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Solutions and Comments for the Problems

Problem Set 1

1(a) Let e ∈ E(S) and a ∈ S. Then ea = e2a, when
e by left 
an
ellation

we obtain a = ea, thus showing that e a
ts as an identity on the left in S.
(b) Let e, f ∈ E(S). By part (a) and its left-right dual we have f = ef

as e is a left identity and ef = e as f is a right identity, so that f = ef = e.
Hen
e S has just one idempotent e, whi
h is its identity element, so that S is a

(
an
ellative) monoid.

2. Suppose �rst that S is a group. Let a, b ∈ S and 
onsider the equation

b = ax, whi
h has (unique) solution in x = a−1b. Hen
e b ∈ aS and sin
e b was
arbitrary it follows that S ⊆ aS. Sin
e the reverse in
lusion is 
lear we 
on
lude

that aS = S for all a ∈ S, whi
h is to say that S is right simple. Reversing order

in the previous argument (so that b = xa is solved by x = ba−1
) we 
on
lude

similarly that Sa = S and so S is also left simple. Therefore if S is a group

then S is both left and right simple.

Conversely suppose that S is both left and right simple. Take a ∈ S. Then
by right simpli
ity aS = S and there exists e ∈ S su
h that ae = a. Now take

any b ∈ S. By left simpli
ity b ∈ Sa so there exists c ∈ S su
h that b = ca,
when
e bx = cax = ca = b. Therefore e is a right identity element for S. By

symmetry S has a left identity f say, when
e e = fe = f is the unique identity

of S, whi
h is then a monoid. Finally, for any d ∈ S the equation dx = e is

solvable in S. Then x = xe = xdx so that xd = xdxd = g ∈ E(S). But then

there exists z ∈ S su
h that gz = e when
e e = gz = g2z = g(gz) = ge = g, and
so xd = dx = e, whi
h is to say that x = d−1

. We 
on
lude that S is indeed a

group.

3(a) Clearly any right ideal 
ontaining A but 
ontain all the produ
ts of

AS1
. On the other hand (AS1)S1 = A(S1)2 = AS1

. Therefore AS1
is the right

ideal generated by A.
(b) Similarly any ideal 
ontainingAmust 
ontain S1(AS1) and S1(S1AS1)S1 =

(S1)2A(S1)2 = S1AS1
is the ideal generated by A.

4(a) By de�nition of fun
tion 
omposition we have for any f, g, h ∈ TX that

x((f ◦ g) ◦ h)) = (x(f ◦ g))h = (xf)g)h = (xf)(g ◦ h) = x(f ◦ (g ◦ h)

so that (f ◦ g) ◦ h = (f ◦ g) ◦ h and the operation is asso
iative. Moreover the

identity mapping ε on X is a member of TX and therefore TX is a monoid under

fun
tion 
omposition.

(b) Let f, g be 
onstant mappings with ranges a and b respe
tively. Then

x(f ◦ g) = (xf)g = ag = b for all x ∈ X . Hen
e f ◦ g = g, and so the set
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of 
onstant mappings forms a right zero subsemigroup of TX (with fun
tion


omposition from left to right).

Comment Some authors prefer to maintain the 
al
ulus 
onvention of 
om-

posing mappings from right to left. However, in algebra, left to right 
omposi-

tion is often used as it is here. In semigroups in parti
ular mappings are often

de�ned as a produ
t of words over an alphabet, in whi
h 
ase left to right is the

natural dire
tion to read the 
omposition.

(
) Suppose that α ∈ E(TX). Then for any x ∈ X we have xα = xα2 =
(xα)α, and so we see that α a
ts identi
ally when restri
ted to its range. Con-

versely if α|
ranα is the identity mapping then the previous equation applies and

so we 
on
lude that α ∈ TX is idempotent if and only if α a
ts as the identity

mapping when restri
ted to its range.

(d) Let α ∈ I and β ∈ TX . Then Xβα ⊆ Xα so it follows that |Xβα| ≤
|Xα| ≤ Y so that βα ∈ I and so I is a left ideal of TX . On the other hand,

let |Xαβ| ≤ |Xα| ≤ Y also as, in general the 
ardinality of the range of any

fun
tion f : A → B never ex
eeds that of its domain. (To see this take any

y ∈ Af . Map y 7→ x where x ∈ yf−1
. This de�nes a one-to-one mapping from

Af into A so that |Af | ≤ |A|.) Hen
e αβ ∈ I also. Therefore I is both a left

and a right ideal, and therefore an ideal of TX .
Comment The 
onverse is also true as these are indeed the only ideals of TX .

To prove this one just shows that the prin
ipal ideal generated by a mapping

α ∈ TX 
onsists of all mappings of the same rank.

5(a) Clearly if a subsemigroup U of S 
ontains A then, by 
losure under

produ
t and a simple indu
tion on length, it follows that U must 
ontain all

produ
ts of members of A of any (positive) length. Sin
e this set is by its

very de�nition 
losed under the taking of produ
ts, it follows that the set of

all produ
ts of members of A is indeed the smallest subsemigroup of S that


ontains the non-empty set A.
Comment In framing the previous argument we impli
itly assume that a

produ
t a1a2 · · · an (n ≥ 1) is unambiguous, whi
h is to say that in the 
ases

where n ≥ 3, the out
ome is indepedent of the bra
keting of the produ
t. For

n = 3 this is simply the statement of the Asso
iative law. To show that is true

in general requires an indu
tion argument on n, whi
h is itself a useful exer
ise.

As indu
tive hypothesis we take that for m < n any bra
keting of a1a2 · · · am
yields the same out
ome as the parti
ular bra
keting a1(a2(· · · (am)) · · · ) and
work from there.

(b) We are told that 〈a〉 = {a, a2, a3, · · · } is �nite so let ar be the �rst power
that is repeated in this otherwise in�nite list and let m be the least positive inte-

ger t su
h that ar = ar+t
. We 
laim that 〈a〉 = S = {a, a2, · · · , ar, ar+1, · · · , ar+m−1}.

By de�nition of r andm, all the powers a, a2, · · · , ar are distin
t from ea
h other

and all the listed members of S. Consider the set Ka = {ar, ar+1, · · · , ar+m−1}
and suppose, 
ontrary to what we 
laim, that ar+t = ar+s

where 1 ≤ t < s ≤
r +m − 1. Put d = m − 1 − s ≥ 0. Then ar+t+d = ar+s+d = ar+m−1

where

r < r + t + d < r +m − 1. But then ar = ar+t+d+1 = ar+m
, 
ontrary to the

assumption that m was the least power su
h that ar = ar+m
. Therefore all the
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listed members of Ka are pairwise distin
t and so the list S does indeed 
onsist

of m distin
t members, whi
h 
olle
tively de�ne 〈a〉.
Next we note that aKa = Kaa = {ar+1, ar+2, · · · , ar+m−1, ar+m = ar} =

Ka, when
e it follows that Ka is a subsemigroup of 〈a〉 that is both left and

right simple, when
e by Question 2, Ka is an (abelian) group.

(
) Sin
e Ka is a group, there is a unique power t (r ≤ t ≤ m − 1) su
h
that at is idempotent. By the above argument, for any as ∈ Ka we have that

as = as+m
and as 6= as+p

for any 1 ≤ p ≤ m− 1. Hen
e we have

at = (at)2 = a2t = at+m,

so that m|t. Hen
e t is the least integer p ≥ r su
h that m|p. In other words t
is the unique integer p su
h that r ≤ p ≤ r +m − 1 su
h that p ≡ 0 (mod m),

whi
h exists and is unique as r, r + 1, · · · , r +m − 1 is a set of m 
onse
utive

positive integers.

(d) Finally put s = t+ 1 and 
onsider the set S = {as, a2s, · · · , ams} ⊆ Ka.

We show that the members of the list S are pairwise distin
t, and sin
e there

are m members listed, it will follow that S = Ka so that Ka is indeed a 
y
li


group with at+1
as a generator. To this end, suppose that for two members, aus

and avs with 1 ≤ u ≤ v ≤ m we have aus = avs. Then sin
e at is the identity
element of Ka we obtain aut+u = avt+v

, when
e at+u = at+v
, when
e u ≡ v

(mod m). This implies that u = v as required to prove our 
laim. Therefore

Ka is indeed a 
y
li
 subgroup of 〈a〉 with idempotent at where t ≥ r and m|t.

6(a) A simple indu
tion gives ran(ak) = {k, k + 1, · · · , r + m − 1} for all

k = 0, 1, · · · , r. Hen
e the index of a is at least r. On the other hand a|Ka

where Ka = {r, r+1, · · · , r+m−1} is a 
y
li
 permutation, when
e ar = ar+m

and so r and m are the respe
tive index and period of a.
(b) Let at ∈ E(〈a〉). Then we have m|t and r ≤ t. Sin
e r + m = n + 1

(where n = |〈a〉|) we have m|t and m ≥ n + 1 − t. In this 
ase t = 8, n = 11
so that m|8 and m ≥ 11 + 1 − 8 = 4. Hen
e m = 4 or m = 8, yielding two

monogeni
 semigroups with r = 8, m = 4, or r = 4,m = 8 , whi
h we write S8,4

and S4,8.

(
) The mapping a has two 
omponents with vertex sets {1, 2, · · · , 8} and

{9, 10, 11, 12} respe
tively. The index of a is the greatest of the two indi
es of

ea
h of the maps represented by these 
omponents, whi
h is max{4.3} = 4. The
period m is the least 
ommon multiple of the 
y
les of ea
h 
omponent, whi
h

is the l
m{3, 1} = 3. Hen
e 〈a〉 = S4,3.

The idempotent power at satis�es m|t and r ≤ t ≤ r+m− 1, that is 3|t and
4 ≤ t ≤ 6, so that t = 6. The idempotent of 〈a〉 is a6. Sin
e Ka = {a4, a5, a6 =
e}, whi
h is a 
opy of Z3, whi
h is the only non-trivial subgroup of 〈a〉.

7(a) Certainly the mapping de�nes a binary operation on C \ {0}. For three

omplex numbers a, b and c we have

(a ◦ b) ◦ c = |a ◦ b|c = (||a|b|)c = (|a||b|)c = |a|(|b|c)

= |a|(b ◦ c) = a ◦ (b ◦ c),
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and so we have a semigroup.

(b) z ∈ E(S) if and only if z ◦ z = |z|z = z, whi
h is to say that |z| = 1.
(
) We need to show that we may always solve the equation a ◦ x = b

(a, b ∈ C \ {0}), whi
h is to say |a|x = b, whi
h, sin
e a 6= 0, gives the unique
solution x = b

|a| and so S is right simple.

Next suppose that a ◦ b = a ◦ c and so |a|b = |a|c, when
e b = c and a 6= 0.
Hen
e S is also left 
an
ellative.

8(a) Let S be a �nite subsemigroup of a group G. Then S inherits 
an-


ellativity from the 
ontaining group G. Let a ∈ S and 
onsider the right

translation map ρa : S → Sa whereby x 7→ xa. Then ρa is one-to-one for if

xa = ya (x, y ∈ S) then x = y by right 
an
ellativity in S. Sin
e ρa is 
learly

onto we have that ρa is a bije
tion, when
e |S| = |Sa|. (To this point the �nite-
ness hypothesis has not been used.) However, sin
e S is �nite and Sa ⊆ S it

follows that Sa = S and so S is right simple. By the dual argument, S is also

left simple and therefore S is a group by Question 2.

