is also one-to-one on X \ Xa. Finally let za € Xa and y € X \ Xa. Then
(xa)y = B € XB but yy € X \ Xf so in particular (x«)y # yy. Therefore v
is itself one-to-one and so lies in S. Therefore S is right simple.

Next suppose that af = v for some «, 3,y € S. Then for any z € X we
have (za)B = (x7v)8, whence xaw = xy as 8 is one-to-one. Hence o =« and so
S is right cancellative.

Now we consider the equation ya = 3, where «, 8 are given members of S.
For this to be solvable, we must have X~vya = X3, whence X5 C Xa. Clearly
it is possible to choose o and (3 so that this does not hold and so it follows that



this equation is not in general solvable and so S is not left simple.

Similarly consider the equation o = ary. This shows that §|xa = 7|xa but
clearly 8 and « could act differently on some points of the infinite set X \ Xa.
Hence « does not in general cancel on the left and so S is not a left cancellative
semigroup.

10(a) We do have a binary operation on S x T so we just need to check
associativity. However, with an obvious meaning for the notation we see that

(w1, 91) (22, y2) ) (23, y3) = (T122, Y1y2) (23, y3) = ((x122)x3, (Y192)Y3)

= (501(962503)7311(3123/3)) = (zlayl)((z27y2)($37y3))'

(b) Let (a,b) € L x R. Then (a,b)(a,b) = (a?,b*) = (a,b), and so L x R is
also a band. Moreover for any (a,b), (¢,d) € L x R we have:

(a’a b) (C, d) (av b) - (acv bd) (av b) - (av d) (av b) - (a27 db) = (a’a b),

whence it follows that every pair in L x R is an inverse to every pair in L X R.

Problem Set 2

1(a) Aa < Sa for if aa,ba € Aa then aaba = (ab)a € Aa and so ¢ is a
mapping into B, and is clearly also inclusion-preserving. To see that ¢ is onto,
let U <T. Let a,b € Ua™!, so that aa,bo € U, whence aaba € U, which
is equivalent to (ab)a € U, so that ab € Ua~!, whence Ua~! < S such that
(UaHa = U, and so ¢ is onto.

(b) Our mapping ¢ is now the restriction of the mapping of part (a) to
ideals. Let I be an ideal of S. Let aa € Iaw (a € I), bar € T (remembering « is
onto). Then aaba = (ab)a € I« as I is a right ideal; dually baaa = (ba)a € Ta
as I is a left ideal. Hence ¢ maps ideals to ideals. Let I now denote an ideal
of T, a € Ia=t,b € S. Then (ab)a = aaba € I as aa € I, which is a right
ideal of 7. Thus ab € Ia~!, which implies that Ia~! is an ideal of S such
that (Ia=1')a = I. Therefore ¢ maps onto the set of ideals of T and so ¢ is an
inclusion-preserving map from A onto B.

(c) The composition «f is certainly a function from S to V and is also a
homomorphism as for any a,b € S we get that

(ab)af = ((ab)a)§ = (acbe) 3

as « is a homomorphism. Then since (8 is also a homomorphism we have the
required conclusion as

= (aa)B(ba)B = ((a)apB)((b)af).



2. Suppose that o is a congruence on S. Let a,b,c € S with ac = bo. Then
since coc and acb, and ois a congruence we obtain ca o cb, and so o is a left
congruence. The dual argument shows that o is also a right congruence.

Conversely suppose that o is both a left and a right congruence on S. Let
a,b,c,d € S such that acb and cod. Then since o is a left congruence we have
acobe. Since o is a right congruence then we have bco bd. Finally since o is
transitive we obtain aco be o bd implies that aco bd, thus demonstrating that o
is a congruence on S.

3(a) Clearly ker¢ is an equivalence relation. Suppose that (a,b), (¢, d) € ker¢.
Then (ac)p = apcd = bopde = (bd)¢, which is to say that (ac, bd) € ker¢ and so
ker¢ is a congruence on it domain S.

(b) We first need to check that this multiplication is well-defined, meaning
that it is independent of the representatives chosen for the p-classes. So, suppose
that apc and bpd. Then abpecd (as p is a congruence), or in the alternative
notation, pep = ped, S0 the class that results from the operation does not depend
on the representive chosen for each congruence class. Associativity also needs
to be checked:

(apbp)cp = (ab)pcp = ((ab)c)p = (a(be))p = ap (be)p = ap(bp cp).

(¢) By definition of multiplication in S/p we have (ab)p® = (ab)p = apbp =
ap®bp?, so that p’ is a homomorphism from S to S/p, which is clearly onto as
every member of S/p has the form ap for some a € S. Finally

ker (p*) = {(a,b) : ap” = bp"} = {(a,b) : ap =bp} = p.

4. That ker(«) is a congruence was shown in Question 3(a). We require that
pfp = a, which is to say that v is necessarily defined to act as (ap)y = ac.
We check 1 is thereby well-defined. Suppose that ap = bp, which is to say
that (a,b) € kera, whence aa = ba, so the action of ¢ is independent of the
representative chosen for ap. Clearly 1 is a surjective mapping onto 1" = Sa;
and as for being one-to-one, suppose that (ap) = (bp)1p. Then acv = b, which
is to say that (a,b) € kera = p. Hence ap = bp, and we conclude that v is indeed
a bijection. Finally we need to check that v is a homomorphism. However

((ap)(bp))y = ((ab)p)y = (ab)ar = aaba = ((ap))((bp)i);

therefore ¢ is indeed an isomorphism ¢ : S/p — T and is the unique such
isomorphism that satisfies pf1) = a.. This completes the proof.

5. First we check that p/o is a well-defined relation on S/o. Suppose that
(ao,bo) € p/o so that apb. Suppose now that ac = co and bo = do. Then since
o C p we have that cpapbpd, so that cpd and so (co,do) € p/o. This shows
that the membership of p/o is independent of the representatives chosen for the
o-classes involved in the definition. Hence p/o is a well-defined relation on S/o.

That p/c is an equivalence relation on S/o follows immediately from the
fact that o and p are equivalence relations: for instance, as regards transitivity



let us suppose that (ao,bo), (bo,co) € S/o with (a,b) € p and (b,c) € p.
Then (ao,co) € o as o is transitive and (a,c) € p as p is transitive, whence
(ao,co) € p/o.

To show that p/o is a congruence let us take (ao, bo), (co,do) € p/o. Then,
since ¢ is a congruence we have acobd, and since o C p we have apb and cpd.
Since p is a congruence this gives that (ac)p(bd) and so ((ac)o, (bd)o) € p/o,
which is what was required to show that p/c is itself a congruence on S/o.

Next we check that (p/c)f maps surjectively onto S/p. Let ap € S/p. Then

(a0)(p/0)* = (ao)(p/0) = ap,

which is well-defined as ¢ C p. This shows that (p/c)! maps surjectively onto

S/p.
The kernel of (p/o)? is the set of pairs (ac, bo) such that

(a0)(p/0)" = (b0)(p/o)" & apb & (ac,bo) € p/o,

which is to say that ker(p/o)% = p/o, as required. Hence by the First isomor-
phism theorem we have that (S/0)/(p/o) = S/p.

6(a) Let a,b € ep. Then

(ab™Y)p = (ap)(b~"p) = (bp) (™" p) = (b~ 1)p = ep,

which shows that ab=! € N = ep. Hence ep is a subgroup N of G. Moreover N
is normal as for any a € N and b € G we have

(b"Yab)p = b papbp = b~ pepbp = (b teb)p = ep
so that b~'ab € N. Finally for a,b € G we have
apb < ab~1pbb~! = e,

which is to say that apb if and only if ab~! € N. Hence the set of p-classes
coincide with the set of all cosets of the normal subgroup N = ep.

(b) Conversely let N be a normal subgroup of G and define a relation p on
G by apb if and only if ab~! € N. Then apa as aa~! = e € N; if apb then
ab=! € N, whence (ab=1)"! = ba~! € N, as N is closed under the taking of
inverses, and so p is symmetric. Next if apbpc then ab~!,bc™! € N, whence
so is ab~'bc™! = ac™!, whence apc and so p is transitive and therefore is an
equivaence relation. Next let apb and take any ¢ € G. Then (ac)(bc)™! =
acc b=t = ab~! € N so that acpbc and so p is a right congruence. Also
(ca)(cb)™ = cab=tc™! € N as ab~! € N and N is normaland so closed under
conjugation. Hence p is also a left congruence and therefore p is a congruence
by Question 2. Moreover ape < ae~! = a € N, whence we have that ep = N,
as required to complete the proof.

7(a) It is clear that all the defining properties of congruence are inherited
by arbitrary intersections. For example let p = N;crp; over some index set I,



where each p; is a congruence on some semigroup S. Let apb and cpd. Then
ap;b and cp;d for all i € I. Since p; is a congruence on S, it follows that acp;bd.
Since this holds for all ¢ € I, it follows that abpcd as well.

We do have to note that p # (), which follows as each p; contains the equality
congruence on S, whence S does also. (And this is necessary to verify that p is
a reflexive relation on S).

(b) This follows almost immediately from part (a), we just need to note that
there is at least one congruence, namely the universal congruence S x .S, in the
intersection in question.

8. By Question 7, the least congruence containing R exists (and we denote
it by R*). Suppose that a — -+ — b is a sequence of elementary R-transitions
from ato b (a,b € S) of length n > 0. We prove by induction on n that aR*b, the
claim being true for n = 0 be reflexivity of R. If n = 1 then a = zcy, b = zdy,
and cR%d for some ¢,d € S and x,y € S*. Since R® C R* (as R C R* and R* is
reflexive and symmetric), if follows that ¢cR*d. Then since R* is a congruence, it
follows that a = zcyR*zdy = b. Finally let n > 2 so that the sequence has the
form x -t — --- — b say. By the n = 1 case we have zR*t and by induction
we have tR*b. Then we have a R*tR*b and since R*is transitive, it follows that
aR*b, completing the proof in this direction.

To show the converse we assign the symbol R; to the relation defined by
aR1b if and only if there is a sequence of elementary R-transitions from a to b.
By above we have R C Ry C R*. Since R* is the smallest congruence on S that
contains R, it follows that to complete the proof we need only show that R; is
a congruence.

By taking n = 0 we see that aRja, so that Ry is reflexive. Next, since the
reverse of each elementary R-transition is also an elementary R-transition, it
follows that b — --- — a by the reverse sequence of transitions so that bRia
and hence R; is symmetric. Next suppose that is a sequence of elementary
R-transitions b — --- — ¢ say. Then by followinga — -+ —bbyb— --- = ¢
we have a sequence of elementary R-transitions a — --- — ¢, thus showing that
R, is transitive. Therefore R, is an equivalence relation on S that contains R.
Finally, once more consider the sequence a — --- — b and take any ¢ € S'.
Each elementary R-transition in the sequence has the form xty — zsy for some
(z,y € S* and tR®s). Then zt(yc) — zs(yc) is also an elementary R-transition,
and so, replacing each transition is the original sequence by that where each term
in the sequence is multiplied on the right by ¢ gives a sequence of elementary R-
transitions from ac to be, thus showing that R; is a right congruences on S. By
symmetry, Ry is also a left congruence on S, and therefore Ry is a congruence
on S whence we conclude that R, = R*.

9. Consider our candidate
E’ ={(a,b) e Sx S: (Va&,y € SY) (zay, zby) € E}.

We need to show that E° C E, that E° is a congruence, and finally that if
p C F is a congruence then p C E” . To this end, let us take (a,b) € E”.