(b) Let G = (Z,+) and let S = (N,+) be the subsemigroup of all positive

integers. Then S is embedded in a group but is not itself a group.

9(a) Let α, β ∈ S. Then αβ is also one-to-one and Xαβ ⊆ Xβ, when
e
X \Xαβ ⊇ X \Xβ so that |X \Xαβ| ≥ |X \Xβ|, and so both sets are in�nite.

Hen
e S ≤ TX , and indeed this shows that S is a left ideal in the semigroup of

all one-to-one mappings on X .

(b) Suppose that α is any one-to-one mapping in E(TX). Then by Question

4(
), α|Xα is the identity mapping. Suppose that there existed x ∈ X \ Xα.
Then xα ∈ X \ {x}, when
e xα = (xα)α, 
ontradi
ting that α is one-to-one.

Hen
e Xα = X and so α is the identity mapping. In parti
ular, it now follows

that α 6∈ S and so S is idempotent-free.

(
) Let α, β ∈ S . We 
onstru
t γ ∈ S su
h that αγ = β. Ne
essarily

this requires that for ea
h x ∈ X we put (xα)γ = xβ, thus de�ning γ on Xα.
The sets Y = X \ Xα and Z = X \ Xβ are both 
ountably in�nite and so

we may take γ to a
t on X \Xα in a one-to-one fashion, mapping onto some

in�nite subset W ⊆ Z su
h that Z \ W is also in�nite. This 
ompletes the

de�nition of a mapping γ that satis�es αγ = β and |X \Xγ| = Z \W , whi
h is

in�nite. It remains only to 
he
k that γ is inje
tive. For xα, yα ∈ Xα (x, y ∈ X)
suppose that (xα)γ = (yα)γ. Then xβ = yβ and so x = y as β is one-to-one,

when
e xα = yα, thus showing that γ is one-to-one on Xα. By 
onstru
tion,

γ is also one-to-one on X \Xα. Finally let xα ∈ Xα and y ∈ X \Xα. Then

(xα)γ = xβ ∈ Xβ but yγ ∈ X \Xβ so in parti
ular (xα)γ 6= yγ. Therefore γ
is itself one-to-one and so lies in S. Therefore S is right simple.

Next suppose that αβ = γβ for some α, β, γ ∈ S. Then for any x ∈ X we

have (xα)β = (xγ)β, when
e xα = xγ as β is one-to-one. Hen
e α = γ and so

S is right 
an
ellative.

Now we 
onsider the equation γα = β, where α, β are given members of S.
For this to be solvable, we must have Xγα = Xβ, when
e Xβ ⊆ Xα. Clearly
it is possible to 
hoose α and β so that this does not hold and so it follows that
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this equation is not in general solvable and so S is not left simple.

Similarly 
onsider the equation αβ = αγ. This shows that β|Xα = γ|Xα but


learly β and γ 
ould a
t di�erently on some points of the in�nite set X \Xα.
Hen
e α does not in general 
an
el on the left and so S is not a left 
an
ellative

semigroup.

10(a) We do have a binary operation on S × T so we just need to 
he
k

asso
iativity. However, with an obvious meaning for the notation we see that

((x1, y1)(x2, y2))(x3, y3) = (x1x2, y1y2)(x3, y3) = ((x1x2)x3, (y1y2)y3)

= (x1(x2x3), y1(y2y3)) = (x1, y1)((x2, y2)(x3, y3)).

(b) Let (a, b) ∈ L × R. Then (a, b)(a, b) = (a2, b2) = (a, b), and so L× R is

also a band. Moreover for any (a, b), (c, d) ∈ L×R we have:

(a, b)(c, d)(a, b) = (ac, bd)(a, b) = (a, d)(a, b) = (a2, db) = (a, b);

when
e it follows that every pair in L×R is an inverse to every pair in L×R.

Problem Set 2

1(a) Aα ≤ Sα for if aα, bα ∈ Aα then aαbα = (ab)α ∈ Aα and so φ is a

mapping into B, and is 
learly also in
lusion-preserving. To see that φ is onto,

let U ≤ T . Let a, b ∈ Uα−1
, so that aα, bα ∈ U , when
e aαbα ∈ U , whi
h

is equivalent to (ab)α ∈ U , so that ab ∈ Uα−1
, when
e Uα−1 ≤ S su
h that

(Uα−1)α = U , and so φ is onto.

(b) Our mapping φ is now the restri
tion of the mapping of part (a) to

ideals. Let I be an ideal of S. Let aα ∈ Iα (a ∈ I), bα ∈ T (remembering α is

onto). Then aαbα = (ab)α ∈ Iα as I is a right ideal; dually bαaα = (ba)α ∈ Iα
as I is a left ideal. Hen
e φ maps ideals to ideals. Let I now denote an ideal

of T , a ∈ Iα−1, b ∈ S. Then (ab)α = aαbα ∈ I as aα ∈ I, whi
h is a right

ideal of T . Thus ab ∈ Iα−1
, whi
h implies that Iα−1

is an ideal of S su
h

that (Iα−1)α = I. Therefore φ maps onto the set of ideals of T and so φ is an

in
lusion-preserving map from A onto B.
(
) The 
omposition αβ is 
ertainly a fun
tion from S to V and is also a

homomorphism as for any a, b ∈ S we get that

(ab)αβ = ((ab)α)β = (aαbα)β

as α is a homomorphism. Then sin
e β is also a homomorphism we have the

required 
on
lusion as

= (aα)β(bα)β = ((a)αβ)((b)αβ).
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2. Suppose that σ is a 
ongruen
e on S. Let a, b, c ∈ S with aσ = bσ. Then
sin
e cσc and aσb, and σis a 
ongruen
e we obtain ca σ cb, and so σ is a left


ongruen
e. The dual argument shows that σ is also a right 
ongruen
e.

Conversely suppose that σ is both a left and a right 
ongruen
e on S. Let
a, b, c, d ∈ S su
h that aσb and cσd. Then sin
e σ is a left 
ongruen
e we have

ac σ bc. Sin
e σ is a right 
ongruen
e then we have bc σ bd. Finally sin
e σ is

transitive we obtain ac σ bc σ bd implies that ac σ bd, thus demonstrating that σ
is a 
ongruen
e on S.

3(a) Clearly kerφ is an equivalen
e relation. Suppose that (a, b), (c, d) ∈ kerφ.
Then (ac)φ = aφcφ = bφdφ = (bd)φ, whi
h is to say that (ac, bd) ∈ kerφ and so

kerφ is a 
ongruen
e on it domain S.
(b) We �rst need to 
he
k that this multipli
ation is well-de�ned, meaning

that it is independent of the representatives 
hosen for the ρ-
lasses. So, suppose
that aρc and bρd. Then ab ρ cd (as ρ is a 
ongruen
e), or in the alternative

notation, ρab = ρcd, so the 
lass that results from the operation does not depend

on the representive 
hosen for ea
h 
ongruen
e 
lass. Asso
iativity also needs

to be 
he
ked:

(aρ bρ)cρ = (ab)ρ cρ = ((ab)c)ρ = (a(bc))ρ = aρ (bc)ρ = aρ(bρ cρ).

(
) By de�nition of multipli
ation in S/ρ we have (ab)ρ♮ = (ab)ρ = aρ bρ =
aρ♮bρ♮, so that ρ♮ is a homomorphism from S to S/ρ, whi
h is 
learly onto as

every member of S/ρ has the form aρ for some a ∈ S. Finally

ker (ρ♮) = {(a, b) : aρ♮ = bρ♮} = {(a, b) : aρ = bρ} = ρ.

4. That ker(α) is a 
ongruen
e was shown in Question 3(a). We require that

ρ♮ψ = α, whi
h is to say that ψ is ne
essarily de�ned to a
t as (aρ)ψ = aα.
We 
he
k ψ is thereby well-de�ned. Suppose that aρ = bρ, whi
h is to say

that (a, b) ∈ kerα, when
e aα = bα, so the a
tion of φ is independent of the

representative 
hosen for aρ. Clearly ψ is a surje
tive mapping onto T = Sα;
and as for being one-to-one, suppose that (aρ)ψ = (bρ)ψ. Then aα = bα, whi
h
is to say that (a, b) ∈ kerα = ρ. Hen
e aρ = bρ, and we 
on
lude that ψ is indeed

a bije
tion. Finally we need to 
he
k that ψ is a homomorphism. However

((aρ)(bρ))ψ = ((ab)ρ)ψ = (ab)α = aαbα = ((aρ)ψ)((bρ)ψ);

therefore ψ is indeed an isomorphism ψ : S/ρ → T and is the unique su
h

isomorphism that satis�es ρ♮ψ = α. This 
ompletes the proof.

5. First we 
he
k that ρ/σ is a well-de�ned relation on S/σ. Suppose that
(aσ, bσ) ∈ ρ/σ so that aρb. Suppose now that aσ = cσ and bσ = dσ. Then sin
e

σ ⊆ ρ we have that c ρ a ρ b ρ d, so that cρd and so (cσ, dσ) ∈ ρ/σ. This shows
that the membership of ρ/σ is independent of the representatives 
hosen for the

σ-
lasses involved in the de�nition. Hen
e ρ/σ is a well-de�ned relation on S/σ.
That ρ/σ is an equivalen
e relation on S/σ follows immediately from the

fa
t that σ and ρ are equivalen
e relations: for instan
e, as regards transitivity
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let us suppose that (aσ, bσ), (bσ, cσ) ∈ S/σ with (a, b) ∈ ρ and (b, c) ∈ ρ.
Then (aσ, cσ) ∈ σ as σ is transitive and (a, c) ∈ ρ as ρ is transitive, when
e

(aσ, cσ) ∈ ρ/σ.
To show that ρ/σ is a 
ongruen
e let us take (aσ, bσ), (cσ, dσ) ∈ ρ/σ. Then,

sin
e σ is a 
ongruen
e we have ac σbd, and sin
e σ ⊆ ρ we have aρb and cρd.
Sin
e ρ is a 
ongruen
e this gives that (ac)ρ(bd) and so ((ac)σ, (bd)σ) ∈ ρ/σ,
whi
h is what was required to show that ρ/σ is itself a 
ongruen
e on S/σ.

Next we 
he
k that (ρ/σ)♮ maps surje
tively onto S/ρ. Let aρ ∈ S/ρ. Then

(aσ)(ρ/σ)♮ = (aσ)(ρ/σ) = aρ,

whi
h is well-de�ned as σ ⊆ ρ. This shows that (ρ/σ)♮ maps surje
tively onto

S/ρ.
The kernel of (ρ/σ)♮ is the set of pairs (aσ, bσ) su
h that

(aσ)(ρ/σ)♮ = (bσ)(ρ/σ)♮ ⇔ aρb⇔ (aσ, bσ) ∈ ρ/σ,

whi
h is to say that ker(ρ/σ)♮ = ρ/σ, as required. Hen
e by the First isomor-

phism theorem we have that (S/σ)/(ρ/σ) ∼= S/ρ.

6(a) Let a, b ∈ eρ. Then

(ab−1)ρ = (aρ)(b−1ρ) = (bρ)(b−1ρ) = (bb−1)ρ = eρ,

whi
h shows that ab−1 ∈ N = eρ. Hen
e eρ is a subgroup N of G. Moreover N
is normal as for any a ∈ N and b ∈ G we have

(b−1ab)ρ = b−1ρaρbρ = b−1ρeρbρ = (b−1eb)ρ = eρ

so that b−1ab ∈ N . Finally for a, b ∈ G we have

aρb⇔ ab−1ρbb−1 = e,

whi
h is to say that aρb if and only if ab−1 ∈ N . Hen
e the set of ρ-
lasses

oin
ide with the set of all 
osets of the normal subgroup N = eρ.