Putting z = y = 1 in the definition of E* we get that (a,b) € E, and so E* C E.
For any a € S we have (zay, ray) € F as E is reflexive and so (a,a) € E” and
so E” is reflexive. Now suppose that (a,b) € E” so that (zay,zby) € E for all
x,y € S1. Since F is symmetric, it follows that (zby,ray) € E for all z,y € S*
and so (b,a) € E” and E” is therefore symmetric. Next suppose that aE"bE’c
say, so that (zay,xby) € E and (zby,zcy) € E for all 2,y € S'. Since E is
transitive, it follows that (zay, zcy) € E and therefore (a,c) € E” and therefore
EPis transitive and therefore is an equivalence relation contained in E. Now
suppose that (a,b) € E” and take any ¢ € S'. Then (zay,zby) € FE for all
x,y € S'. In particular (zacy, zbcy) € F for all z,y € S' so that (ac, bc) € E”.
It follows that E° is a right congruence and by the dual argument, also a left
congruence and therefore E” is indeed a congruence that is contained in E.

Now let p be any congruence on S such that p C E. Suppose that (a,b) € p.
Then since p is a congruence contained in F it follows that (zay, zby) € pN E
for all z,y € S*. Therefore p C E°. This completes the proof that E” is the
largest congruence contained in the equivalence relation E on S.

10(a) We have that e = fe as f is a left identity, while equally we have
fe = f as e is a right identity. Therefore e = fe = f and so e = f and e is the
unique identity element of .S, which is therefore a monoid.

(b) We have that e = fe as e is a right zero element, while equally fe = f as
f is a left zero element. Therefore e = fe = f and e is the unique zero element
of S.

(c) Let p be any equivalence relation on a null semigroup S with zero element
e. Then for any (a,b),(c,d) € p we have ac = e = bd and so (ac,bd) € p.
Therefore p is also a congruence on S. Now take any ap,bp in S/p. Then
(ap)(bp) = (ab)p = ep for all ap,bp € S/p. Therefore S/p is indeed itself a null
semigroup in which all products equal the zero class, ep.

Problem Set 3

1(a) For any e € E we have ¢ < e as ¢ = e2. Suppose that e < f and f <e
(e,f € E). Thene=ef = feand f = fe =ef , sothat e = ef = f and so
< is anti-symmetric. Finally let e < f and f < g. Then e = ef = fe and f =
f9 = gf. Then eg = (ef)g = e(fg) = ef = e and ge = g(fe) = (9f)e = fe = e.
Hence e < g and so < is transitive. Therefore < is indeed a partial order on
E(9).

(b) If e < f then fef = f(ef) = fe = e. Conversely if e = fef then
ef = fef? = fef =e and fe = f?ef = fef =esothat e < f.

2. We will need to make use of the observation that if a < bthen x = anc <
b A c=1y. To see this we note that z < b and x < ¢ so that < y and y is the
greatest lower bound of b and c.

We need to show that © = (e Ab)Ac=y=aA (bAc). Now aAb < a and
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sox <a. AlsoaAb<bandsoz = (aAb)Ac<bAc, whence z <aA(bAc)=
y; a similar argument shows that y < x and therefore the meet operation is
associative and clearly a Ab = b Aa and a A a = a. Therefore (S,A) defines
a commutative band. Furthermore a < b if and only if @ = a A b and so the
natural partial order on (5, A) is the order < of the semilattice.

3. Let B be a commuative band and let < be the natural partial order on
B. Lete,fe Bthene-ef =ef andef-e= fe-e= fe=-ef. It follows that
ef <eandequally ef < f sothat ef <eA f. Now let g <e and g < f. Then
g-ef =ge-f=gf =gandef-g=g-ef =g also and so g < ef. Therefore
ef =eA f,and so B is a semilattice. Moreover the product in .S coincides with
the meet operation in the semilattice of the natural partial order of B.

4(a) For a € G, the inverse a~! satisfies the required definition of regularity
as: aa 'a =ae =a and a"taa"! = ea”! = a~!. Therefore a group is a regular
semigroup.

(b) We have a = axa. Then
a(zaz)a = (axa)ra = axa = a; (rax)a(zax) = x(azxa)(zar) = z(aza)r = xax;

therefore zax € V(a).

(c) Let a € Tx. For any y € Xa, choose z € ya~! and put y3 = z. For
y € X \ Xa put ya = z where z € X is arbitrary. Then for any ¢ € X we have
taBa = wa where x € (ta)a™! so that za = ta and therefore tafSa = ta for all
t € X. Therefore o = afa and the result now follows from part (b).

(d) Let a: S — T be a homomorphism. Then Sa < T by Question 1(a) of
Set 2. Let y € Sa so that y = za say. Let ' € V(x) and denote z'a by 7.
Then

yy'y = (va)(z'a)(za) = (v2'z)a = za = y;
whence it follows that y is regular. Therefore S« is a regular subsemigroup of
T.

(e) For any given a = (a;)icr in S, clearly (z;)icr € V(a), where z; € V(a;)
foralli e I.

Comment Clearly the converse also holds in that S is regular implies the
same of each component in the direct product.

5(a) By Question 4(a), any group G is regular and has a unique idempotent e,
that being the identity element of G. Conversely suppose that S is regular with
a unique idempotent e. Let a € S and let € V(a). Then (az)? = (ara)r = ax
and (ra)? = (razx)a = za. Hence ax = za = e, and ae = ara = a and
ea = axa = a and so S is a monoid with identity e. Moreover x is the inverse
of a with respect to e and therefore S is a group.

(b) Let S be a finite semigroup. Certainly if S is a group then S is cancella-
tive. Conversely suppose that S is cancellative. We prove that S is a group by
checking that S is both left and right simple, and by symmetry it is enough to
verify that S is left simple, which is to say that S = Sa for all a € S. Now
Pa S — Sa whereby z — za is an injective map for, by right cancellativity, if
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za = ya then x = y. Hence Sa C S and |Sa| = |S|. However, since S is finite
this implies that Sa = S, thus completing the proof.

(c) Part (b) does not hold in general: for example (N, +) is a cancellative
(and commutative) semigroup that is not a group.

6. We have p is reflexive as (a,b)p(a,b) < ab = ba; suppose that (a, b)p(c, d)
so that ad = be = ¢b = da so that (c¢,d)p(a.b) and so p is symmetric. As for
transitivity we take (a,b)p(c,d)p(e, f) say so that ad = be and ¢f = de. Hence
afc = acf = ade = bce = bec so that af = be, as S is cancellative, and so
(a,b)p(e, f), thus establishing p as an equivalence relation.

To show that p is a congruence, it follows by commutativity that is suffices
to show that p is a right congruence. Suppose then that (a,b)p(c,d) and let
(e, f) € F. We have ad = bc so that

aedf = adef = bfce < (ae,bf)p(ce, df) < ((a,b)(e, f))p((c, d) (e, [)),

as required. Thus p is a congruence and so F/p is commutative, with (1,1)p as
identity element. Furthermore F/p is a group, as for any (a,b)p € F/p we have

(a,b)p(b, a)p = (ab,ba)p = (ab,ab)p = (1,1)p.

Finally we verify that the mapping ¢ where a — (a,1)p embeds S into the
abelian group F/p. That ¢ is injective is immediate from the definition of p.
Furthermore ¢ is a morphism:

(ab)p = (ab,1)p = (a,1)p(b,1)p = adbe.
Let S = (N,+), so S’ = NU{0}. We have F = S! x S! and so
(a,b)p(c,d) a+d=b+csa—b=c—d.

We thus have a well-defined bijection ¢ between F'/p and (Z, +) where (a,b)¢ =
a — b. Moreover ¢ is an isomorphism:

((a,0)+(c,d))p = (atc,b+d)p = atc—(b+d) = (a=b)+(c—d) = ((a,0)p)d((c, d))¢-

For the embedding of S where a — (a,0)p and (a,0)pp = a —0 = a, we see that
this is just the standard embedding of (N, +) — (Z,+).

Next let S = (N,-) so that F = N x N and (a,b)p(c,d) < ad = be, which
is to say ¢ = <. This is the usual embedding of (N, -) into (Q*,-) of positive
fractions, with a € N identified with (a,1) = § in F/p = (Q*,).

7(a) Let S = Gx E. Then for any (a, e), (b, f) € GxE we have (a,e)(a™b, f) =
(aa='b,ef) = (b, f), showing that S is right simple. To show that S is left can-
cellative we suppose that

(Cag)(a’e) = (Ca g)(b’f)

= (ca,ge) = (cb,gf) = (ca,e) = (cb, f)
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whence a = b as G is cancellative and e = f, whence S is indeed left cancellative
and therefore S is a right group.

(b) We now suppose that S is a right group. Take a € S. Since S is right
simple, for any b € S there exists € S such that ¢ = bx and taking b = a this
give a = ax, whence a = ax = az?. By left cancellativity we have that = x>
is an idempotent. Therefore E(S) # .

(c) Next let e, f € E(S). Then there exists € S such that ex = f . Hence
ef =e-ex =ex = f, so that E(S) is a right zero semigroup.

(d) Now take e € E(S) and b € S. Then there exists « € S such that ex = b,
whence eb = ¢ - ex = ex = 0.

(e) Certainly Se < S. If ze € Se then e - ze = ze (by (d)) and ze - e = we,
so that e is the identity element of Se. Finally let xe € Se. Then there exists
y € S such that zey = e, whence ze - ye = ¢? = ¢, and so ye = (ve)~! and Se
is a group.

(f) Let a € S and take e € E(S) such that a = ae, (e exists as shown in (b)).
Define ¢ : S — G x E by a — (af,e). Supppose that a¢p = be, so that af =bf
and ae = a, be = b. Then, since e = fx for some = € S we obtain

a=ae=afr=>bfr=>be=0,

and so ¢ is injective.

For each a € S, the right identity e for a is unique, for if a = ae = ag,
then e = g by left cancellativity. Now take (af,e) € G x E. Then (ae)p =
(aef,e) = (a,e) and so ¢ is surjective. Finally let ab € S with a = ae and
b="0bfg(e,g € E(S)). Then

(ab)g = (abf, g) (asabg = ab) = (afbf,eg)
as fbf =bf and Sf is a group with identity f,
= (af,e)(bf,9) = adbe.

Therefore ¢ is a required isomorphism and so S =2 G x E.

8(a) If S is a right group then S = G x E say and thus is right simple and
contains at least one idempotent. Conversely, if S has these properties then
since S = eS for all e € E(9), it follows that every idempotent of S is a left
identity. Now suppose that ca = ¢b (a,b,c € S). Then take e € F(S) and write
e = cx. Put f = xc, then

f?=xcxc=zec=xc=f
so that f € E(S). Then
a= fa=uxca=uxch= fb=0b.

Hence S is left cancellative and right simple, and thus S is a right group.
(b) Let S = G x E by a right group and consider the equation (a,e)(z, g) =
(b, f). This gives az = b and eg = f, whence * = a~'b and g = f, so the
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solution of our equation is indeed unique. Conversely, given that ax = b is
uniquely solvable in S, it follows that S is right simple. Putting b = a gives
ar = a = az? so that x € F(S), by uniqueness of solution. Hence E(S) # @
and it follows from (i) that S is a right group.

(c) Since the direct product of two regular semigroups is easily seen to be
regular, it follows that right group G x E is regular and left cancellative. Con-
versely let S be a regular and left cancellative semigroup. For each e € E(S5)
and a € S we have e-a = e - ea whence a = ea by left cancellativity and so
each idempotent is a left identity in S. Now take a,b € S. Let ¢’ € V(a).
Then aa’ € E(S) so that putting © = aa’ we have a = zb and so it follows that
aS = S for all a € S. Therefore S is a right group.

9. Clearly p is an equivalence relation. Suppose that apb and ¢ € S. Either
a = b in which case ac = be. Otherwise a,b € I whence ac,bc € I as I is a right
ideal. This shows that p is a right congruence. Dually, p is a left congruence
and therefore p is a congruence on S.