(b) Conversely let N be a normal subgroup of G and de�ne a relation ρ on

G by aρb if and only if ab−1 ∈ N . Then aρa as aa−1 = e ∈ N ; if aρb then

ab−1 ∈ N , when
e (ab−1)−1 = ba−1 ∈ N , as N is 
losed under the taking of

inverses, and so ρ is symmetri
. Next if aρbρc then ab−1, bc−1 ∈ N , when
e

so is ab−1bc−1 = ac−1
, when
e aρc and so ρ is transitive and therefore is an

equivaen
e relation. Next let aρb and take any c ∈ G. Then (ac)(bc)−1 =
acc−1b−1 = ab−1 ∈ N so that acρbc and so ρ is a right 
ongruen
e. Also

(ca)(cb)−1 = cab−1c−1 ∈ N as ab−1 ∈ N and N is normaland so 
losed under


onjugation. Hen
e ρ is also a left 
ongruen
e and therefore ρ is a 
ongruen
e

by Question 2. Moreover aρe ⇔ ae−1 = a ∈ N , when
e we have that eρ = N ,

as required to 
omplete the proof.

7(a) It is 
lear that all the de�ning properties of 
ongruen
e are inherited

by arbitrary interse
tions. For example let ρ = ∩i∈Iρi over some index set I,
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where ea
h ρi is a 
ongruen
e on some semigroup S. Let aρb and cρd. Then

aρib and cρid for all i ∈ I. Sin
e ρi is a 
ongruen
e on S, it follows that acρibd.
Sin
e this holds for all i ∈ I, it follows that abρcd as well.

We do have to note that ρ 6= ∅, whi
h follows as ea
h ρi 
ontains the equality

ongruen
e on S, when
e S does also. (And this is ne
essary to verify that ρ is
a re�exive relation on S).

(b) This follows almost immediately from part (a), we just need to note that

there is at least one 
ongruen
e, namely the universal 
ongruen
e S × S, in the

interse
tion in question.

8. By Question 7, the least 
ongruen
e 
ontaining R exists (and we denote

it by R∗
). Suppose that a → · · · → b is a sequen
e of elementary R-transitions

from a to b (a, b ∈ S) of length n ≥ 0. We prove by indu
tion on n that aR∗b, the

laim being true for n = 0 be re�exivity of R. If n = 1 then a = xcy, b = xdy,
and cRSd for some c, d ∈ S and x, y ∈ S1

. Sin
e RS ⊆ R∗
(as R ⊆ R∗

and R∗
is

re�exive and symmetri
), if follows that cR∗d. Then sin
e R∗
is a 
ongruen
e, it

follows that a = xcyR∗xdy = b. Finally let n ≥ 2 so that the sequen
e has the

form x → t → · · · → b say. By the n = 1 
ase we have xR∗t and by indu
tion

we have tR∗b. Then we have aR∗tR∗b and sin
e R∗
is transitive, it follows that

aR∗b, 
ompleting the proof in this dire
tion.

To show the 
onverse we assign the symbol R1 to the relation de�ned by

aR1b if and only if there is a sequen
e of elementary R-transitions from a to b.
By above we have R ⊆ R1 ⊆ R∗

. Sin
e R∗
is the smallest 
ongruen
e on S that


ontains R, it follows that to 
omplete the proof we need only show that R1 is

a 
ongruen
e.

By taking n = 0 we see that aR1a, so that R1 is re�exive. Next, sin
e the

reverse of ea
h elementary R-transition is also an elementary R-transition, it
follows that b → · · · → a by the reverse sequen
e of transitions so that bR1a
and hen
e R1 is symmetri
. Next suppose that is a sequen
e of elementary

R-transitions b → · · · → c say. Then by following a → · · · → b by b → · · · → c
we have a sequen
e of elementary R-transitions a→ · · · → c, thus showing that
R1 is transitive. Therefore R1 is an equivalen
e relation on S that 
ontains R.
Finally, on
e more 
onsider the sequen
e a → · · · → b and take any c ∈ S1

.

Ea
h elementary R-transition in the sequen
e has the form xty → xsy for some

(x, y ∈ S1
and tRSs). Then xt(yc) → xs(yc) is also an elementary R-transition,

and so, repla
ing ea
h transition is the original sequen
e by that where ea
h term

in the sequen
e is multiplied on the right by c gives a sequen
e of elementary R-
transitions from ac to bc, thus showing that R1 is a right 
ongruen
es on S. By
symmetry, R1 is also a left 
ongruen
e on S, and therefore R1 is a 
ongruen
e

on S when
e we 
on
lude that R1 = R∗
.

9. Consider our 
andidate

E♭ = {(a, b) ∈ S × S : (∀x, y ∈ S1) (xay, xby) ∈ E}.

We need to show that E♭ ⊆ E, that E♭
is a 
ongruen
e, and �nally that if

ρ ⊆ E is a 
ongruen
e then ρ ⊆ E♭
. To this end, let us take (a, b) ∈ E♭

.
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Putting x = y = 1 in the de�nition of E♭
we get that (a, b) ∈ E, and so E♭ ⊆ E.

For any a ∈ S we have (xay, xay) ∈ E as E is re�exive and so (a, a) ∈ E♭
and

so E♭
is re�exive. Now suppose that (a, b) ∈ E♭

so that (xay, xby) ∈ E for all

x, y ∈ S1
. Sin
e E is symmetri
, it follows that (xby, xay) ∈ E for all x, y ∈ S1

and so (b, a) ∈ E♭
and E♭

is therefore symmetri
. Next suppose that aE♭bE♭c
say, so that (xay, xby) ∈ E and (xby, xcy) ∈ E for all x, y ∈ S1

. Sin
e E is

transitive, it follows that (xay, xcy) ∈ E and therefore (a, c) ∈ E♭
and therefore

E♭
is transitive and therefore is an equivalen
e relation 
ontained in E. Now

suppose that (a, b) ∈ E♭
and take any c ∈ S1

. Then (xay, xby) ∈ E for all

x, y ∈ S1
. In parti
ular (xacy, xbcy) ∈ E for all x, y ∈ S1

so that (ac, bc) ∈ E♭
.

It follows that E♭
is a right 
ongruen
e and by the dual argument, also a left


ongruen
e and therefore E♭
is indeed a 
ongruen
e that is 
ontained in E.

Now let ρ be any 
ongruen
e on S su
h that ρ ⊆ E. Suppose that (a, b) ∈ ρ.
Then sin
e ρ is a 
ongruen
e 
ontained in E it follows that (xay, xby) ∈ ρ ∩ E
for all x, y ∈ S1

. Therefore ρ ⊆ E♭
. This 
ompletes the proof that E♭

is the

largest 
ongruen
e 
ontained in the equivalen
e relation E on S.

10(a) We have that e = fe as f is a left identity, while equally we have

fe = f as e is a right identity. Therefore e = fe = f and so e = f and e is the
unique identity element of S, whi
h is therefore a monoid.

(b) We have that e = fe as e is a right zero element, while equally fe = f as

f is a left zero element. Therefore e = fe = f and e is the unique zero element

of S.
(
) Let ρ be any equivalen
e relation on a null semigroup S with zero element

e. Then for any (a, b), (c, d) ∈ ρ we have ac = e = bd and so (ac, bd) ∈ ρ.
Therefore ρ is also a 
ongruen
e on S. Now take any aρ, bρ in S/ρ. Then
(aρ)(bρ) = (ab)ρ = eρ for all aρ, bρ ∈ S/ρ. Therefore S/ρ is indeed itself a null

semigroup in whi
h all produ
ts equal the zero 
lass, eρ.

Problem Set 3

1(a) For any e ∈ E we have e ≤ e as e = e2. Suppose that e ≤ f and f ≤ e
(e, f ∈ E). Then e = ef = fe and f = fe = ef , so that e = ef = f and so

≤ is anti-symmetri
. Finally let e ≤ f and f ≤ g. Then e = ef = fe and f =
fg = gf . Then eg = (ef)g = e(fg) = ef = e and ge = g(fe) = (gf)e = fe = e.
Hen
e e ≤ g and so ≤ is transitive. Therefore ≤ is indeed a partial order on

E(S).
(b) If e ≤ f then fef = f(ef) = fe = e. Conversely if e = fef then

ef = fef2 = fef = e and fe = f2ef = fef = e so that e ≤ f .

2. We will need to make use of the observation that if a ≤ b then x = a∧c ≤
b ∧ c = y. To see this we note that x ≤ b and x ≤ c so that x ≤ y and y is the

greatest lower bound of b and c.
We need to show that x = (a ∧ b) ∧ c = y = a ∧ (b ∧ c). Now a ∧ b ≤ a and
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so x ≤ a. Also a∧ b ≤ b and so x = (a∧ b)∧ c ≤ b∧ c, when
e x ≤ a∧ (b∧ c) =
y; a similar argument shows that y ≤ x and therefore the meet operation is

asso
iative and 
learly a ∧ b = b ∧ a and a ∧ a = a. Therefore (S,∧) de�nes
a 
ommutative band. Furthermore a ≤ b if and only if a = a ∧ b and so the

natural partial order on (S,∧) is the order ≤ of the semilatti
e.

3. Let B be a 
ommuative band and let ≤ be the natural partial order on

B. Let e, f ∈ B then e · ef = ef and ef · e = fe · e = fe = ef . It follows that
ef ≤ e and equally ef ≤ f so that ef ≤ e ∧ f . Now let g ≤ e and g ≤ f . Then
g · ef = ge · f = gf = g and ef · g = g · ef = g also and so g ≤ ef . Therefore
ef = e∧ f , and so B is a semilatti
e. Moreover the produ
t in S 
oin
ides with

the meet operation in the semilatti
e of the natural partial order of B.

4(a) For a ∈ G, the inverse a−1
satis�es the required de�nition of regularity

as: aa−1a = ae = a and a−1aa−1 = ea−1 = a−1
. Therefore a group is a regular

semigroup.

(b) We have a = axa. Then

a(xax)a = (axa)xa = axa = a; (xax)a(xax) = x(axa)(xax) = x(axa)x = xax;

therefore xax ∈ V (a).
(
) Let α ∈ TX . For any y ∈ Xα, 
hoose x ∈ yα−1

and put yβ = x. For

y ∈ X \Xα put yα = z where z ∈ X is arbitrary. Then for any t ∈ X we have

tαβα = xα where x ∈ (tα)α−1
so that xα = tα and therefore tαβα = tα for all

t ∈ X . Therefore α = αβα and the result now follows from part (b).

(d) Let α : S → T be a homomorphism. Then Sα ≤ T by Question 1(a) of

Set 2. Let y ∈ Sα so that y = xα say. Let x′ ∈ V (x) and denote x′α by y′.
Then

yy′y = (xα)(x′α)(xα) = (xx′x)α = xα = y;

when
e it follows that y is regular. Therefore Sα is a regular subsemigroup of

T .
(e) For any given a = (ai)i∈I in S, 
learly (xi)i∈I ∈ V (a), where xi ∈ V (ai)

for all i ∈ I.
Comment Clearly the 
onverse also holds in that S is regular implies the

same of ea
h 
omponent in the dire
t produ
t.