10(a) Let a,b € S. We need to check that (ab)® = a®b®, which is to say
that p.p = papp- Take any x € S, then

Zpap = x(ab) = (xa)b = xpapp.

(b) Let S be a null semigroup with zero element z. For any a,z € S we have
xpe = xa = z. Hence p, = pp for all a,b € S. In particular, ® is not one-to-one
unless |S| = 1.

(c) If we replace S by S! then @ is still a homomorphism as in (a). Suppose
that p, = pp- Then a = la = 1p, = 1py, = 1b = b. Therefore a = b, whence
it follows that @ is indeed one-to-one and so ¢ acts to embed S into the full
transformation semigroup 7g. Therefore any semigroup may be embedded in a
full transformation semigroup 7x. Moreover, if S is finite, we may take Tx to
be finite also.

Problem Set 4

1(a) a € domaf if and only if there exists b,¢ € X such that aa = ¢ and
¢ = b. Hence aa € dom 8 and aa € ran « so it follows that domaf C
(ranaN domB)a~!. Conversely suppose that a € (rana NdomB)a~!. Then
aa € ranaN dom B . Hence aaf is defined and so a € dom «af giving the
reverse inclusion and we conclude that doma3 =(ranan domB)a~!. Therefore

ran aff = (rana N domB)a™'a = ran aNdom 3.

(b) Let @ : PT x — Txuqoy be the mapping whereby o +— a1 where za; =
za if x € doma and otherwise xa; = 0. In particular Oa; = 0. Suppose
that a; = By for some o, € PT x. Then if x € doma then za € X and
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xa = zay = xf1 = xf (as za # 0) so that € dom 8 and za = z5. On the
other hand if x € doma then xa; = 0 = 281, whence x ¢ domf. This all serves
to show that a = 8 and so ® is one-to-one.

Now let a; € Txygoy with Oa; = 0. Let o € PTx be defined by doma =
{r € X : zay # 0} and for z € doma put xa = xay. Then, by construc-
tion a® = «;. Hence @ is a bijection of P7T x onto the set of all members of
Txugoy which fix 0. Finally we need to check that @ is a homomorphism. Let
a,f € PTx. If x(af)1 # 0 then x(af); = zaf, which occurs iff x € (ranan
domB)a~t. On the other hand, a3 # 0 iff z € doma and za € domf (in
which case z(af); = zaf). But z € doma and za € domf iff  €(rana)a~1N
(domB)a~! = (ranandomB)a~t, whence it follows that (af); = a13;. There-
fore @ is indeed a required isomorphism.

Comment Note that we have used the fact that for any function f and sets A
and B we have (ANB)f~! = Af~'nBf~!. Clearly we have containment from
left to right while if € Af~'NBf~! then zf € ANB, whence z € (ANB)f~!.

(c) For each z € X,, we have n choices for za and since different, choices give
different functions it follows that |T,,| = n™.

By (b) [PTn| = H{a € Txugoy : O = 0}]. Hence when constructing a
member of the latter set we have for each x € X, a choice of n + 1 possible
images (as xa = 0 is always possible) giving (n + 1)™ choices in all. Therefore
PTol = (n+1)".

(d) We know that Tx is regular, and identifying P7 x with the semigroup
of all mappings in Txyoy which fix 0, we need only observe that when taking
an inverse 3 of such a mappping in Tx o we may insist that 03 = 0.

2. Certainly Zxy C PT x and since the composition of partial one-to-one
mappings will yield another (partial) one-to-one mapping, it follows that Zx <
PTx. Since a~! is a (partial) one-to-one function it follows that a~! is the
only member 5 € Tx such that afa = « and 8 = Saf. A mapping € € Tx
if and only if xe = z for all x € dome and so an idempotent can be identified
by its domain (which equals its range). If we write ¢4 for the idempotent in
Zx with domain A we then see that egeg = eanp. Therefore the semilattice of
idempotents of Zy is the semilattice of the power set of X under intersection.

3. (i) implies (ii). Since S is regular, it follows that S'a = Sa. Now
Sa = Saa™'a C Sa~'a C Sa. Tt follows that Sa = Saa™! and aa™t € E(S).
Similarly a.S = aa~!S, so that each right and each left ideal have an idempotent
generator (and this is true for any regular semigroup). Suppose now that Se =
Sf where e, f € E(S). Then there exist z,y € S such that ze = f and yf = e.
Then

e=yf=yf’=ef =fe=uzxe-e=uzxe=Ff.

The dual argument shows that each left principal ideal has a unique idempotent
generator.

(ii) implies (iii). Let a € S and take a’,a” € V(a). Then aS = ad'S = aa”S
and Sa = Sda’a = Sa”a. Since idempotent generators are unique, we have
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aa’ = aad’ and a’a = a”a. Hence

a/ — a/aa/ _ a//aa/ — a//aa// — a//
and so each element has a unique inverse.

(iii) implies (i). Let e, f € E(S) and # = (ef)~!. One checks that xe and
fx are both inverse to ef:

re-ef -xe =zefre =xe; ef -xe-ef =efref =ef;

fx-ef - fr= frefe= fx;ef- -fr-ef =efref =ef.

Thus by uniqueness of inverses we have x = re = fz, whence 22 = ze - fz = .
But then x = 7! = ef, whence ef € E(S). By a similar argument, fe € E(S).
Next we show that ef and fe are mutually inverse:

ef - fe-ef =efef=ef; fe-ef - fe= fefe= fe.

However, since ef € E(S), it follows that ef is its own unique inverse. Hence
ef = fe and therefore E(S) is commutative, and so is a semilattice.

4(a) By uniqueness of inverses, it suffices to show that the given candidate
for inverse in each case satisfies the equations for inverses. We certainly have
aa"'a = a and a7taa™! = a7! so that (a7!)”! = a. Similarly we see that
through the commutation of idempotents that:

ab-bta™t - ab = a(bb™)(a"ra)b = (aa"ta)(bb'b) = ab;

b la tab-b et = a e b e =0 b e e = b e

which shows that (ab)~! = b~ta~ 1.

(b) Since ef = fe we have Sef C Sf and Sef = Sfe C Se so that Sef C
SenSf. Conversely let t =ae =bf € SeNSf. Thenz =bf =bf - f =aef €
Sef so that Sen Sf C Sef and therefore Sef = Sen Sf. Since a = aa"'a we
have Sa = Saa"'a C Sa~'a C Sa so that Sa = Sa~'a. Replacing a by a=! we
then have Sa=! = S(a™1)"ta=! = Saa™".

5. By Question 4(b) we have domp, = Sa~! = Saa~! . For any z € Saa™!
we may write 2 = yaa~' whence zp, = yaa~"'a = ya so that ranp, C Sa =
Sa~'a, again by 4(b). Replacing a by a~! we have p,-1 : Sa"ta — Saa™!.
Hence for any = € Saa™"! so that x = yaa~! we have

1 1

TPaPa—-1 = Yyaa ~aa 1

=yaa "=

and by the same argument with a replaced by a~! we obtain that xp,-1p, = 2
for all x € Sa~'a. Therefore p,, p,—1 are both bijections, so that pa, pa-1 € Ix

and pe-1 = pg 'y pa = p, -

6. Suppose that p, = pp- Then the domains of these mappings are equal,
so that Saa™! = Sbb~! and then aa~! = bb~! by uniqueness of idempotent
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generators. Since a~! € Saa™! it follows that a='p, = a~'py, which is a=ta =

a~1b.
a=aata=aa"'b=0bb"1b=0.

7. To show that ® is a homomorphism it is enough to show that domp,, =
domp,pp (meaning that the result follows at once from this and associativity of
S). First we have dompg, = Sab(ab)~t. On the other hand domp,p, = (ranp,N

dompy)p; !
= (Sa "anSbb " )p,  =Sa “abb” "p,  =Sabb” "a " (as Sa “a = Sa
Sa~tan Skb~Hp ' = Satabb !t = Sabb'a"! (as Sa”la =S
= Sab(ab) ™! = dompygy,.

8. We have a € E(S/p) where S is regular. Put e = axa where z € V(a?).
Then e € E(S) as

62:aza-axa:a-xazx-a:axa:e.

Moreover
ep = (azxa)p = apzpap = a*prpa’p = (a®xa?®)p = a®p = ap.

9. Let o : S — T be a homomorphism from an inverse semigroup S onto
a semigroup 7. Certainly T is regular, and to show T is inverse it is then
enough to show that if e, f € E(T) then ef = fe. By Lallement’s lemma, since
T = S/kera, there exist idempotents g, h € E(S) such that go = e and ha = f.
Then
ef = gaha = (gh)a = (hg)a = haga = fe.

10. The final statement is demonstrated as follows:
aea’ = aed'aa’ = a(ed'a)’a’ = aed'aed’ad’ = aed' aed,

with a similar line of proof to show that a’ea is idempotent.
(i) implies (ii). Let a,b € S with o’ € V(a), b’ € V(b). Since S is orthodox
we have

ab-b'a' - ab = aa’abb’'a’abb’b = a(a’abb’)*b = aa’abb’b = ab

and similarly we may show that b'a’abb’a’ = b'a’.
(ii) implies (iii). Since ze,ex € F(S) it follows from the given property that
ex’e € V(ze’x). But x = xe?x, which is inverse to ex?e, and thus
r = x(ex?e)r = (vex)(zer) = x2.

(iii) implies (i). Let e, f € E(S) and take x € V(ef). Then ef € V(fxe)
and fre € E(S) as

ef - fze-ef =efxef =ef, fre-ef - fre = fxe;
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(fxe)* = frxe- fre = fue.
It follows that ef € E(S) by the given property.

Problem Set 5

1. All Green’s relations are equivalence relations. Let a £b and let ¢ € S*.
Then S'a = S'b, whence S'ac = S'be so that ac L be, thus showing thast £ is
a right congruence. Dually, R is a left congruence.

Comment This result does not imply that H = £ N R is a congruence.
Generally it is not.

2. Take (a,b) € Ao p so there exists ¢ € S with a Acpb, whence there exists
u,v € S such that ¢ = uc and b = cv. It follows that av = ucv = ub = d, say.
But a A\ c implies that av Acv as A is a right congruence, which is to say av A d,
in other words d Ab. Dually ¢ pb implies uc pub, which is a pd. Hence a (po A) b
and so Aop C po A Dually po X C Ao p. Therefore Ao p = po A, as required.

Comment In particular of course, we have the crucial equation LoR = RoL.

3(a) If a Lb then S'a = S'b, whence S'aS* = S'bS!, so that £ C J. Dually
R C J, whence D C J, as D = L V'R, is the smallest equivalence relation on
S that contains LU R.

(b) Consder the relation £LoR = R o L by the Comment after Question
2. Since £ and R are each relexive, for any a € S we have a La R a so that
L o R is reflexive. Suppose now that a (£ o R)b. Then there exists ¢ € S such
that a LcR b so that b(R o £)a. But by the comment of Question 2 we have
b(LoR)a, showing that £ o R is symmetric.

To see that £ o R is transitive, first note that Lo L = L and RoR =R
as, if a LcLb then S'a = Slc = S'b so that S'a = S'b, with a similar remark
applying to the R relation. Then since relational composition is itself associative
we obtain:

(LoR)o(LoR)=(LoR)o(RoL)=Lo(RoR)oL=LoRoL

=(LoL)oR=LoR,

which shows that LoR is also transitive and is therefore an equivalence relation.
Since £ and R are reflexive, we conclude that £ o R is an equivalence relation
that contains £ U R. Since any equivalence relation that contains £ U R must
contain £o R (in order to be transitive) and since D is, by definition £V R, we
conclude that D=LoR =Ro L.