5(a) By Question 4(a), any groupG is regular and has a unique idempotent e,
that being the identity element of G. Conversely suppose that S is regular with

a unique idempotent e. Let a ∈ S and let x ∈ V (a). Then (ax)2 = (axa)x = ax
and (xa)2 = (xax)a = xa. Hen
e ax = xa = e, and ae = axa = a and

ea = axa = a and so S is a monoid with identity e. Moreover x is the inverse

of a with respe
t to e and therefore S is a group.

(b) Let S be a �nite semigroup. Certainly if S is a group then S is 
an
ella-

tive. Conversely suppose that S is 
an
ellative. We prove that S is a group by


he
king that S is both left and right simple, and by symmetry it is enough to

verify that S is left simple, whi
h is to say that S = Sa for all a ∈ S. Now

ρa : S → Sa whereby x 7→ xa is an inje
tive map for, by right 
an
ellativity, if

11



xa = ya then x = y. Hen
e Sa ⊆ S and |Sa| = |S|. However, sin
e S is �nite

this implies that Sa = S, thus 
ompleting the proof.

(
) Part (b) does not hold in general: for example (N,+) is a 
an
ellative

(and 
ommutative) semigroup that is not a group.

6. We have ρ is re�exive as (a, b)ρ(a, b) ⇔ ab = ba; suppose that (a, b)ρ(c, d)
so that ad = bc ⇒ cb = da so that (c, d)ρ(a.b) and so ρ is symmetri
. As for

transitivity we take (a, b)ρ(c, d)ρ(e, f) say so that ad = bc and cf = de. Hen
e
afc = acf = ade = bce = bec so that af = be, as S is 
an
ellative, and so

(a, b)ρ(e, f), thus establishing ρ as an equivalen
e relation.

To show that ρ is a 
ongruen
e, it follows by 
ommutativity that is su�
es

to show that ρ is a right 
ongruen
e. Suppose then that (a, b)ρ(c, d) and let

(e, f) ∈ F . We have ad = bc so that

aedf = adef = bfce⇔ (ae, bf)ρ(ce, df) ⇔ ((a, b)(e, f))ρ((c, d)(e, f)),

as required. Thus ρ is a 
ongruen
e and so F/ρ is 
ommutative, with (1, 1)ρ as
identity element. Furthermore F/ρ is a group, as for any (a, b)ρ ∈ F/ρ we have

(a, b)ρ(b, a)ρ = (ab, ba)ρ = (ab, ab)ρ = (1, 1)ρ.

Finally we verify that the mapping φ where a 7→ (a, 1)ρ embeds S into the

abelian group F/ρ. That φ is inje
tive is immediate from the de�nition of ρ.
Furthermore φ is a morphism:

(ab)φ = (ab, 1)ρ = (a, 1)ρ(b, 1)ρ = aφbφ.

Let S = (N,+), so S1 = N ∪ {0}. We have F = S1 × S1
and so

(a, b)ρ(c, d) ⇔ a+ d = b+ c⇔ a− b = c− d.

We thus have a well-de�ned bije
tion φ between F/ρ and (Z,+) where (a, b)φ =
a− b. Moreover φ is an isomorphism:

((a, b)+(c, d))ρ = (a+c, b+d)ρ 7→ a+c−(b+d) = (a−b)+(c−d) = ((a, b)ρ)φ((c, d))φ.

For the embedding of S where a 7→ (a, 0)ρ and (a, 0)ρφ = a− 0 = a, we see that
this is just the standard embedding of (N,+) → (Z,+).

Next let S = (N, ·) so that F = N × N and (a, b)ρ(c, d) ⇔ ad = bc, whi
h
is to say

a
b
= c

d
. This is the usual embedding of (N, ·) into (Q+, ·) of positive

fra
tions, with a ∈ N identi�ed with (a, 1) = a
1 in F/ρ ∼= (Q+, ·).

7(a) Let S = G×E. Then for any (a, e), (b, f) ∈ G×E we have (a, e)(a−1b, f) =
(aa−1b, ef) = (b, f), showing that S is right simple. To show that S is left 
an-


ellative we suppose that

(c, g)(a, e) = (c, g)(b, f)

⇒ (ca, ge) = (cb, gf) ⇒ (ca, e) = (cb, f)
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when
e a = b as G is 
an
ellative and e = f , when
e S is indeed left 
an
ellative

and therefore S is a right group.

(b) We now suppose that S is a right group. Take a ∈ S. Sin
e S is right

simple, for any b ∈ S there exists x ∈ S su
h that a = bx and taking b = a this

give a = ax, when
e a = ax = ax2. By left 
an
ellativity we have that x = x2

is an idempotent. Therefore E(S) 6= ∅.

(
) Next let e, f ∈ E(S). Then there exists x ∈ S su
h that ex = f . Hen
e

ef = e · ex = ex = f , so that E(S) is a right zero semigroup.

(d) Now take e ∈ E(S) and b ∈ S. Then there exists x ∈ S su
h that ex = b,
when
e eb = e · ex = ex = b.

(e) Certainly Se ≤ S. If xe ∈ Se then e · xe = xe (by (d)) and xe · e = xe,
so that e is the identity element of Se. Finally let xe ∈ Se. Then there exists

y ∈ S su
h that xey = e, when
e xe · ye = e2 = e, and so ye = (xe)−1
and Se

is a group.

(f) Let a ∈ S and take e ∈ E(S) su
h that a = ae, (e exists as shown in (b)).

De�ne φ : S → G× E by a 7→ (af, e). Supppose that aφ = bφ, so that af = bf
and ae = a, be = b. Then, sin
e e = fx for some x ∈ S we obtain

a = ae = afx = bfx = be = b,

and so φ is inje
tive.

For ea
h a ∈ S, the right identity e for a is unique, for if a = ae = ag,
then e = g by left 
an
ellativity. Now take (af, e) ∈ G × E. Then (ae)φ =
(aef, e) = (a, e) and so φ is surje
tive. Finally let a b ∈ S with a = ae and

b = bfg(e, g ∈ E(S)). Then

(ab)φ = (abf, g) (as abg = ab) = (afbf, eg)

as fbf = bf and Sf is a group with identity f ,

= (af, e)(bf, g) = aφbφ.

Therefore φ is a required isomorphism and so S ∼= G× E.

8(a) If S is a right group then S ∼= G × E say and thus is right simple and


ontains at least one idempotent. Conversely, if S has these properties then

sin
e S = eS for all e ∈ E(S), it follows that every idempotent of S is a left

identity. Now suppose that ca = cb (a, b, c ∈ S). Then take e ∈ E(S) and write

e = cx. Put f = xc, then

f2 = xcxc = xec = xc = f

so that f ∈ E(S). Then

a = fa = xca = xcb = fb = b.

Hen
e S is left 
an
ellative and right simple, and thus S is a right group.

(b) Let S = G×E by a right group and 
onsider the equation (a, e)(x, g) =
(b, f). This gives ax = b and eg = f , when
e x = a−1b and g = f , so the

13



solution of our equation is indeed unique. Conversely, given that ax = b is

uniquely solvable in S, it follows that S is right simple. Putting b = a gives

ax = a = ax2 so that x ∈ E(S), by uniqueness of solution. Hen
e E(S) 6= ∅

and it follows from (i) that S is a right group.

(
) Sin
e the dire
t produ
t of two regular semigroups is easily seen to be

regular, it follows that right group G× E is regular and left 
an
ellative. Con-

versely let S be a regular and left 
an
ellative semigroup. For ea
h e ∈ E(S)
and a ∈ S we have e · a = e · ea when
e a = ea by left 
an
ellativity and so

ea
h idempotent is a left identity in S. Now take a, b ∈ S. Let a′ ∈ V (a).
Then aa′ ∈ E(S) so that putting x = aa′ we have a = xb and so it follows that

aS = S for all a ∈ S. Therefore S is a right group.

9. Clearly ρ is an equivalen
e relation. Suppose that aρb and c ∈ S. Either
a = b in whi
h 
ase ac = bc. Otherwise a, b ∈ I when
e ac, bc ∈ I as I is a right
ideal. This shows that ρ is a right 
ongruen
e. Dually, ρ is a left 
ongruen
e

and therefore ρ is a 
ongruen
e on S.

10(a) Let a, b ∈ S. We need to 
he
k that (ab)Φ = aΦbΦ, whi
h is to say

that ρab = ρaρb. Take any x ∈ S, then

xρab = x(ab) = (xa)b = xρaρb.

(b) Let S be a null semigroup with zero element z. For any a, x ∈ S we have

xρa = xa = z. Hen
e ρa = ρb for all a, b ∈ S. In parti
ular, Φ is not one-to-one

unless |S| = 1.
(
) If we repla
e S by S1

then Φ is still a homomorphism as in (a). Suppose

that ρa = ρb. Then a = 1a = 1ρa = 1ρb = 1b = b. Therefore a = b, when
e
it follows that Φ is indeed one-to-one and so Φ a
ts to embed S into the full

transformation semigroup T 1
S . Therefore any semigroup may be embedded in a

full transformation semigroup TX . Moreover, if S is �nite, we may take TX to

be �nite also.

Problem Set 4

1(a) a ∈ domαβ if and only if there exists b, c ∈ X su
h that aα = c and
cβ = b. Hen
e aα ∈ dom β and aα ∈ ran α so it follows that domαβ ⊆
(ranα ∩ domβ)α−1

. Conversely suppose that a ∈ (ranα ∩ domβ)α−1
. Then

aα ∈ ranα ∩ dom β . Hen
e aαβ is de�ned and so a ∈ dom αβ giving the

reverse in
lusion and we 
on
lude that domαβ =(ranα∩ domβ)α−1
. Therefore

ranαβ = (ranα ∩ domβ)α−1α = ranα∩domβ.

(b) Let Φ : PT X → TX∪{0} be the mapping whereby α 7→ α1 where xα1 =
xα if x ∈ domα and otherwise xα1 = 0. In parti
ular 0α1 = 0. Suppose

that α1 = β1 for some α, β ∈ PT X . Then if x ∈ domα then xα ∈ X and
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xα = xα1 = xβ1 = xβ (as xα 6= 0) so that x ∈ dom β and xα = xβ. On the

other hand if x 6∈ domα then xα1 = 0 = xβ1, when
e x 6∈ domβ. This all serves
to show that α = β and so Φ is one-to-one.

Now let α1 ∈ TX∪{0} with 0α1 = 0. Let α ∈ PT X be de�ned by domα =
{x ∈ X : xα1 6= 0} and for x ∈ domα put xα = xα1. Then, by 
onstru
-

tion αΦ = α1. Hen
e Φ is a bije
tion of PT X onto the set of all members of

TX∪{0} whi
h �x 0. Finally we need to 
he
k that Φ is a homomorphism. Let

α, β ∈ PT X . If x(αβ)1 6= 0 then x(αβ)1 = xαβ, whi
h o

urs i� x ∈ (ranα∩
domβ)α−1

. On the other hand, xα1β1 6= 0 i� x ∈ domα and xα ∈ domβ (in

whi
h 
ase x(αβ)1 = xαβ). But x ∈ domα and xα ∈ domβ i� x ∈(ranα)α−1∩
(domβ)α−1 = (ranα∩domβ)α−1

, when
e it follows that (αβ)1 = α1β1. There-
fore Φ is indeed a required isomorphism.

Comment Note that we have used the fa
t that for any fun
tion f and sets A
and B we have (A∩B)f−1 = Af−1 ∩Bf−1

. Clearly we have 
ontainment from

left to right while if x ∈ Af−1∩Bf−1
then xf ∈ A∩B, when
e x ∈ (A∩B)f−1

.

(
) For ea
h x ∈ Xn we have n 
hoi
es for xα and sin
e di�erent 
hoi
es give

di�erent fun
tions it follows that |Tn| = nn
.

By (b) |PT n| = |{α ∈ TX∪{0} : 0α = 0}|. Hen
e when 
onstru
ting a

member of the latter set we have for ea
h x ∈ X , a 
hoi
e of n + 1 possible

images (as xα = 0 is always possible) giving (n + 1)n 
hoi
es in all. Therefore

|PT n| = (n+ 1)n.
(d) We know that TX is regular, and identifying PT X with the semigroup

of all mappings in TX∪{0} whi
h �x 0, we need only observe that when taking

an inverse β of su
h a mappping in TX∪{0] we may insist that 0β = 0.

2. Certainly IX ⊆ PT X and sin
e the 
omposition of partial one-to-one

mappings will yield another (partial) one-to-one mapping, it follows that IX ≤
PT X . Sin
e α−1

is a (partial) one-to-one fun
tion it follows that α−1
is the

only member β ∈ IX su
h that αβα = α and β = βαβ. A mapping ε ∈ IX
if and only if xε = x for all x ∈ domε and so an idempotent 
an be identi�ed

by its domain (whi
h equals its range). If we write εA for the idempotent in

IX with domain A we then see that εAεB = εA∩B. Therefore the semilatti
e of

idempotents of IX is the semilatti
e of the power set of X under interse
tion.

3. (i) implies (ii). Sin
e S is regular, it follows that S1a = Sa. Now

Sa = Saa−1a ⊆ Sa−1a ⊆ Sa. It follows that Sa = Saa−1
and aa−1 ∈ E(S).

Similarly aS = aa−1S, so that ea
h right and ea
h left ideal have an idempotent

generator (and this is true for any regular semigroup). Suppose now that Se =
Sf where e, f ∈ E(S). Then there exist x, y ∈ S su
h that xe = f and yf = e.
Then

e = yf = yf2 = ef = fe = xe · e = xe = f.

The dual argument shows that ea
h left prin
ipal ideal has a unique idempotent

generator.

(ii) implies (iii). Let a ∈ S and take a′, a′′ ∈ V (a). Then aS = aa′S = aa′′S
and Sa = Sa′a = Sa′′a. Sin
e idempotent generators are unique, we have
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aa′ = aa′′ and a′a = a′′a. Hen
e

a′ = a′aa′ = a′′aa′ = a′′aa′′ = a′′

and so ea
h element has a unique inverse.

(iii) implies (i). Let e, f ∈ E(S) and x = (ef)−1
. One 
he
ks that xe and

fx are both inverse to ef :

xe · ef · xe = xefxe = xe; ef · xe · ef = efxef = ef ;

fx · ef · fx = fxefx = fx; ef · fx · ef = efxef = ef.

Thus by uniqueness of inverses we have x = xe = fx, when
e x2 = xe · fx = x.
But then x = x−1 = ef , when
e ef ∈ E(S). By a similar argument, fe ∈ E(S).
Next we show that ef and fe are mutually inverse:

ef · fe · ef = efef = ef ; fe · ef · fe = fefe = fe.

However, sin
e ef ∈ E(S), it follows that ef is its own unique inverse. Hen
e

ef = fe and therefore E(S) is 
ommutative, and so is a semilatti
e.

4(a) By uniqueness of inverses, it su�
es to show that the given 
andidate

for inverse in ea
h 
ase satis�es the equations for inverses. We 
ertainly have

aa−1a = a and a−1aa−1 = a−1
so that (a−1)−1 = a. Similarly we see that

through the 
ommutation of idempotents that:

ab · b−1a−1 · ab = a(bb−1)(a−1a)b = (aa−1a)(bb−1b) = ab;

b−1a−1 · ab · b−1a−1 = b−1(a−1a · bb−1)a−1 = b−1bb−1a−1aa−1 = b−1a−1;

whi
h shows that (ab)−1 = b−1a−1
.

(b) Sin
e ef = fe we have Sef ⊆ Sf and Sef = Sfe ⊆ Se so that Sef ⊆
Se ∩ Sf . Conversely let x = ae = bf ∈ Se ∩ Sf . Then x = bf = bf · f = aef ∈
Sef so that Se ∩ Sf ⊆ Sef and therefore Sef = Se ∩ Sf . Sin
e a = aa−1a we

have Sa = Saa−1a ⊆ Sa−1a ⊆ Sa so that Sa = Sa−1a. Repla
ing a by a−1
we

then have Sa−1 = S(a−1)−1a−1 = Saa−1
.

5. By Question 4(b) we have domρa = Sa−1 = Saa−1
. For any x ∈ Saa−1

we may write x = yaa−1
when
e xρa = yaa−1a = ya so that ranρa ⊆ Sa =

Sa−1a, again by 4(b). Repla
ing a by a−1
we have ρa−1 : Sa−1a → Saa−1

.

Hen
e for any x ∈ Saa−1
so that x = yaa−1

we have

xρaρa−1 = yaa−1aa−1 = yaa−1 = x

and by the same argument with a repla
ed by a−1
we obtain that xρa−1ρa = x

for all x ∈ Sa−1a. Therefore ρa, ρa−1
are both bije
tions, so that ρa, ρa−1 ∈ IX

and ρa−1 = ρ−1
a , ρa = ρ−1

a−1 .

6. Suppose that ρa = ρb. Then the domains of these mappings are equal,

so that Saa−1 = Sbb−1
and then aa−1 = bb−1

by uniqueness of idempotent
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generators. Sin
e a−1 ∈ Saa−1
it follows that a−1ρa = a−1ρb, whi
h is a−1a =

a−1b.
a = aa−1a = aa−1b = bb−1b = b.

7. To show that Φ is a homomorphism it is enough to show that domρab =
domρaρb (meaning that the result follows at on
e from this and asso
iativity of

S). First we have domρab = Sab(ab)−1
. On the other hand domρaρb = (ranρa∩

domρb)ρ
−1
a

= (Sa−1a ∩ Sbb−1)ρ−1
a = Sa−1abb−1ρ−1

a = Sabb−1a−1
(as Sa−1a = Sa)

= Sab(ab)−1 = domρab.

8. We have a ∈ E(S/ρ) where S is regular. Put e = axa where x ∈ V (a2).
Then e ∈ E(S) as

e2 = axa · axa = a · xa2x · a = axa = e.

Moreover

eρ = (axa)ρ = aρxρaρ = a2ρxρa2ρ = (a2xa2)ρ = a2ρ = aρ.

9. Let α : S → T be a homomorphism from an inverse semigroup S onto

a semigroup T . Certainly T is regular, and to show T is inverse it is then

enough to show that if e, f ∈ E(T ) then ef = fe. By Lallement's lemma, sin
e

T ∼= S/kerα, there exist idempotents g, h ∈ E(S) su
h that gα = e and hα = f .
Then

ef = gαhα = (gh)α = (hg)α = hαgα = fe.

10. The �nal statement is demonstrated as follows:

aea′ = aea′aa′ = a(ea′a)2a′ = aea′aea′aa′ = aea′aea′,

with a similar line of proof to show that a′ea is idempotent.

(i) implies (ii). Let a, b ∈ S with a′ ∈ V (a), b′ ∈ V (b). Sin
e S is orthodox

we have

ab · b′a′ · ab = aa′abb′a′abb′b = a(a′abb′)2b = aa′abb′b = ab

and similarly we may show that b′a′abb′a′ = b′a′.
(ii) implies (iii). Sin
e xe, ex ∈ E(S) it follows from the given property that

ex2e ∈ V (xe2x). But x = xe2x, whi
h is inverse to ex2e, and thus

x = x(ex2e)x = (xex)(xex) = x2.

(iii) implies (i). Let e, f ∈ E(S) and take x ∈ V (ef). Then ef ∈ V (fxe)
and fxe ∈ E(S) as

ef · fxe · ef = efxef = ef, fxe · ef · fxe = fxe;
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(fxe)2 = fxe · fxe = fxe.

It follows that ef ∈ E(S) by the given property.

Problem Set 5

1. All Green's relations are equivalen
e relations. Let aL b and let c ∈ S1
.

Then S1a = S1b, when
e S1ac = S1bc so that acL bc, thus showing thast L is

a right 
ongruen
e. Dually, R is a left 
ongruen
e.

Comment This result does not imply that H = L ∩ R is a 
ongruen
e.

Generally it is not.

2. Take (a, b) ∈ λ ◦ ρ so there exists c ∈ S with a λ c ρ b, when
e there exists
u, v ∈ S1

su
h that a = uc and b = cv. It follows that av = ucv = ub = d, say.
But a λ c implies that av λ cv as λ is a right 
ongruen
e, whi
h is to say av λ d,
in other words d λ b. Dually c ρ b implies uc ρ ub, whi
h is a ρ d. Hen
e a (ρ ◦λ) b
and so λ ◦ ρ ⊆ ρ ◦ λ. Dually ρ ◦ λ ⊆ λ ◦ ρ. Therefore λ ◦ ρ = ρ ◦ λ, as required.

Comment In parti
ular of 
ourse, we have the 
ru
ial equation L◦R = R◦L.

3(a) If aL b then S1a = S1b, when
e S1aS1 = S1bS1
, so that L ⊆ J . Dually

R ⊆ J , when
e D ⊆ J , as D = L ∨ R, is the smallest equivalen
e relation on

S that 
ontains L ∪R.

(b) Consder the relation L ◦ R = R ◦ L by the Comment after Question

2. Sin
e L and R are ea
h relexive, for any a ∈ S we have aL aR a so that

L ◦ R is re�exive. Suppose now that a (L ◦ R) b. Then there exists c ∈ S su
h

that aL cR b so that b (R ◦ L) a. But by the 
omment of Question 2 we have

b (L ◦ R) a, showing that L ◦ R is symmetri
.

To see that L ◦ R is transitive, �rst note that L ◦ L = L and R ◦ R = R
as, if aL cL b then S1a = S1c = S1b so that S1a = S1b, with a similar remark

applying to theR relation. Then sin
e relational 
omposition is itself asso
iative

we obtain:

(L ◦ R) ◦ (L ◦ R) = (L ◦ R) ◦ (R ◦ L) = L ◦ (R ◦R) ◦ L = L ◦ R ◦ L

= (L ◦ L) ◦ R = L ◦ R,

whi
h shows that L◦R is also transitive and is therefore an equivalen
e relation.

Sin
e L and R are re�exive, we 
on
lude that L ◦ R is an equivalen
e relation

that 
ontains L ∪ R. Sin
e any equivalen
e relation that 
ontains L ∪ R must


ontain L◦R (in order to be transitive) and sin
e D is, by de�nition L∨R, we


on
lude that D = L ◦ R = R ◦ L.
(
) Suppose now that aD b. This is equivalent to a (L◦R) b, whi
h is to say

that there exists c ∈ S su
h that aL cR b. Dually aD b may be expressed as

saying there exists d ∈ S su
h that aR dL b.
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4. Let a1, a2 ∈ L and b1, b2 ∈ R. Sin
e L is a right 
ongruen
e, a1b1 L a2b1.
Sin
eR is a left 
ongruen
e, we have a2b1 R a2b2, whi
h is to say that a1b1 L a2b1 R a2b2.
Therefore a1b2D a2b2, from whi
h it follows that LR is 
ontained in a single D-

lass.