(c) Suppose now that a D b. This is equivalent to a (£ o R) b, which is to say
that there exists ¢ € S such that a LcRb. Dually a Db may be expressed as
saying there exists d € S such that a R d Lb.
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4. Let aj,a9 € L and by,by € R. Since L is a right congruence, a1b; £ asb;.
Since R is a left congruence, we have asb; R asbs, which is to say that a1b61 £ asb; R azbs.
Therefore a1b2 D asbs, from which it follows that LR is contained in a single D-
class.

5(a) Let a, 8 € Tx. There there exists v € Tx such that ya = § implies
that X8 = (Xv)a € Xa. Conversely assume that X8 C Xa. Define v € Tx
as follows: for each y € X3, v maps y3~! upon a single element in ya~!. Then
yo = (. It follows that Lg < L, iff X C Xa. In particular we see then that
alpBiff Xa= Xpg.

(b) If ay = 3, then for any (z,y) € keraw we have

B = zay = yay = ypB,

which implies that ker3 C kera. Conversely suppose that ker C kera. Define
v on Xa by zay = a2 (z € X). To see that v is well-defined, suppose that
xa = ya. Then zf8 = yB by hypothesis. Define « to act in any way on X \ X a.
Then by construction ay = .

Hence Rg < R, iff kers C kera. It follows that o R § iff keraw = kerg.

(c) This is immediate from (a) and (b) as H = LN R.

(d) Let o, 8 € Tx. If aD g, then a« LYR S for some v € Tx. By (a), «
and v have the same range, and so share a common rank; similarly by (b), 8
and v have the same kernel, and so the same rank. Hence ranka = rankp.
Conversely, suppose that ranka = rank$. Then |X«| = |X/kerS|, and so there
exists v € Tx with kery = kerg and Xa = X+, whence « LY R 3, and so aD .

(e) Since D C J is always true, if follows from (d) that it is enough to prove
that if J3 < J, then rankg < ranka. However Jg < J, implies that 5 = yad
say (7,0 € Tx). Hence

|XB| = |Xyad| < [Xad] < [Xal,

which yields the claim.

6. That ps maps L, into L follows as L is a right congruence: ¢ £ a implies
csLax =b. Let € L,; then there exists ¢ in S' such that x = ta, whence

xpsps = w55 = tass’ = ths' =ta = .

By applying the same argument to L, and ps we see that ps|r, and ps |, are
mutually inverse bijections.

Finally note that if z € L, and y = zp, = xs, then ys’ = x, so that y R x.
Similarly, ps|r,is R-class preserving.

7. Green’s Lemma (left hand version) Let a Lb (a,b € S) and take s,s" €
St such that sa = b and s’b = a. Then the mappings A\s|R and \y|R, are
mutually inverse, L£-class preserving bijections of R, onto R, and of R onto R,
respectively.

Now let H, = L, " R, and H, = L, N Ry be two H-classes within the same
D-class of S. Let H. = Ly N R,. By Green’s lemma, there exists an R-class
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preserving bijection p, : L, — Ly, so it follows that H,p, = R, N Ly = H..
Hence p,|m, is a bijection onto H.. By the dual of Greens’ lemma, it follows
that there exists a bijection A\, : H. — Hp. Therefore the composition mapping
parp : Hy — Hy is a bijection between two arbitrary #H-classes within a given
D-class. In particular, any two H-classes within the same D-class of a semigroup
S share the same cardinality.

8(a) Since ab € R, N Ly, by Green’s lemma p, is an R-class preserving
bijection of L, onto L, so there exists ¢ € Ry N L, such that cpp = ¢b = b.
Since ¢ R b there exists u € S such that ¢ = bu. It follows that bub = ¢b = b and
thus ¢ = bubu = bu = ¢, so that ¢ € E(S) N Ry N L, as claimed.

(b) and (c). Conversely, if e = e € R, N L, then b = ex say and so
eb = e?z = ex = b. Dually we get ae = a.

From eRb and the fact that R is a left congruence we deduce that a =
aeRab and from e La and the fact that £ is a right congruence we obtain

b = eb L ab. This shows that ab € R, N Ly.

9. (i) implies (ii). Let e € H N E(S). Putting a = b = e we get ab = €2 =
ec H.

(ii) implies (i). Let a,b € H such that ab € H. By Miller and Clifford’s
theorem we have ab € R, N Ly(= R, N L, = H) iff RyN L,(= RoNL, = H)
contains an idempotent e, as required.

(i) & (ii) implies (iii). Since there exists a,b € H such that ab € H, it
follows from Miller and Clifford that H is a subsemigroup of S and H contains
an idempotent e and that by Green’s lemma it follows that for each ¢ € H,
pelr and A|g are bijections of H. In particular, there exists p,q € H such that
¢p = qc = e, thus showing that H is a subgroup of S.

Now let G be any subgroup of S such that G N H # ). Since the H-relation
within a group is universal, it follows that G is contained within a single H-
class of S, whence G C H. Hence H contains every subgroup that meets H. In
particular H is a maximal subgroup of S.

(iii) implies (i). Since the H-class H is a group, H contains an idempotent

10. Let H, and Hy be two H-classes within the same D-class with e, f €
E(S). Take a € Re N Ly. Then ea = a and a’a = f for some o’ € S. As above,
the mapping p,A, defines a bijection of H. onto H¢ in which e is mapped to
a'ea = a’a = f. Note that ad’a = af = a, whence aa’ € E(S) and aa'Ra.
Hence for any z € R, we have aa’Rz and thus aa’z = z. In particular for any
y € He, ad'y = y.

In order to complete the proof we verify that the bijection of H. onto Hy
whereby z + a’za is a homomorphism. To see this, take any =,y € H,. We
obtain

a'rvya = a'z(aa'y)a = (a'za)(a’ya)

as required.
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Problem Set 6

1(a) Let a € Reg(S) with @’ € V(a). Then since (aa’)a = a it follows
that aRaa’ and aa’ € E(S) as (aa’)? = (ad’a)a’ = aa’. Dually ala’a and
a'a € E(S).

(b) Suppose that for some b € R, we have aRe for some e € E(S) so that
e = by say (y € S'). Then b = eb = byb so that yby € V(b). From this
observation, its left-right dual, and part (a), it follows that if a € S is regular,
then all members of R, U L, are regular.

Now take any b € D, and let ¢ € R,NL; (which exists, as all the intersections
of an R-class and an L-class within a D-class is an H-class and all H-classes
within the same D-class are equicardinal). Then it follows from the previous
paragraph that ¢ is regular, so that all members of L. are also regular. In
particular this applies to b. Therefore we may conclude that if D contains one
regular element a then all members of D are regular.

(c) Let (a,a’) € V(S). Then we have aRaa’La’ so that (a,a’) € D. It follows
that V(a) C D,.

2. Let a € S and suppose that b € V(S). Then aRabLb and aLbaRb. Hence
we have idempotents e = ab and f = ba such that e € R,N L, and f € L, N Ry,
thus proving the theorem in the forward direction.

Conversely suppose that we are given that there are idempotents e and f
where e € R, N Ly and f € L, N Ry. By Miller and Clifford’s theorem ab € H,
and ba € Hy. By Green’s lemma, p, defines a bijection of L, onto L, and
thus there exists a unique x € Hp such that za = f. Since af = a it follows
that aza = af = a. Furthermore, az € E(S) and since )\, defines an L-class-
preserving bijection from Rp onto R, it follows that ax € H., and so ax = e.
But then x = ze = xax. We conclude that x is the unique inverse of a in Hp,.

3(a) Since SL C L and RS C R it follows more particularly that RL C LNR.
Suppose now that S is regular and that « € LN R. Take b € V(a). Then ba € L
and soa =a-ba € RL.

(b) Suppose that aLb so there exists z,y € S! such that za = b and yb = a.
But then yra = yb = a, whence (yr)?a = yxa, whence by right cancellativity
yr = (yr)? so that yz € E(S'). However, since F(S) = @, it follows that
yr = 1 and so x = y = 1 and a = b. Therefore all L-classes of a right
cancellative semigroup without idempotents are trivial.

4. H is the H-class of Tx of all o such that kera = Il and Xa =Y C X.
Let ¢ € E(H). Thus Y = X¢, Il = II. = kere, and €2 = ¢. Let z € X. Since
xe = (xe)e it follows from IT = II. that (x,2e) € II. On the other hand, if
(y,v') € 11, with y,3' € Y then y = ye = y’e = ¢/. It follows that each class of
II contains exactly one element y € Y, and that ¢ maps every element of IT°
(y €Y) onto y.

Conversely assume that Y is a transversal of II. Then the member ¢ € Tx
that maps each element each class C of IT to y € Y NC' is an idempotent element
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of H and so H is a group (by Question 9, Set 5).

We continue under the assumption that H is a group with idempotent ¢,
which is then the identity element of the group H. We now show that o € H
induces a permutation of YV in that a|y € Gy. Certainly Ya C Y. Moreover
aly is one-to-one for if ya = '« (y,y’ € Y) then (y,y’) € I, and so y = ¢'. Also
aly is onto Y (which does not follow immediately as there is no assumption that
Y is finite) for given y € Y = Xq, there exists © € X such that xa = y. Then
xe € Y and since (z,ze) € II, we get (ze)a = xa = y. Hence aly € Gy, the
symmetric group on Y. Moreover every element ¢ € Gy is induced in this way
by some element « of H, namely that defined by za = (ze)¢. Furthermore « is
unique in this regard for if yoa = yf for all y € Y with o, § € H then zea = zef
for all z € X, and so @« = e = ¢ = 5. Hence the mapping a — ¢ = a|y
is a one-to-one mapping of H onto Gy. To see this is a homomorphism (and
hence an isomorphism of H onto Gy) we need to check that if o, 8 € H then
(aly)(Bly) = (af)|y. However this follows immediately from the fact that
Ya CY (indeed Yo =7Y).

5. Following the hint, we put f = eb’b where b’ € V(b). Then since a €
Reg(9) it follows that L, is regular and there exists an idempotent eLa (can
take e = d’a for any @’ € V(a)) and then ae = a. Since L, > L; we have that
b = za for some x € S*. Hence

2 =eb'b-eb'b=ebzaeb'b = eb'zab’b = eb'bb'b = eb'b = f,

so that f € E(S). Moreover fLb as f = (eb')b and bf = za - eb’b = zab'b =
bb'b =10. Finally e > f asef = e-eb/b=eb'b= f and fe = eb'be = eb'zrac =
ebxa=eb'b=f.

6(a) We have a = bz for some z € S'. Take t/ € V(b) N U so that a = bz =
bb'bx = bb'a, and since b'a € U, this shows that R], < R;.

(b) If @ <z b then a = ub for some u € U < S so that a <, b. It follows that
L' C LN (U x U), with similar inequalities for R and H. Next let a,b € Reg(U)
with R, = Ry (respectively L, = Ly, H, = Hp) then by (a) we have R], = R}
(respectively L) = L;, H, = Hj). Hence if U is regular then G’ =GN (U x U)
for G € {L,R,H}.

7. Let a,b € D. Since D is a D-class ofS, there exists ¢ € D such that
alL%cR5b. Since D is a regular subsemigroup of S, we have by Question 6(b)
that aLPcRPb, showing that D has a single D-class.

8. In any semigroup S we have D C J. Conversely suppose that S is
finite and that aJb for some a,b € S. Then there exists u,v,z,y € S' such
that @ = ubv and b = zay. Hence for any n > 1 we have a = (uz)"a(yv)™ and
b = (zu)™b(vy)™. Since S is finite, it follows that we may choose n such that each
of these powers is idempotent (as, in general, if z* and y' are idempotent then z*!
and y'* are both idempotent). Then a(yv)" = (uz)"a(yv)** = (uz)"a(yb)" = a;
similarly a = (ux)"a, b = (zu)™b = b(vy)™ . Put ¢ = xa, so that a = (uz)"luc
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and so aLlc. Now cy = zay = b. Moreover
c=za = z(ux)"a(yv)" ™ = (zu)"Mray(vy) v = (zu)" T b(vy) v

= (zu)""b(vy)* v = b(vy)" o,

and this final equation allows us to conclude that aLcRb, whence aDb and
therefore J C D. Therefore, in a finite semigroup S, D = J.

9. Let D be a D-class of S. As was shown in Question 9 Set 5, any subgroup
G of a semigroup S is contained in a single H-class, which is then a maximal
subgroup of S. Since S is a union of groups, it follows that D consists of
(disjoint) H-classes each of which are mutually isomorphic groups. For any a,b €
D it follows that ab € R, N Ly, and in particular D is a regular subsemigroup of
S. By Question 7, it follows that D is itself a regular semigroup consisting of a
single D-class. (We say that such a semigroup is bisimple; a semigroup with a
single J-class is called simple.)

10(a) Since D C J it follows that D* C J*. To show that J* C 5 it follows,
since 7 is a congruence, that it is enough to show that J C »n. To this end take
aJb in S so there exists x,y,u,v € S' such that a = 2by and b = uav. But
then

a = xby nxb’yn xbyb = abnba nuava nua®v nuavn b,

as required. Therefore in any semigroup we have D* C J* C 1.

Comment There reverse containment, n C J* is generally false: for example,
taking S = (N*,+) we see that J* is trivial but 7 is universal.

(b) This is checked directly:

ef - fye-ef =efyef =ef; fye-ef - fye= f(yefy)e = fye;

hence fye € V(ef) and fye is itself an idempotent.

Comment Since the inverse z of an idempotent e is always the product of
two idempotents, as * = zex = (xze)(ex) it follows from (b) that in a regu-
lar semigroup it is always the case that V(E) = E?. Indeed an extension of
the previous argument shows that in a regular semigroup V(E™) = E"*L. In
particular it follows that the idempotent-generated subsemigroup of a regular
semigroup is itself regular.

(c) Tt is enough to show that ny C D* for, given this we have by part (a)
that

n=1 < (D) =D C T Cn,
giving equality throughout.

Now for any a € S take o’ € V(S). Then aDaa’, whence a®*D*aa’a = a so
that (a,a?) € D*. Now take e, f € E(S) and let y € V(ef). By (b) we have
fye € V(ef) and so

efDfye = fefeD* frye? = fye.
But then
feD*(fe)* = f(ef)fD*f(fye)e = fyeD*ef.
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Finally take a,b € S. Then
abD* aa'bb'D*bb’ aa’D* ba,

thus showing that 7y C D* as required. Therefore, in a regular semigroup,

Problem Set 7

1(a) Suppose that S has only one ideal, which must then by S itself. For any
a €8, 5%S"t is an ideal, so it follows that for all a,b € S, we have SlaS! = S =
S1bSt. Hence aJb and so S consists of a single [J-class. Conversely suppose
that aJb for all a,b € S, which is to say that S'aS! = S1bS! for all a,b € S.
Since b € S'bS! it follows that b € S'aS!, whence it follows that S'aS! = S
for all @ € S. Now let I be any ideal of S and take any a € I. Then we have
S = StaS' C I CS. Therefore the only ideal I of S is S itself.

(b) Suppose that SaS = S for all @ € S. Then S'aS* = S for all a € S
so that S is a simple semigroup. Conversely suppose that S is simple. For any
a €5, Sal is an ideal of S so that SaS = S.

(c) Suppose that S has a zero element 0 and that the only ideals of S are S
and {0}. Given that S? # {0}, then in particular S is not a two-element null
semigroup.

Conversely suppose that S has a zero element, the only ideals of S are S
and {0} and that S is not a two-element zero semigroup.

Take a € S and suppose that S\ a is an ideal of S. Then S\ a = {0} so that
S = {a,0}. Moreover, a> = a as otherwise S? = {0} and S is a two-element null
semigroup. (Hence in this case S is the two-element semilattice.) Otherwise,
for every a € S\ {0}, S\ a is not an ideal of S. It follows that for any non-zero
member a of S, a = zy for some x,y € S. In particular S? # {0}. Therefore, the
additional restriction that S? # {0} is equivalent to the additional restriction
that S is not the two-element null semigroup.

2(a) If ea = a then e?a = ea, whence e? = e. Any idempotent in a can-

cellative semigroup is the identity (Question 1, Set 1); contradicting hypothesis.
Dually ae = a is impossible.

If D were non-trivial then at least one of R and L is non-trivial. Let us
suppose that R # ¢ (the argument is dual in case £ # ¢). Then there exists a
and b with a # b such that aRb in S. Hence there exists z,y € S such that
ax = b and by = a, whence a = a(zy), which we have shown is impossible in S.

(b) Let A, X € S with

a=fp == Y]
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axr 0

= AX = [b:c+y 1

| es

Hence S is a semigroup without identity element as one may check that AJ = A
implies j = I, ¢ S. Next suppose that AX = AY, so we have products

according to
a 0| fju O au 0
AXAYL) 1} {v 1}{bu+v a]’

then au = ax, so that u = x; bx +y = bu + v then gives y = v (since u = x), so
S is left cancellative.
If XA =YA, which is to say

za O | uwa O
ya+b 1|  |va+b 1|’
then xa = wa, whence * = u.ya + b = va + b, so that y = v. Therefore S is a

cancellative semigroup without identity and so, by part (a), S is D-trivial.
(c) Yet S is J-simple. We require x, y, u, v which solve

IR
sl -5

(PR B P

Sa-azu=c¢ (ya+bu+v=d.

—

QO

Solving the second equation gives:

1 d—vwv d—v—bu
e T

a u au

Y

We require that
d—v
dfvfbu>0<i>v+bu<d<ﬁ>u<T.

Choose v such that 0 < v < d, then take w such that 0 < u < d—;”. Then
y=Lrt e =2

3(a) The number of minimal ideals of S is either 0 or 1 for if M and N
were two minimal ideals of S then M N is an ideal of S and MN C M N N. In
particular M NN # () and is an ideal contained in each of the minimal ideals
M and N, which is only possible of M = N.

(b) Let I be an ideal of the kernel K of S. Then

IDKIKDS'KIKS'DK D1,
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where the third containment is so because S'KITKS! is an ideal of S and K is
the minimal ideal of S. Therefore I = K, which is therefore a simple semigroup.

(c) Let S be a finite semigroup, which then has finitely many ideals I, - - - , I.
Then K = I --- I is an ideal of S and K C I; for all 1 < ¢ < k and so K is the
kernel of S. From (b) it now follows that every finite semigroup S has a simple
kernel.

(d) Suppose that S is 0-simple. Then S? is an ideal of S, S? # {0}, whence
52 =8 =53 For any € S, SaS is an ideal of S, which implies that SaS = S
or SaS = {0}. The subset [ = {z € S: SxS = {0}} is an ideal of S containing
0, whence I = {0}, as otherwise I = S and S® = S? = {0}. Hence SaS = S
for all @ € S\ {0}. Conversely suppose that S has a zero 0 and that for all
non-zero a we have SaS = S. Let I be a non-zero ideal of S and take a € I.
The I O SaS = S. This serves to show that S is indeed a 0-simple semigroup.

4. If M? # {0} then M? = M = M3. Take a € M \ {0}. Then S*aS! is an
ideal of S and is not {0}, whence S'aS! = M. Thus

MaM C S'aS* = M = M? = M(S*aS")M = (MS")a(S*M) = MaM,

and so MaM = M, which proves the result.

5. Let p: I — I/J be the natural homomorphism of I onto I/J so that
ap =aif a € T\ J and au = J if a € J. Then, quite generally, there is a
one-to-one order-preserving correspondence between the set of ideals of S lying
between J and I and the ideals of I/J. We are given here that there are no
ideals of S strictly between J and I, and therefore the only ideals of J/I are
J and I. Hence I/J is a 0-minimal ideal of I/J and so by Question 4, I/J is
either 0-simple or a null semigroup (which is the case iff 12 C J).

6. Let J = J, be a J-class of S and write J(a) = S'aS! for the principal
ideal generated by a. Let I, = {b € J(a) : Jp < Jg}. If I, is empty then
J(a) = StaS! = J, is the kernel of S. Otherwise I, is an ideal of S contained
in J(a). Moreover, suppose that B were an ideal of S such that I, C B C J(a)
and let b € B. Then clearly J, < J, and so b € I,. Since b was arbitrary we
infer that B = I,. Therefore the factor semigroup J(a)/I, is either 0-simple or
null.

Comment The semigroups K and J(a)/I, are called principal factors of S.
A semigroup is called semisimple if none of its principal factors are null. A
principal factor J/I can be thought of as the J-class J together with 0 and for
any a,b € J the product of a and b is ab if ab € J and is 0 otherwise.

7(a) Let a € S and take x € V(a) such that az = za. Then az € E(S) and
aRax = xala, which is to say that aHaz and so H, is a group H-class. Since
a was arbitrary, it follows that S is a union of groups. Conversely, suppose that
S is a union of groups. For a € S let z be the inverse of a in a subgroup of S
that contains a. Then ax = za, which shows that S is completely regular.

(b) Let D be a D-class of a completely regular semigroup S. Since each H-
class is then a group, it follows by the location theorem that for any a,b € S, we
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have ab € R, N Ly. In particular, ab € D so that D is a regular subsemigroup
of S. Then by Question 7 of Set 6, it follows that D is a regular bisimple
semigroup. Let e, f € E(D) and suppose that e < f . Then e =ef € Re N Ly
and e = fe € Ry N L.. Hence f € H., whence e = f as an H-class has at most
one idempotent. Hence all idempotents of D are primitive idempotents, whence
D is a completely simple semigroup.

Finally, we note that all H-classes of D are H-classes of S and by Question
10 of Set 5, all are mutually isomorphic subgroups of D.

8(a) First we show that 19 = {(a,a?), (ab,ba), a,b € S} C J. Now since S
is a union of groups, it follows that a#Ha?, so certainly aJa?. Then

Jap = J(ab)2 = Ja(ba)a < Jba;

equally of course, Jpq, < Jup and so we conclude that abJba. Therefore ng C 7.
It follows that if we show that J is a congruence on S we may conclude that
n C J and that S/J is a semilattice. By symmetry, it is enough to show that
J is a right congruence on S. To this end, let us take aJb and ¢ € S. Then
there exists x,y,u,v € S' such that b = zay and a = ubv. Then

Jca = Jeubw < qub = chu < ch = Jcb;

by the same argument, we obtain J., < J., and so J., = Jep, thereby establish-
ing that J is a right congruence, and therefore, as already observed, is thus a
congruence on S.

(b) Since J C 7 is always true in any semigroup (Question 10, Set 6) and
that for a completely regular semigroup n C J by part (a), it follows that 7 = 7
for a completely regular semigroup.

9. Let S be a simple and completely regular semigroup. We show that S is
completely simple by showing that any e € E(S) is a primitive idempotent. To
this end, suppose that e, f € E(S) with f <e. Take z,t € S such that e = z ft.
Put x = ezf and y = fte. Then

rfy=ezfte=e(zft)e=e*>=cand ex = xf = x, fy = ye = y.

Since S is completely regular, we have x € H, for some g € E(S). Thus
gr = xg = x and therefore there exists xx € H, such that zax = zxx = g.
From zf = zx it follows that = x xf = xx*, whence gf = g. We also have

9f =gef =gzfyf =ef =[.
Hence g = f. Therefore f = fe = ge = gxfy = xfy = e, as required.