5(a) Let α, β ∈ TX . There there exists γ ∈ TX su
h that γα = β implies

that Xβ = (Xγ)α ⊆ Xα. Conversely assume that Xβ ⊆ Xα. De�ne γ ∈ TX
as follows: for ea
h y ∈ Xβ, γ maps yβ−1

upon a single element in yα−1
. Then

γα = β. It follows that Lβ ≤ Lα i� Xβ ⊆ Xα. In parti
ular we see then that

αLβ i� Xα = Xβ.
(b) If αγ = β, then for any (x, y) ∈ kerα we have

xβ = xαγ = yαγ = yβ,

whi
h implies that kerβ ⊆ kerα. Conversely suppose that kerβ ⊆ kerα. De�ne
γ on Xα by xαγ = xβ (x ∈ X). To see that γ is well-de�ned, suppose that

xα = yα. Then xβ = yβ by hypothesis. De�ne γ to a
t in any way on X \Xα.
Then by 
onstru
tion αγ = β.

Hen
e Rβ ≤ Rα i� kerβ ⊆ kerα. It follows that αRβ i� kerα = kerβ.
(
) This is immediate from (a) and (b) as H = L ∩R.

(d) Let α, β ∈ TX . If αD β, then αL γRβ for some γ ∈ TX . By (a), α
and γ have the same range, and so share a 
ommon rank; similarly by (b), β
and γ have the same kernel, and so the same rank. Hen
e rankα = rankβ.
Conversely, suppose that rankα = rankβ. Then |Xα| = |X/kerβ|, and so there

exists γ ∈ TX with kerγ = kerβ and Xα = Xγ, when
e αL γRβ, and so αD β.
(e) Sin
e D ⊆ J is always true, if follows from (d) that it is enough to prove

that if Jβ ≤ Jα then rankβ ≤ rankα. However Jβ ≤ Jα implies that β = γαδ
say (γ, δ ∈ TX). Hen
e

|Xβ| = |Xγαδ| ≤ |Xαδ| ≤ |Xα|,

whi
h yields the 
laim.

6. That ρs maps La into Lb follows as L is a right 
ongruen
e: cL a implies

csL ax = b. Let x ∈ La; then there exists t in S1
su
h that x = ta, when
e

xρsρs′ = xss′ = tass′ = tbs′ = ta = x.

By applying the same argument to Lb and ρs′ we see that ρs|La
and ρs′ |Lb

are

mutually inverse bije
tions.

Finally note that if x ∈ La and y = xρs = xs, then ys′ = x, so that yRx.
Similarly, ρs′ |Lb

is R-
lass preserving.

7. Green's Lemma (left hand version) Let aL b (a, b ∈ S) and take s, s′ ∈
S1

su
h that sa = b and s′b = a. Then the mappings λs|R and λs′ |Rb are

mutually inverse, L-
lass preserving bije
tions of Ra onto Rb and of Rb onto Ra

respe
tively.

Now let Ha = La ∩Ra and Hb = Lb ∩Rb be two H-
lasses within the same

D-
lass of S. Let Hc = Lb ∩ Ra. By Green's lemma, there exists an R-
lass

19



preserving bije
tion ρa : La → Lb, so it follows that Haρa = Ra ∩ Lb = Hc.

Hen
e ρa|Ha
is a bije
tion onto Hc. By the dual of Greens' lemma, it follows

that there exists a bije
tion λb : Hc → Hb. Therefore the 
omposition mapping

ρaλb : Ha → Hb is a bije
tion between two arbitrary H-
lasses within a given

D-
lass. In parti
ular, any twoH-
lasses within the same D-
lass of a semigroup

S share the same 
ardinality.

8(a) Sin
e ab ∈ Ra ∩ Lb, by Green's lemma ρb is an R-
lass preserving

bije
tion of La onto Lab so there exists c ∈ Rb ∩ La su
h that cρb = cb = b.
Sin
e cR b there exists u ∈ S su
h that c = bu. It follows that bub = cb = b and
thus c2 = bubu = bu = c, so that c ∈ E(S) ∩Rb ∩ La, as 
laimed.

(b) and (
). Conversely, if e = e2 ∈ Rb ∩ La then b = ex say and so

eb = e2x = ex = b. Dually we get ae = a.
From eR b and the fa
t that R is a left 
ongruen
e we dedu
e that a =

aeRab and from eL a and the fa
t that L is a right 
ongruen
e we obtain

b = ebLab. This shows that ab ∈ Ra ∩ Lb.

9. (i) implies (ii). Let e ∈ H ∩ E(S). Putting a = b = e we get ab = e2 =
e ∈ H .

(ii) implies (i). Let a, b ∈ H su
h that ab ∈ H. By Miller and Cli�ord's

theorem we have ab ∈ Ra ∩ Lb(= Ra ∩ La = H) i� Rb ∩ La(= Ra ∩ La = H)

ontains an idempotent e, as required.

(i) & (ii) implies (iii). Sin
e there exists a, b ∈ H su
h that ab ∈ H , it

follows from Miller and Cli�ord that H is a subsemigroup of S and H 
ontains

an idempotent e and that by Green's lemma it follows that for ea
h c ∈ H ,

ρc|H and λc|H are bije
tions of H . In parti
ular, there exists p, q ∈ H su
h that

cp = qc = e, thus showing that H is a subgroup of S.
Now let G be any subgroup of S su
h that G ∩H 6= ∅. Sin
e the H-relation

within a group is universal, it follows that G is 
ontained within a single H-


lass of S, when
e G ⊆ H . Hen
e H 
ontains every subgroup that meets H . In

parti
ular H is a maximal subgroup of S.
(iii) implies (i). Sin
e the H-
lass H is a group, H 
ontains an idempotent

e.

10. Let He and Hf be two H-
lasses within the same D-
lass with e, f ∈
E(S). Take a ∈ Re ∩ Lf . Then ea = a and a′a = f for some a′ ∈ S. As above,
the mapping ρaλa′

de�nes a bije
tion of He onto Hf in whi
h e is mapped to

a′ea = a′a = f . Note that aa′a = af = a, when
e aa′ ∈ E(S) and aa′Ra.
Hen
e for any z ∈ Ra we have aa′Rz and thus aa′z = z. In parti
ular for any

y ∈ He, aa
′y = y.

In order to 
omplete the proof we verify that the bije
tion of He onto Hf

whereby x 7→ a′xa is a homomorphism. To see this, take any x, y ∈ He. We

obtain

a′xya = a′x(aa′y)a = (a′xa)(a′ya)

as required.
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Problem Set 6

1(a) Let a ∈ Reg(S) with a′ ∈ V (a). Then sin
e (aa′)a = a it follows

that aRaa′ and aa′ ∈ E(S) as (aa′)2 = (aa′a)a′ = aa′. Dually aLa′a and

a′a ∈ E(S).
(b) Suppose that for some b ∈ Ra we have aRe for some e ∈ E(S) so that

e = by say (y ∈ S1). Then b = eb = byb so that yby ∈ V (b). From this

observation, its left-right dual, and part (a), it follows that if a ∈ S is regular,

then all members of Ra ∪ La are regular.

Now take any b ∈ Da and let c ∈ Ra∩Lb (whi
h exists, as all the interse
tions

of an R-
lass and an L-
lass within a D-
lass is an H-
lass and all H-
lasses

within the same D-
lass are equi
ardinal). Then it follows from the previous

paragraph that c is regular, so that all members of Lc are also regular. In

parti
ular this applies to b. Therefore we may 
on
lude that if D 
ontains one

regular element a then all members of D are regular.

(
) Let (a, a′) ∈ V (S). Then we have aRaa′La′ so that (a, a′) ∈ D. It follows
that V (a) ⊆ Da.

2. Let a ∈ S and suppose that b ∈ V (S). Then aRabLb and aLbaRb. Hen
e
we have idempotents e = ab and f = ba su
h that e ∈ Ra ∩Lb and f ∈ La ∩Rb,

thus proving the theorem in the forward dire
tion.

Conversely suppose that we are given that there are idempotents e and f
where e ∈ Ra ∩ Lb and f ∈ La ∩Rb. By Miller and Cli�ord's theorem ab ∈ He

and ba ∈ Hf . By Green's lemma, ρa de�nes a bije
tion of Lb onto La and

thus there exists a unique x ∈ Hb su
h that xa = f . Sin
e af = a it follows

that axa = af = a. Furthermore, ax ∈ E(S) and sin
e λa de�nes an L-
lass-
preserving bije
tion from Rb onto Ra it follows that ax ∈ He, and so ax = e.
But then x = xe = xax. We 
on
lude that x is the unique inverse of a in Hb.

3(a) Sin
e SL ⊆ L and RS ⊆ R it follows more parti
ularly that RL ⊆ L∩R.
Suppose now that S is regular and that a ∈ L∩R. Take b ∈ V (a). Then ba ∈ L
and so a = a · ba ∈ RL.

(b) Suppose that aLb so there exists x, y ∈ S1
su
h that xa = b and yb = a.

But then yxa = yb = a, when
e (yx)2a = yxa, when
e by right 
an
ellativity

yx = (yx)2 so that yx ∈ E(S1). However, sin
e E(S) = ∅, it follows that

yx = 1 and so x = y = 1 and a = b. Therefore all L-
lasses of a right


an
ellative semigroup without idempotents are trivial.

4. H is the H-
lass of TX of all α su
h that kerα = Π and Xα = Y ⊆ X .

Let ε ∈ E(H). Thus Y = Xε, Π = Πε = kerε, and ε2 = ε. Let x ∈ X . Sin
e

xε = (xε)ε it follows from Π = Πε that (x, xε) ∈ Π. On the other hand, if

(y, y′) ∈ Π, with y, y′ ∈ Y then y = yε = y′ε = y′. It follows that ea
h 
lass of

Π 
ontains exa
tly one element y ∈ Y , and that ε maps every element of yΠ♮

(y ∈ Y ) onto y.
Conversely assume that Y is a transversal of Π. Then the member ε ∈ TX

that maps ea
h element ea
h 
lass C of Π to y ∈ Y ∩C is an idempotent element
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of H and so H is a group (by Question 9, Set 5).

We 
ontinue under the assumption that H is a group with idempotent ε,
whi
h is then the identity element of the group H . We now show that α ∈ H
indu
es a permutation of Y in that α|Y ∈ GY . Certainly Y α ⊆ Y . Moreover

α|Y is one-to-one for if yα = y′α (y, y′ ∈ Y ) then (y, y′) ∈ Π, and so y = y′. Also
α|Y is onto Y (whi
h does not follow immediately as there is no assumption that

Y is �nite) for given y ∈ Y = Xα, there exists x ∈ X su
h that xα = y. Then
xε ∈ Y and sin
e (x, xε) ∈ Π, we get (xε)α = xα = y. Hen
e α|Y ∈ GY , the

symmetri
 group on Y . Moreover every element φ ∈ GY is indu
ed in this way

by some element α of H , namely that de�ned by xα = (xε)φ. Furthermore α is

unique in this regard for if yα = yβ for all y ∈ Y with α, β ∈ H then xεα = xεβ
for all x ∈ X , and so α = εα = εβ = β. Hen
e the mapping α 7→ φ = α|Y
is a one-to-one mapping of H onto GY . To see this is a homomorphism (and

hen
e an isomorphism ofH onto GY ) we need to 
he
k that if α, β ∈ H then

(α|Y )(β|Y ) = (αβ)|Y . However this follows immediately from the fa
t that

Y α ⊆ Y (indeed Y α = Y ).