10. We need to show that D = J. Since each [J-class J is an 7n-class of
S, it follows that J is a regular subsemigroup of S and a union of groups. By
Question 6, J is a simple semigroup, and so is completely simple by Question 9.
It follows that J is indeed a D-class, and that S is a semilattice of completely
simple semigroups. I
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Problem Set 8

1 (i) implies (ii). Let D be a D-class of S. Since S is regular, D contains at
least one idempotent. Suppose that eDf with e, f € E(S). Then there exists
a € S such that eLaRf, and thus for some x € S', e = za whence, since
idempotents are central, e = za = zfa = fxa = fe = ef; similarly we may
show that f = ef, so that e = f.

(ii) implies (iii). The given condition implies that each D-class is a group
‘H-class. Since D C n, it follows that each n-class is a union of groups, and so §
is also. It follows now that S is a semilattice of groups.

(iii) implies (iv). Let S be a semilattice Y of groups G, (o € Y) and for
each oo € Y, let e, be the identity of G,. Then the mappings ¢, 5 : Go = Gg
(o > () defined by

UaPa,p = aaep (aa € Ga)

is a homomorphism as, using that a8 = 8 we get
(aaba)¢a,ﬂ - (aaba)eﬁ - aabaeé - aaeﬁbaeﬂ - aa¢a,a6ba¢a,aﬂ;
aa¢a,a = Qa€a = Qa;
and so @, acts identically on S,. For a > 8 > v we have
UaPa,BPBy = Ga€BEy = Ualy = GaPa,y;

and for any «a, 3 € Y we have

(@0%a,0p)(bsds.a8) = GaCapbseas = aabaelts = aabseap = aabp.

Hence the mappings ¢, g satisfy the requirements for a family of strong homo-
morphisms that define the original multiplication of S, so that S is indeed a
strong semilattice of groups S = (Y,Ga,¢ap : 0> S €Y).

(iv) implies (). If S is a strong semilattice of groups S(Y, Gu; ¢a,3), then S
is certainly regular. The idempotents of S are the identity elements e, o of the
groups G,. If e, € E(S) and bg € G then, writing v = af we have

eabp = (€aPa,)(bsdp,y) = €4(bsdp) = bds = (badps,~)ey

= (bpdp .y )(€ada,y) = bsea,
and so every idempotent of S is central.

2. Suppose that S is a semilattice of groups. Then S is regular and so for
any a € S there exists z € S such that a = axa. Next, for any b € S let e be
the group identity of Hgp so that ae,eb € Hyp, Put y = e(be) " lab(ea) e, were
inversion is in the group Hg,. Then

bya = be(be) " Lab(ea) 'ea = e(ab)e = ab.
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Conversely, if S satisfies the given equations then S is certainly regular.
Take a € S and e € E(S). Then there exists y € S such that ae = eya and so
eae = e’ya = eya = ae. Similarly there exists z € S such that ea = aze and
so eae = aze? = aze = ea. Therefore ea = eae = ae and so idempotents are
central in S and therefore S is a semilattice of groups.

3. Suppose that S is a strong semilattice of abelian groups S = S(Y, Ga, ¢u,3)-
Then S is regular and for any a,b € S we have

ab = (a¢a,a6)(b¢6,a5) = (b¢ﬂ7aﬂ)(a¢a,aﬂ) =ba

and so S is a commutative regular semigroup. Conversely suppose that S is a
commutative regular semigroup. Then S is regular and idempotents are cen-
tral and so S is a strong semilattice of groups, which must be abelian as S is
commutative.

4(a) Suppose that the identity a = aba holds in S. Putting b = a and b = a?
gives @ = a® and a = a*. Then from a = a® we get a? = a* = a so that a = a?
and S is a band. Now suppose that ab = ba. Then

a = aba = aab = ab = ba = bba = bab = b.
Conversely suppose that S is nowhere commutative. Then a-a? = a? - a so that
a = a? by the given property. Then a - aba = aba = aba - a so that, again since
S is nowhere commutative, we have a = aba.

5(a) First S is a semigroup as for a triple product we have:
((a’ b)(ca d))(e’ f) = (aa d)(e’ f) = (a’ f) = (aa b)(c’ f) = (a’ b)((C, d)(e’ f))
and therefore the given binary operation is associative. Next
(a,b)(¢c,d)(a,b) = (a,d)(a,b) = (a,b)

and so S satisfies the identity a = aba (a,b € S) and S is a rectangular band as
defined in Question 4.

(b) Since S is a rectangular band, it follows as shown in Question 4 that
S is a band. Since a band is a union of (trivial) groups, it follows that S is
a semilattice of completely simple semigroups. However the identity a = aba
implies that a € J, for all a,b € S, which is to say that S is simple. Hence the
structure semilattice of S is trivial and so .S is a completely simple semigroup all
of whose groups are trivial. Therefore a = L, N R, for all a € S. Let T be the
rectangular band defined on L x R where L and R respectively the respective
collections of £- and R-classes of S in the fashion of part (a). For an arbitrary
semigroup, the mapping ¢ where a — L,NR, is a surjection from S onto S/H.
Since S is H-trivial, in this case ¢ is a bijection from S onto the semigroup 7.
Indeed ¢ is an isomorphism as

apbe) = (Lq, Ry)(Ly, Rp) = (Lo, Ry) = (ab)o.
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6. Since a band B is a union of groups, B is a semilattice of completely
simple semigroups. Since each subgroup of S is trivial, it follows that each of
these completely simple semigroups satisfies a = aba and so is a rectangular
band, which is to say that B is a semilattice of rectangular bands.

7. Let ¢ : S — (Z,+) be defined by wo = |w|, — 2|w|,, where |w|y, |w],
denote the number of z’s and 3’s respectively in the word w.

Before checking that ¢ is an isomorphism, we verify that S is commutative
and in order to show that, it is enough to check that x and y commute with one
another. Now in S:y = y - zyz, so that xy = zyx - yr = yx. We conclude any
w € S has a representation in the form z%y® (a,b > 0).

First, ¢ is well-defined: this follows as the word zyx is such that (zyx)¢p = 0.
Also ¢ is a morphism as

(w1w2)¢ = |wiwsl, — 2lwiwaly = [wile + [wale — 2fw1ly — 2|w2l,

= (Jwile = 2|wly) + (Jwalz = 2Jwzly) = wi¢ + w2.

Next, ¢ is onto as any integer may be written (not uniquely) in the form n—2m
(n>0,m >0). Then (z"y™)p =n — 2m.

And ¢ is one-to-one . Suppose that wi¢ = wo¢. We may write w; = x4y,
Wy = x‘”ybz. Agsume without loss of generality that a; < as so we may write
az = a1 + t say. Then

t
a1—2b1:a1+t—2b2:b2:b1+§.

Hence ¢t = 2s for some s > 0. But then

wy = wy (zyx)® = g t2sybits — g,

Therefore ¢ is indeed an isomorphism, as required.

8(a) Observe that for any n € N° we have na = (n + 1)3 = n so that
aff = €, the identity mapping. However 0fa = max{—1,0}a =0a=0+1 =1,
so that Sa # e. For the final assertion we need to check that the mapping from
M to S whereby a¢ = o and bp = 8 induces a homomorphism ¢ from M to
S, meaning that for any word w = a1 ---ar € M (a; € {a,b}) we may defined
wo = a1¢- - axp, as from this it follows that S is a homomorphic image of M.
Now two words w and z in the alphabet {a,b} represent equal members of M
if and only if we may pass from w to z by inserting or deleting copies of the
word ab = 1 a finite number of times. It follows by induction on the number
of transitions that we need only consider the case where the transition is of
the form w = wv — wabv = z. However since a¢pbp = af = &, this follows
immediately.

(b) To show that any member of M may be expressed uniquely in the form
b™a™ (m,n > 0) it is enough to show that any member of M of the form
b*a'bPa? (k,1,p,q > 0) has the required form. However, since ab = 1 the term
alb? = a!~P if | > p in which case our product simplifies to b*a!~P*¢, which is of
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the stated form. On the other hand if p < [ we get a'b? = b?~! and our product
becomes b¥P~lg9, as required.

To show uniqueness, suppose that b*a! = b™a" say. Then fFa! = fma”
and so (0)3*a! =1 = (0)8™a™ = n, so that [ = n. Multiplying both sides on
the right by 3! then gives 8¥ = ™. Hence k3% = 0 = k8™, whence k < m.
By a symmetric argument, m < k also and so k = m, and the form of the
product is unique. It follows that that the homomorphism from M onto S
induced by a > « and b+ 3, is an isomorphism as (b™a")¢ = (b*a')¢ is to say
that 8™a” = f*al, whence, by what we have just proved, m = k and n = [.
Therefore S is a faithful representation of the bicyclic monoid M.

9(a) Consider the product b*a! - b™a™. First, if [ < m the product becomes
bepm—ign = pFtm=lgn  On the other hand, if m < [ the product simplifies to
bEal=mam = bFal=™*" . In both cases the product is described by the formula

bal - bma™ = bia?, where i = k +m —min{l,m}, j =1 +n — min(l,m).

(b) Next, by the previous product formula in M we have (b™a™)? = b™a™ if
and only if m = m+m—min(m, n) and n = n+n—min(m,n), which respectively
give the inequalities m < n and n < m. Therefore ba" € E(M) if and only if
m=n.

10(a) Take any two members b'a™ and b'a™ of the set {b’a’ : 0 < j} i > 0}.
If m < n then we have b*a™ - a® ™ = b’a™. On the other hand, if n < m then
bia™bm—m = pigm—(Mm—n) = pign In either case we see follows that bia™<gba™,
and so by symmetry that b'a™Rb‘a”™. Conversely suppose that b*¥a* <r b™a"
so that b*a! = b™a™ - bia’ say. It then follows by Question 9(a) that k =
m +i—min(i,n) < m. It follows that if b*a*Rb™a™ then k = m. This all serves
to show that the set Ry = {b'a’ : 0 < j}, as claimed.

Next take any two members b¥a’ and b™a’ of the set {b'a’ : 0 < i} j > 0.
If £ < m then we have ¥ *bFa/ = b™a/. On the other hand, if m < k
then a*~™b™a’ = a*b?. Tt follows similarly to the previous paragraph that
bkal Lb™a? and therefore L,; = {b'a’ : 0 < i}, as claimed. Now suppose that
z = bla’Hb™a™ = y. Then we have yRb™ Rz and xLa’ Ly, whence it follows
that i = m and j = n. Therefore M is H-trivial.

Finally for any two members x = b'a’ and y = b™a" in M we have
bial LbMa?Rb™a™ and so Dy and therefore M is bisimple.

(b) We have from part (a) that M is a bisimple monoid, whence M is regular
(as it has idempotents, in particular the identity of M). Indeed the idempotents
of M form a chain as for any two idempotents e = ™a™ and f = b"a"™, with
m < n we have

ef =0"a™ - b"a" =" =b"a" = f=0"a"""a™ =b"a"b"a™ = fe.

This shows e < f if and only if m < n, from which it follows that E(M) is an
infinite descending chain with maximum element 1 = %a°. In particular it now
follows that M is a bisimple inverse monoid.
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Problem Set 9

1(a) Since SaS = S for all a € S\ {0} and S? # 0, it follows that S™ # {0}
for all n > 1. Since S it finite, it follows that E(S) contains at least one non-zero
idempotent. Again by finiteness, some non-zero idempotent e is 0-minimal in
the natural partial oder, which is to say that e is a primitive idempotent.

(b) Since S is 0- simple, S has a unique non-zero J-class. Since S is finite,
J = D, whence it follows that S has a unique non-zero D-class D. Then we
have by part (a) that D contains an idempotent e and so D = D, is a regular
D-class. Therefore S' is regular.