5. Following the hint, we put f = eb′b where b′ ∈ V (b). Then sin
e a ∈
Reg(S) it follows that La is regular and there exists an idempotent eLa (
an

take e = a′a for any a′ ∈ V (a)) and then ae = a. Sin
e La ≥ Lb we have that

b = xa for some x ∈ S1
. Hen
e

f2 = eb′b · eb′b = eb′xaeb′b = eb′xab′b = eb′bb′b = eb′b = f,

so that f ∈ E(S). Moreover fLb as f = (eb′)b and bf = xa · eb′b = xab′b =
bb′b = b. Finally e ≥ f as ef = e · eb′b = eb′b = f and fe = eb′be = eb′xae =
eb′xa = eb′b = f .

6(a) We have a = bx for some x ∈ S1
. Take b′ ∈ V (b) ∩ U so that a = bx =

bb′bx = bb′a, and sin
e b′a ∈ U , this shows that R′
a ≤ R′

b.

(b) If a ≤L′ b then a = ub for some u ∈ U ≤ S so that a ≤L b. It follows that
L′ ⊆ L∩ (U ×U), with similar inequalities for R and H. Next let a, b ∈ Reg(U)
with Ra = Rb (respe
tively La = Lb, Ha = Hb) then by (a) we have R′

a = R′
b

(respe
tively L′
a = L′

b, H
′
a = H ′

b). Hen
e if U is regular then G′ = G ∩ (U × U)
for G ∈ {L,R,H}.

7. Let a, b ∈ D. Sin
e D is a D-
lass ofS, there exists c ∈ D su
h that

aLScRSb. Sin
e D is a regular subsemigroup of S, we have by Question 6(b)

that aLDcRDb, showing that D has a single D-
lass.

8. In any semigroup S we have D ⊆ J . Conversely suppose that S is

�nite and that aJ b for some a, b ∈ S. Then there exists u, v, x, y ∈ S1
su
h

that a = ubv and b = xay. Hen
e for any n ≥ 1 we have a = (ux)na(yv)n and

b = (xu)nb(vy)n. Sin
e S is �nite, it follows that we may 
hoose n su
h that ea
h
of these powers is idempotent (as, in general, if xk and yl are idempotent then xkl

and ylk are both idempotent). Then a(yv)n = (ux)na(yv)2n = (ux)na(yb)n = a;
similarly a = (ux)na, b = (xu)nb = b(vy)n . Put c = xa, so that a = (ux)n−1uc
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and so aLc. Now cy = xay = b. Moreover

c = xa = x(ux)n+1a(yv)n+1 = (xu)n+1xay(vy)nv = (xu)n+1b(vy)nv

= (xu)n+1b(vy)2nv = b(vy)n−1v,

and this �nal equation allows us to 
on
lude that aLcRb, when
e aDb and

therefore J ⊆ D. Therefore, in a �nite semigroup S, D = J .

9. Let D be a D-
lass of S. As was shown in Question 9 Set 5, any subgroup

G of a semigroup S is 
ontained in a single H-
lass, whi
h is then a maximal

subgroup of S. Sin
e S is a union of groups, it follows that D 
onsists of

(disjoint)H-
lasses ea
h of whi
h are mutually isomorphi
 groups. For any a, b ∈
D it follows that ab ∈ Ra ∩Lb and in parti
ular D is a regular subsemigroup of

S. By Question 7, it follows that D is itself a regular semigroup 
onsisting of a

single D-
lass. (We say that su
h a semigroup is bisimple; a semigroup with a

single J -
lass is 
alled simple.)

10(a) Sin
e D ⊆ J it follows that D∗ ⊆ J ∗
. To show that J ∗ ⊆ η it follows,

sin
e η is a 
ongruen
e, that it is enough to show that J ⊆ η. To this end take

aJ b in S so there exists x, y, u, v ∈ S1
su
h that a = xby and b = uav. But

then

a = xby η xb2y η xbyb = abηba η uava ηua2v ηuav η b,

as required. Therefore in any semigroup we have D∗ ⊆ J ∗ ⊆ η.
Comment There reverse 
ontainment, η ⊆ J ∗

is generally false: for example,

taking S = (N+,+) we see that J ∗
is trivial but η is universal.

(b) This is 
he
ked dire
tly:

ef · fye · ef = efyef = ef ; fye · ef · fye = f(yefy)e = fye;

hen
e fye ∈ V (ef) and fye is itself an idempotent.

Comment Sin
e the inverse x of an idempotent e is always the produ
t of

two idempotents, as x = xex = (xe)(ex) it follows from (b) that in a regu-

lar semigroup it is always the 
ase that V (E) = E2
. Indeed an extension of

the previous argument shows that in a regular semigroup V (En) = En+1
. In

parti
ular it follows that the idempotent-generated subsemigroup of a regular

semigroup is itself regular.

(
) It is enough to show that η0 ⊆ D∗
for, given this we have by part (a)

that

η = η∗0 ⊆ (D∗)∗ = D∗ ⊆ J ∗ ⊆ η,

giving equality throughout.

Now for any a ∈ S take a′ ∈ V (S). Then aDaa′, when
e a2D∗aa′a = a so

that (a, a2) ∈ D∗
. Now take e, f ∈ E(S) and let y ∈ V (ef). By (b) we have

fye ∈ V (ef) and so

efDfye ⇒ fefeD∗f2ye2 = fye.

But then

feD∗(fe)2 = f(ef)fD∗f(fye)e = fyeD∗ef.
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Finally take a, b ∈ S. Then

abD∗aa′bb′D∗bb′aa′D∗ba,

thus showing that η0 ⊆ D∗
as required. Therefore, in a regular semigroup,

D∗ = J ∗ = η.

Problem Set 7

1(a) Suppose that S has only one ideal, whi
h must then by S itself. For any

a ∈ S, S1aS1
is an ideal, so it follows that for all a, b ∈ S, we have S1aS1 = S =

S1bS1
. Hen
e aJ b and so S 
onsists of a single J -
lass. Conversely suppose

that aJ b for all a, b ∈ S, whi
h is to say that S1aS1 = S1bS1
for all a, b ∈ S.

Sin
e b ∈ S1bS1
it follows that b ∈ S1aS1

, when
e it follows that S1aS1 = S
for all a ∈ S. Now let I be any ideal of S and take any a ∈ I. Then we have

S = S1aS1 ⊆ I ⊆ S. Therefore the only ideal I of S is S itself.

(b) Suppose that SaS = S for all a ∈ S. Then S1aS1 = S for all a ∈ S
so that S is a simple semigroup. Conversely suppose that S is simple. For any

a ∈ S, SaS is an ideal of S so that SaS = S.
(
) Suppose that S has a zero element 0 and that the only ideals of S are S

and {0}. Given that S2 6= {0}, then in parti
ular S is not a two-element null

semigroup.

Conversely suppose that S has a zero element, the only ideals of S are S
and {0} and that S is not a two-element zero semigroup.

Take a ∈ S and suppose that S \a is an ideal of S. Then S \a = {0} so that
S = {a, 0}. Moreover, a2 = a as otherwise S2 = {0} and S is a two-element null

semigroup. (Hen
e in this 
ase S is the two-element semilatti
e.) Otherwise,

for every a ∈ S \ {0}, S \ a is not an ideal of S. It follows that for any non-zero

member a of S, a = xy for some x, y ∈ S. In parti
ular S2 6= {0}. Therefore, the
additional restri
tion that S2 6= {0} is equivalent to the additional restri
tion

that S is not the two-element null semigroup.

2(a) If ea = a then e2a = ea, when
e e2 = e. Any idempotent in a 
an-


ellative semigroup is the identity (Question 1, Set 1); 
ontradi
ting hypothesis.

Dually ae = a is impossible.

If D were non-trivial then at least one of R and L is non-trivial. Let us

suppose that R 6= ι (the argument is dual in 
ase L 6= ι). Then there exists a
and b with a 6= b su
h that aRb in S. Hen
e there exists x, y ∈ S su
h that

ax = b and by = a, when
e a = a(xy), whi
h we have shown is impossible in S.
(b) Let A,X ∈ S with

A =

[

a 0
b 1

]

, X =

[

x 0
y 1

]
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⇒ AX =

[

ax 0
bx+ y 1

]

∈ S,

Hen
e S is a semigroup without identity element as one may 
he
k that AJ = A
implies j = I2 6∈ S. Next suppose that AX = AY , so we have produ
ts

a

ording to

AX = AY =

[

a 0
b 1

] [

u 0
v 1

]

=

[

au 0
bu+ v a

]

;

then au = ax, so that u = x; bx+ y = bu+ v then gives y = v (sin
e u = x), so
S is left 
an
ellative.

If XA = Y A, whi
h is to say

[

xa 0
ya+ b 1

]

=

[

ua 0
va+ b 1

]

,

then xa = ua, when
e x = u.ya+ b = va + b, so that y = v. Therefore S is a


an
ellative semigroup without identity and so, by part (a), S is D-trivial.
(
) Yet S is J -simple. We require x, y, u, v whi
h solve

[

x 0
y 1

] [

a 0
b 1

] [

u 0
v 1

]

=

[

c 0
d 1

]

⇔

[

xa 0
ya+ b 1

] [

u 0
v 1

]

=

[

c 0
d 1

]

⇔

[

xau 0
(ya+ b)u+ v 1

]

=

[

c 0
d 1

]

⇔ a · xu = c; (ya+ b)u+ v = d.

Solving the se
ond equation gives:

y =
1

a
(
d− v

u
− b) =

d− v − bu

au
.

We require that

d− v − bu > 0 ⇔ v + bu < d⇔ u <
d− v

b
.

Choose v su
h that 0 < v < d, then take u su
h that 0 < u < d−v
b . Then

y = d−v−bu
au

; x = c
au
.

3(a) The number of minimal ideals of S is either 0 or 1 for if M and N
were two minimal ideals of S then MN is an ideal of S and MN ⊆M ∩N . In

parti
ular M ∩ N 6= ∅ and is an ideal 
ontained in ea
h of the minimal ideals

M and N , whi
h is only possible of M = N .

(b) Let I be an ideal of the kernel K of S. Then

I ⊇ KIK ⊇ S1KIKS1 ⊇ K ⊇ I,
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where the third 
ontainment is so be
ause S1KIKS1
is an ideal of S and K is

the minimal ideal of S. Therefore I = K, whi
h is therefore a simple semigroup.

(
) Let S be a �nite semigroup, whi
h then has �nitely many ideals I1, · · · , Ik.
Then K = I1 · · · Ik is an ideal of S and K ⊆ Ii for all 1 ≤ i ≤ k and so K is the

kernel of S. From (b) it now follows that every �nite semigroup S has a simple

kernel.