2(a) If ab # 0 then aD7s'abD7s1b. Tt follows that rank(a) = rank(ab) =
rank(b) so that Xa is a transversal of ab and Xab = Xb, which is to say that
aR7stabL7s1b. Since S is regular, if follows that aRabLb in S.

(b) Tt follows that if ab # 0 that L, N R, contains an idempotent, and so is
a group H-class.

3(a) Let e be the identity of H; 1 so that egy = gx and rje = r;. It follows
by Greens lemma that ¢;  is a bijection from H; ;, onto H; ».

(b) By part (a) there is a one-to-one correspondence between the triples
(a;%, ) and the members of S via the bijection (a;i, \) — ag; x = r;aqx.

(c) Take any two members of H; x, ¢ = r;agx y = 7;bq, say. Then

ry = 1i(agrr;b)qu (1)

We now seek to represent the multiplication of S in terms of the triples of part
(b). If xy # 0 then Hj ,is a group so that g\, # 0 as this product lies in the
group Hi 1. By (1) it follows that

(a3, N)(bs 4, ) = (31, )

where ¢ = agxr;jp. On the other hand, xy = 0 if and only if gxr; = 0, which
occurs if and only if Hj; , is not a group. In this case (gxri; ¢, ) = (054, 1) = 0.
Hence, in either case, we may represent multiplication in S in terms of the
corresponding triples via the rule:

(a; 1, A\)(b; 4, 1) = (apx,ib; i, i), where py j = qar;.

4(a) Since apy ;b € GY, we have a binary operation on the set of triples in
which any product involving the class of 0, which consists of all triples of the
form (0;¢,A), equals 0. It just remains to show that the product is associative.
Hence consider a typical product of the form:

(@33, \)(bs 4, ) (s ky v) = (apa,jbs i, ) (c; k,v) = (apa,jbpu ke i, v)

= (a3, \)(bpp,kc; 3, v) = (a3 3, A)((b; 4, ) (es ke, ),
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showing that our product is associative and so M°[G, I, A, P] is a semigroup.
(b) Suppose that row X of the A x I matrix P was a row of zeros. Then for
any x = (a;i,\) and any y = (b; j, u) we have

xy = (apx;byi, ) = (054,4) =0

as px,; = 0. In particular, there is no y € S such that zyx = = so that z is not
regular. Similarly if column ¢ of P consisted only of zeros we have

xy = (apx;byi, ) = (054,4) =0

as px; = 0 and agains = is not regular. Therefore if S is regular then P is
regular, meaning that P has no zero row or zero column. Conversely, suppose
that every row and every column of P contains at least one non-zero entry. Let
x = (a;1,\) # 0 say. We wish to find y = (b;4,u) € S such that x = zyz in
order to conclude that z, and so S, is a regular semigroup. Now

zyx = (apx,;bpu,ia;i, N);

by hypothesis, we may choose p and j so that py; # 0 (as row A of P has a
non-zero entry) and p,; # 0 (as column i of P has a non-zero entry). We now
put apy jbp,;a = a, which has a unique solution in
-1 -1, 1
b =Dpy\;0 P € G.

This identifies an inverse for = and thus completes the proof that S is regular if
and only if P is a regular matrix.

(c) By Question 1, any finite 0-simple semigroup S is regular. Hence by
Question 4(b) S is isomorphic to a regular Rees matrix semigroup.

5(a) Let b € S\ {0} and write e = zby, for some x,y € S!, which is possible
as S is 0-simple and b # 0. Then consider f = byexe. We have, since eb = b
that
f? = byexe - byexe = bye(xby)exe = byedre = byexe = f
and so f € E(S). Note that by Question 1(b) of Set 3, f < e is equivalent to
f = fef, and this is the case as:

fef = byexe - e - byexe = (byexe)® = f? = f.

(b) Since e is a primitive idempotent and f < e, this implies either that
f=0or f =e. However

zfby = (z - by)exe - by = e*weby = exeby = exby = * = e.

If f =0 this would give that e = 0, which is not the case. Therefore e = f.

(c) Since e € R we have RU {0} C eS. Conversely take any b € eS \ {0}
so that e = eb. By part (b) we have e = f = byexe, showing that e € bS also,
whence eS C bS? = bS and since bS C eS? = eS it follows that bRe. Therefore
RU{0} =eS.
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(d) Suppose that R’ were a non-zero right ideal of S with R’ C R U {0}.
Take any a € R’ \ {0} and z € R. We have zRa and thus z = au € R’, which
shows that R C R’. Therefore if follows that R’ = RU {0}. Therefore R U {0}
is a 0O-minimal right ideal of S.

6(a) Now S = SeS = S(RU{0}). Hence for any x € S we have x € ¢(RU{0})
for some ¢ € S so that = ¢r for some r € RU {0}. If z = 0 then R, = {0}
and we take ¢ = 0 to conclude that R, U {0} = ¢(R U {0}) = ceS. Otherwise
assume that = # 0 and take any y € R, so that y € ¢((RU{0}S C ¢(RU{0}).
Then R, U{0} C ¢(RU{0}).

Conversely, let y = cs for some s € RU{0}. Clearly if s = 0 then y = 0 and
y € c(RU{0}). Otherwise rRs and since R is a left congruence it follows that
x = crRes =y and so y € R, U {0} in the general case as well. Therefore for
any x € S there exists ¢ € S such that R, U {0} = ¢(RU{0}) = ceS.

(b) By part (a), we may write R, U {0} as ceS for some ¢ € S. Take any
y = ces for some s € S. Then es € RU{0} so by the minimality of the right ideal
RU{0} we have that esS = RU{0} so that yS = cesS = ¢(RU{0}) = R, U{0},
thereby showing that R, U{0} is a O-minimal right ideal for any € S\ {0}, as
required.

7(a) Let a,b € S\ {0}. Then aSb # {0} for otherwise we would deduce that
S = {0} as follows:

S =52 =SaS - SbS = S(aSh)S = S{0}S = {0}.

Take any ¢ € aSb\ {0}. Since ¢ € a.S N Sb we have, by Question 6 and its dual,
that aSU{0} and SbU{0} are respectively right and left minimal ideals so that
aReLb, which is to say that aDb, so that S is 0-bisimple. The non-zero D-class
D has a (primitive) idempotent and so D is regular.

(b) If ab # 0 then Ry, < R, and Ly, < L, whence by 0-minimality of right
and left principal ideals in S it follows that aRabLb, as required.

(c) Given part (b), the connstruction of the Rees matrix semigroup repre-
sentation of a completely 0-simple semigroup (as in Questions 2 and 3) may now
be repeated as for the finite O-simple case, resulting in a representation of S in
the form M°[H; 1;1, A, P] as before.

8. Without loss of generality, we show that the row and column indexed by
the symbol 1, can be taken to have the required form. Since H; ; is a group, we
may put r1 = ¢ =€, 80 P11 = 111 = €2 = e. We need to show that we may
choose the other r; and ¢y such that ¢;r; = e if H,, 1is a group, and g\r; = e if
Hi 4, is a group. (If the H-classes in question are not groups, choices may be
made arbitrarily and the product and corresponding matrix entry is 0).

However if H = H,,; is a group, it follows by Green’s Lemma that A\, |#
is a bijection onto Hj 1, from which it follows that there exists r; € H,, ;1 such
that g17; = e. Dually ¢, can be chosen so that g\r; = e.

9(i) Let e, f are each non-zero idempotents of S and suppose that e < f so
that e = ef = fe. Since ef # 0 it follows by Question 7 we have efLfR fe,
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whene eH f, which implies that e = f. It follows that no two distinct non-zero
idempotents are comparable in the natural partial order, and therefore every
non-zero idempotent of S is primitive.

(ii) Let aHb and let ¢ € S. Then either ac = be = 0 or ac,bc € R, N
Ly. In either case, acHbc. The dual argument to this shows that #H is also
a left congruence, and therefore H is a congruence on a completely 0-simple
semigroup.

(iii) Let p be a congruence on S. Suppose that (0,a) € p with a # 0. Take
any b € S so there exists xz,y € S such that b = xay so the bp = xpapyp = Op.
Hence p is the universal congruence and S/p is trivial. Since any non-trivial
homomophic image is isomorphic to S/ p for some congruence p on S, we continue
under the hypothesis that no such a exists. But then the equation bp = xpapyp
shows that S/p is 0-simple. Finally take any two non-zero idempotents ep, fp.
Since S is regular we may appeal to Lallement’s lemma, to allow the assumption
that e, f € E(S). If ep = epfp = fpep then we have ep = (ef)p = (fe)p. Hence
(fe)p = (f?e)p = fo(fe)p = folef)p = (fef)p. Tt follows that ef, fe # 0
so that He, Hy, H.y, Hy. are all non-zero groups. But then fef € H;. Hence
ep = (fef)pH fp and so ep and fp are H-related idempotents in S/p so that
ep = fp. It follows that ep is a primitive idempotent in S/p and therefore S/p
is indeed a completely O-simple semigroup.

10. Clearly S = M°[G,I,I;A] is a regular 0-simple semigroup. Suppose
that © = (a;i,\) € E(S). Now 22 # 0 implies that i = A and a® = a so
that a = e, the identity of G and conversely (e,i,i) € E(S). What is more
(e;i,i)(e,4,5) = (e,7,5)(e,i,i) = 0 unless ¢ = j. In particular idempotents
commute with each other so that S is an inverse semigroup.

Conversely suppose that S = M°[G, I, A, P] is an inverse semigroup, so that
P is a certainly a regular matrix. Let R; and L, denote the respective R- and
L-class of S defined by i € I and A € A respectively. The mapping that maps
i+ X where R; L) is a group is a bijection from I to A as each R- and L-class
of S contains a unique idempotent. Hence we may take A = I and so P is an
I x I square regular matrix. Furthermore, we may insist that H, ; is the unique
group H-class in R; N L;.

Choose r; € H; 1 arbitrarily. Then, again by Green’s Lemma we may choose
¢; € Hy; such that ¢;r; = e (remembering that H,; is a group). With these
choices we have that A is then the identity matrix, as specified.

Problem Set 10

1. Suppose that S is a 0-direct union of completely 0-simple semigroups and
let e, f € E(S) for f # 0 and suppose that e < f. If e7f then e and f are
members of the same 0-completely simple semigroup so that e £ 0 and so f <e
also and so e and f are primitive. Otherwiseef = 0 and so e = 0 and f is
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primitive. We conclude that all non-zero idempotents of S are primitive.

Conversely suppose that S is regular with all non-zero idempotents are prim-
itive. Take any two non-zero [J-classes, which can be denoted by J. and J; for
some e, f € E(S) as S is regular. Suppose that {0} # J;y < J. (e, f € E). Then
f = zey say; put g = ey fre. Now

> = eyfre-eyfre = eyfreyfre = eyfize = eyfre = g.

Next note that eg = ge = g and if g = 0 then 0 = xgy = zeyfzey = f3 = f,
which is not the case. Thus we have g < e so that g = e as e is primitive.
Therefore J. < J¢ and so J. = J¢. Hence no two distinct non-zero [J-classes J;
and J; are comparable, whence J; Jo = {0}. Each subsemigroup J. U{0} is then
0-simple with a primitive idempotent e and so is completely 0-simple. Therefore
S is a 0-disjoint union of completely 0-simple semigroups. (We almost must
admit the possibility that S is completely simple, and so has no zero element.)

2. (i) = (ii) Suppose that S is completely simple. Let a = (z;i,A),b =
(y; ju) and suppose that aba = a whence zpy ;yp. it = & < Tpy; = p;jy’l
Certainly we have babHb and indeedbab = (yp,xpa ;y; j, it). But

YD ATDA Y = YDl iy Y=Y

so that bab = b.

(i) =(iii) Since S is completely simple we have xaLaRazx it follows that if
ax = bz and ya = yb then aMdb. Let z = (u;k,0), a = (r;i,A),b = (854, A).
Then ax = bx implies that rpy ru = spy ru = 7 = s and so a = b. Therefore S
is weakly cancellative.

(iii) = (i) Suppose that S is regular and weakly cancellative. Suppose that
e < ffore f e E(S). Then e = ef = fe. Hence ¢? = ef = fe. Putting
e=a,b=fand x =y = e we have az = €2 = fe = br and ya = €% = ef = yb.
Hence by weak cancellativity we have a = b, which is to say that e = f. Hence
every idempotent is primitive. By Question 1, it follows that S is a O-direct
union of completely simple semigroups. However, if S has a zero 0 and a € S
then a0 = 02 = 0 = Oa and weak cancellativity implies that a = 0. Hence it
follows that S is in fact completely simple.

(iii) =(ii) Let a = aba. Then b-a = bab-a and a -b = a - bab so by weak
cancellativity it follows that b = bab.

(ii) implies (i) Suppose that P(a) = V(a) for all a in the regular non-trivial
semigroup S and that S has two comparable non-zero idempotents, e < f say.
Then e = efe so that f € P(e) = V(e) and then f = fef = e. It follows
that all non-zero idempotents in S are primitive. By above we then have that
S0 is a 0-disjoint union of completely 0-simple semigroups. Moreover 0 must
be adjoined for if 0 € S, we have 0 = 0e0 for all e € S whence by hypothesis
e € V(0) so that e = 0, from which it would follows that S = {0}. Therefore S
is completely simple.

3. Let S = G x R be the direct product of a group with identity element e
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and a rectangular band R. Let (g,7), (h,s) € G x R. Then

(g_l,s)(g,r)(h, S) = (g_lgh,srs) = (h’ S)

thus showing that (h,s) <z (g,r) and by symmetry the opposite inequality
also holds and so S is simple. Next, the idempotents of S are exactly the
members of S of the form (e,a) (a € R). Suppose that (e,a) < (e,b) in the
natural partial order on E(S). Then (e,a) = (e.a)(e,b) = (e,ab) and (e,a) =
(e,b)(e,a) = (e, ba), whence it follows that ab = ba for all a,b € R. Since
R is nowhere commutative, this implies that a = b and so S is simple with a
primitive idempotent and so is completely simple. Finally S is also orthodox as
(e,a)(e,b) = (e,ab) € E(S) so the product of two idempotents is idempotent.

Comment Alternatively, it is easy to show that in general the direct product
of completely simple semigroups is completely simple. We can then apply this
to G x R.

Conversely suppose that S is a completely simple orthodox semigroup S =
MIG,I,A,P]. As in Question 8 of Set 9 we may choose Hy1 = G. We may
also find a suitable sandwich matrix P by choosing r; = e; 1 and ¢\ = ey,
where e; ; and e; , are the respective identity elements of the groups H;; and
H; » This choice can be made for any completely simple semigroup but under
the additional assumption of orthodoxy we get px; = qx7; = e1,x€;,1 = €, the
identity element of the group G = H;; and this holds for all 7 € I and A € A.
But then

(a;4,A)(b; j, 1) = (apa, ;b i, ) = (aeb;i, p) = (absi, ).

It now follows that S is isomorphic to the rectangular group 7' = G x R
where R is the rectangular band defined on I x A: specifically et ¢ : § — T
be the mapping whereby (a;i,\)¢ = (a,(i,A)). Then ¢ is clearly a bijection
between the two semigroups. We just need to show that ¢ is a homomorphism
in order to complete the proof and this now follows immediately:

((a;3, \)(b; 4, u))p = (absi, p)p = (ab; (i, 1)) = (a; (4, 7)) (b; 4, ) = (a;, \)d(b; j, p1) -

4. Suppose that S is a O-rectangular band and take xz,y € S. If zyx # 0
then xHaxyx but since H is trivial in S it follows that xyxz = x, thus establishing
(i). As for (ii), take x,y € S\ {0} and suppose that Sy = {0}. Since S = SyS
this gives that {0} = zSy = ©SyS = xS, which contradicts that « € Reg(5).
Therefore xSy = {0} implies 0 € {z, y}.

Conversely suppose that S satisfies the given pair of conditions (i) and (ii).
Take any x € S\ {0}. Then by (ii) Sz # {0} so that there exists y € S
such that zyx # 0 whence zyxz = x by (i). In particular, this shows that S is
regular. Let e, f € E(S)\ {0} with e < f. Then e = fef = f by (i). It follows
that all non-zero idempotents of S are primitive and so S is a 0-direct union
of completely O-simple semigroups. Suppose that z € S\ {0} and y & J, for
some y € S. Then xSy = 0, whence by (ii) if follows that y = 0 and so S is
completely O-simple.
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Finally let G be a non-zero subgroup of S with identity element e and let
a € G. Then a = eae # 0, whence a = eae = e by (i). Hence all subgroups of S
are trivial, and so S is therefore a O-rectangular band.

5. Throughout let x,y, z € R>°,

(i)
(roy)oz =V TP oz=\/(VIZ + )+ 2= /BT 2 4 2
22+ (VyP+ 222 =20 (\Vy?+22)=x0(yoz).

(i)

LYz TYz
Ty Tty rYz y+z
(xoy)oz=( 0z) == = = = =To(yoz)
r+vy z+y+z TY + 2 + Yz —|—y+z
or we note that {1 1
L (= + =)~! so that
r+y x Y
P2 R SO T T SO PS S S PR 1 144
(@oy)or=((Z+ )7+ DT =0+ 47 =+ +)7)

—zo(yoz).

(iii) Note that e*+e¥—2 > 0 as x,y > 0 so that In(e” +e¥ —2) is well-defined.
Then

(zoy)oz =1In(e®+e¥ —2)oz = In(e™"+ =2 L ¢* _2) = In(e® +¢¥ —2+¢* —2)

= In(e"—2+(e¥+€*—2)) = In(e®+e™(¢"+¢°=2)_2) = zo(In(e?+e*—2)) = zo(yoz).
6(a) The general check for associativity of o is as follows:
(woy)oz=fTH(f(fT (f(@) + FW))) + f(2)) = T ((f(2) + fy) + f(2))

= U @)+ (Fy) + f(2)) = @) + FFCH W) + f(2) =20 (yo2).

(b) Hence both (S,+) and (S, o) are semigroups. Indeed the permutation f :
(S,0) — (S,4) is not only a bijection but an isomorphism as

fl@oy)=F(r(f(@) + f(y) = flz) + fy).

(c) In 6(a) we take f(x) = 2 as our bijection on R™ for then we get xoy =
Va2 +y2. As for (if), we take f(z) = 27" = f~'(z), as then oy = (3 + )"

Comment Note that this operation arises when resistances are added in par-
allel circuits, an operation that is clearly seen to be associative in that physical
situation.

For (iii), let f(z) = e® — 1, a bijection on R™ as the rule defines a one-to-
one continuous function on RZ? that is strictly increasing and unbounded with
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minimum f(0) = 0. We can therefore define a semigroup operation on R=°
(giving a semigroup isomorphic to (RZ% +) with f : RZ% — R2% an isomor-
phism) by the rule:x oy = f~(f(z) + f(y)). In this case f~!: Rt — R* with
f~Y(x) = In(x + 1). Then for any z,y € RT we have

zoy=In((e®* —1)+ (e —1)+1)=1In(e” + €Y — 1) (2)

= f(SC o y) _ eln(eg"Jreyfl) —1=e%+e¥—2. (3)

Comment In particular we see each of these semigroups is a copy of the
semigroup of positive real numbers under addition.

8(a) If the homomorphism ¢ exists then it must satisfy x¢ = z«a for all
x € X. Therefore ¢ must be defined by

(xl"'zn)¢:$1¢"'$n¢:$104"'$n04-

It follows that in order to complete the proof it suffices to show that if two
words u =21+ Xy = Y1+ Ym = v (x;,y; € X) are equal in Fx then u¢ = v¢.
However v = v if and only if m = n and x; = y; for all 1 < i < n so this follows
immediately.

(b) Let S be any semigroup and let X be any generating set of S (for instance,
we may take X = §). By (a) there is a homomorphism ¢ : Fx — S such that
x¢ = x for all x € X. Since (X) = S, it follows that ¢ is also surjective.
Therefore every semigroup S is the homomorphic image of the free semigroup
Fx for any generating set X of S.

Comment We say that the homomorphism ¢ is the homomorphism induced
by the inclusion mapping ¢ : X — S.

(c) We have injections ¢; : X — Fx and 13 : X — G. Hence there are
unique homomorphisms ¢; : Fx — G and ¢ : G — Fx such that 17 = o
and to¢o = ¢1. But then 11 = 11¢1¢2 and so ¢1¢s is the unique homomorphism
«a : Fx — Fx such that ;o = ¢;. However, since the identity mapping € on Fx
clearly has this property, it follows that ¢1¢2 = €. By symmetry, ¢o¢; is the
identity mapping on G so that ¢; and ¢2 are then mutually inverse mappings,
which are homomorphisms, and therefore isomorphisms between Fx and G.
Therefore Fx is unique up to isomorphism.

8. In general, Up~' is a subsemigroup of S. Let V be a subsemigroup
of Up~! of mimimum cardinality such that V¢ = U. Let v € V so that
vp = u € U. Then vV is a subsemigroup of V. Hence (vV)¢ = vV = uU = U
as U is right simple since U is a group. Since |[vV| < |V and since |V is the
minimum cardinal of subsemigroups of S that maps onto U under ¢, it follows
that [vV| = |V| and so vV = V by finiteness. By symmetry it follows equally
that Vv =V so that V is indeed a group, as required.

9(a) We have a = zy(zyzry) zyz and b = y(axyxy) zy and so
aba = xy(ryzy) wyx - y(ryzy) vy - vy(vyzy) zye = vy(vyzy) zyz = a;

bab = y(xyxy) zy - vy(wyry) zyx - y(eyry) vy = y(zyzy) vy = b,
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which is to say that (a,b) € V(S).
(b) Now since (zy)¢ = (ed)¢ = ((cded))p = (xyxy)¢, and so we obtain:

ap = (zy(xyxy) zyx)d = (zyxy(eyry) cyryr)d = (xyzy)drd = (xyz)¢ = cde = ¢

bo = (y(zyzy) wy)d = (y(zyzy)(zyzy) (zyzy))d = (yryzy)d = d(cd)® = d.

(c) In particular, if ¢ = d = f € E(T) we have that a,b € V(S) are such
that ag = b¢ = f. But then ab = e € E(S) and

ed = (ab)o = agbd = f* = f.

10. Let n > 0 and consider
(—m)a = (n —2n)a =na+ (—2n)a =nf + (—2n)a

(=2n+3n)B + (—2n)a = (—2n)B + (3n)B + (—2n)«a
=(—2n)B+ Bn)a+ (—2n)a = (—2n)B + (3n — 2n)«a
=(=2n)f+na=(-2n)+nB=(—2n+n)B=(—n)s.

It follows that o and S agree on all integers and so a = 3.

Comment Let ¢ : (N,4+) — (Z,+) be the inclusion mapping where 2t =
z. It follows that if o, 8 : Z — X are semigroup homomorphisms such that
ta = 1 then « = B. In general if v : S — T is a homomorphism such
that whenever o, : T — X are such that ya = 78 then a = [ we say
that such a left cancellable homomorphism is an epimorphism. Certainly any
surjective homomorphism is an epimorphism but, as this example shows, not
every epimorphism is surjective. This is so in the category of Semigroups but
in the category of Groups, all epimorphisms are necessarily surjective.
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