(d) Suppose that S is 0-simple. Then S2
is an ideal of S, S2 6= {0}, when
e

S2 = S = S3
. For any ∈ S, SaS is an ideal of S, whi
h implies that SaS = S

or SaS = {0}. The subset I = {x ∈ S : SxS = {0}} is an ideal of S 
ontaining

0, when
e I = {0}, as otherwise I = S and S3 = S2 = {0}. Hen
e SaS = S
for all a ∈ S \ {0}. Conversely suppose that S has a zero 0 and that for all

non-zero a we have SaS = S. Let I be a non-zero ideal of S and take a ∈ I.
The I ⊇ SaS = S. This serves to show that S is indeed a 0-simple semigroup.

4. If M2 6= {0} then M2 =M =M3
. Take a ∈M \ {0}. Then S1aS1

is an

ideal of S and is not {0}, when
e S1aS1 =M . Thus

MaM ⊆ S1aS1 =M =M3 =M(S1aS1)M = (MS1)a(S1M) =MaM,

and so MaM =M , whi
h proves the result.

5. Let µ : I → I/J be the natural homomorphism of I onto I/J so that

aµ = a if a ∈ I \ J and aµ = J if a ∈ J . Then, quite generally, there is a

one-to-one order-preserving 
orresponden
e between the set of ideals of S lying

between J and I and the ideals of I/J . We are given here that there are no

ideals of S stri
tly between J and I, and therefore the only ideals of J/I are

J and I. Hen
e I/J is a 0-minimal ideal of I/J and so by Question 4, I/J is

either 0-simple or a null semigroup (whi
h is the 
ase i� I2 ⊆ J).

6. Let J = Ja be a J -
lass of S and write J(a) = S1aS1
for the prin
ipal

ideal generated by a. Let Ia = {b ∈ J(a) : Jb < Ja}. If Ia is empty then

J(a) = S1aS1 = Ja is the kernel of S. Otherwise Ia is an ideal of S 
ontained

in J(a). Moreover, suppose that B were an ideal of S su
h that Ia ⊆ B ⊂ J(a)
and let b ∈ B. Then 
learly Jb < Ja and so b ∈ Ia. Sin
e b was arbitrary we

infer that B = Ia. Therefore the fa
tor semigroup J(a)/Ia is either 0-simple or

null.

Comment The semigroups K and J(a)/Ia are 
alled prin
ipal fa
tors of S.
A semigroup is 
alled semisimple if none of its prin
ipal fa
tors are null. A

prin
ipal fa
tor J/I 
an be thought of as the J -
lass J together with 0 and for

any a, b ∈ J the produ
t of a and b is ab if ab ∈ J and is 0 otherwise.

7(a) Let a ∈ S and take x ∈ V (a) su
h that ax = xa. Then ax ∈ E(S) and
aRax = xaLa, whi
h is to say that aHax and so Ha is a group H-
lass. Sin
e

a was arbitrary, it follows that S is a union of groups. Conversely, suppose that

S is a union of groups. For a ∈ S let x be the inverse of a in a subgroup of S
that 
ontains a. Then ax = xa, whi
h shows that S is 
ompletely regular.

(b) Let D be a D-
lass of a 
ompletely regular semigroup S. Sin
e ea
h H-


lass is then a group, it follows by the lo
ation theorem that for any a, b ∈ S, we
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have ab ∈ Ra ∩ Lb. In parti
ular, ab ∈ D so that D is a regular subsemigroup

of S. Then by Question 7 of Set 6, it follows that D is a regular bisimple

semigroup. Let e, f ∈ E(D) and suppose that e ≤ f . Then e = ef ∈ Re ∩ Lf

and e = fe ∈ Rf ∩ Le. Hen
e f ∈ He, when
e e = f as an H-
lass has at most

one idempotent. Hen
e all idempotents of D are primitive idempotents, when
e

D is a 
ompletely simple semigroup.

Finally, we note that all H-
lasses of D are H-
lasses of S and by Question

10 of Set 5, all are mutually isomorphi
 subgroups of D.

8(a) First we show that η0 = {(a, a2), (ab, ba), a, b ∈ S} ⊆ J . Now sin
e S
is a union of groups, it follows that aHa2, so 
ertainly aJ a2. Then

Jab = J(ab)2 = Ja(ba)a ≤ Jba;

equally of 
ourse, Jba ≤ Jab and so we 
on
lude that abJ ba. Therefore η0 ⊆ J .

It follows that if we show that J is a 
ongruen
e on S we may 
on
lude that

η ⊆ J and that S/J is a semilatti
e. By symmetry, it is enough to show that

J is a right 
ongruen
e on S. To this end, let us take aJ b and c ∈ S. Then

there exists x, y, u, v ∈ S1
su
h that b = xay and a = ubv. Then

Jca = Jcubv ≤ Jcub = Jbcu ≤ Jbc = Jcb;

by the same argument, we obtain Jcb ≤ Jca and so Jca = Jcb, thereby establish-
ing that J is a right 
ongruen
e, and therefore, as already observed, is thus a


ongruen
e on S.
(b) Sin
e J ⊆ η is always true in any semigroup (Question 10, Set 6) and

that for a 
ompletely regular semigroup η ⊆ J by part (a), it follows that J = η
for a 
ompletely regular semigroup.

9. Let S be a simple and 
ompletely regular semigroup. We show that S is


ompletely simple by showing that any e ∈ E(S) is a primitive idempotent. To

this end, suppose that e, f ∈ E(S) with f ≤ e. Take z, t ∈ S su
h that e = zft.
Put x = ezf and y = fte. Then

xfy = ezf3te = e(zft)e = e3 = e and ex = xf = x, fy = ye = y.

Sin
e S is 
ompletely regular, we have x ∈ Hg for some g ∈ E(S). Thus

gx = xg = x and therefore there exists x∗ ∈ Hg su
h that xx∗ = x ∗ x = g.
From xf = x it follows that x ∗ xf = xx∗, when
e gf = g. We also have

gf = gef = gxfyf = ef = f.

Hen
e g = f . Therefore f = fe = ge = gxfy = xfy = e, as required.

10. We need to show that D = J . Sin
e ea
h J -
lass J is an η-
lass of
S, it follows that J is a regular subsemigroup of S and a union of groups. By

Question 6, J is a simple semigroup, and so is 
ompletely simple by Question 9.

It follows that J is indeed a D-
lass, and that S is a semilatti
e of 
ompletely

simple semigroups. I
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Problem Set 8

1 (i) implies (ii). Let D be a D-
lass of S. Sin
e S is regular, D 
ontains at

least one idempotent. Suppose that eDf with e, f ∈ E(S). Then there exists

a ∈ S su
h that eLaRf , and thus for some x ∈ S1
, e = xa when
e, sin
e

idempotents are 
entral, e = xa = xfa = fxa = fe = ef ; similarly we may

show that f = ef , so that e = f .
(ii) implies (iii). The given 
ondition implies that ea
h D-
lass is a group

H-
lass. Sin
e D ⊆ η, it follows that ea
h η-
lass is a union of groups, and so S
is also. It follows now that S is a semilatti
e of groups.

(iii) implies (iv). Let S be a semilatti
e Y of groups Gα (α ∈ Y ) and for

ea
h α ∈ Y , let eα be the identity of Gα. Then the mappings φα,β : Gα → Gβ

(α ≥ β) de�ned by

aαφα,β = aαeβ (aα ∈ Gα)

is a homomorphism as, using that αβ = β we get

(aαbα)φα,β = (aαbα)eβ = aαbαe
2
β = aαeβbαeβ = aαφα,αβbαφα,αβ ;

aαφα,α = aαeα = aα;

and so φα,α a
ts identi
ally on Sα. For α ≥ β ≥ γ we have

aαφα,βφβ,γ = aαeβeγ = aαeγ = aαφα,γ ;

and for any α, β ∈ Y we have

(aαφα,αβ)(bβφβ,αβ) = aαeαβbβeαβ = aαbβe
2
αβ = aαbβeαβ = aαbβ .

Hen
e the mappings φα,β satisfy the requirements for a family of strong homo-

morphisms that de�ne the original multipli
ation of S, so that S is indeed a

strong semilatti
e of groups S = (Y,Gα, φαβ : α ≥ β ∈ Y ).
(iv) implies (i). If S is a strong semilatti
e of groups S(Y,Gα;φα,β), then S

is 
ertainly regular. The idempotents of S are the identity elements eα,α of the

groups Gα. If eα ∈ E(S) and bβ ∈ Gβ then, writing γ = αβ we have

eαbβ = (eαφα,γ)(bβφβ,γ) = eγ(bβφβ,γ) = bβφβ,γ = (bβφβ,γ)eγ

= (bβφβ,γ)(eαφα,γ) = bβeα,

and so every idempotent of S is 
entral.

2. Suppose that S is a semilatti
e of groups. Then S is regular and so for

any a ∈ S there exists x ∈ S su
h that a = axa. Next, for any b ∈ S let e be
the group identity of Hab so that ae, eb ∈ Hab Put y = e(be)−1ab(ea)−1e, were
inversion is in the group Hab. Then

bya = be(be)−1ab(ea)−1ea = e(ab)e = ab.
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Conversely, if S satis�es the given equations then S is 
ertainly regular.

Take a ∈ S and e ∈ E(S). Then there exists y ∈ S su
h that ae = eya and so

eae = e2ya = eya = ae. Similarly there exists z ∈ S su
h that ea = aze and
so eae = aze2 = aze = ea. Therefore ea = eae = ae and so idempotents are


entral in S and therefore S is a semilatti
e of groups.

3. Suppose that S is a strong semilatti
e of abelian groups S = S(Y,Gα, φα,β).
Then S is regular and for any a, b ∈ S we have

ab = (aφα,αβ)(bφβ,αβ) = (bφβ,αβ)(aφα,αβ) = ba

and so S is a 
ommutative regular semigroup. Conversely suppose that S is a


ommutative regular semigroup. Then S is regular and idempotents are 
en-

tral and so S is a strong semilatti
e of groups, whi
h must be abelian as S is


ommutative.

4(a) Suppose that the identity a = aba holds in S. Putting b = a and b = a2

gives a = a3 and a = a4. Then from a = a3 we get a2 = a4 = a so that a = a2

and S is a band. Now suppose that ab = ba. Then

a = aba = aab = ab = ba = bba = bab = b.

Conversely suppose that S is nowhere 
ommutative. Then a ·a2 = a2 ·a so that
a = a2 by the given property. Then a · aba = aba = aba · a so that, again sin
e

S is nowhere 
ommutative, we have a = aba.

5(a) First S is a semigroup as for a triple produ
t we have:

((a, b)(c, d))(e, f) = (a, d)(e, f) = (a, f) = (a, b)(c, f) = (a, b)((c, d)(e, f))

and therefore the given binary operation is asso
iative. Next

(a, b)(c, d)(a, b) = (a, d)(a, b) = (a, b)

and so S satis�es the identity a = aba (a, b ∈ S) and S is a re
tangular band as

de�ned in Question 4.

(b) Sin
e S is a re
tangular band, it follows as shown in Question 4 that

S is a band. Sin
e a band is a union of (trivial) groups, it follows that S is

a semilatti
e of 
ompletely simple semigroups. However the identity a = aba
implies that a ∈ Jb for all a, b ∈ S, whi
h is to say that S is simple. Hen
e the

stru
ture semilatti
e of S is trivial and so S is a 
ompletely simple semigroup all

of whose groups are trivial. Therefore a = La ∩Ra for all a ∈ S. Let T be the

re
tangular band de�ned on L × R where L and R respe
tively the respe
tive


olle
tions of L- and R-
lasses of S in the fashion of part (a). For an arbitrary

semigroup, the mapping φ where a 7→ La∩Ra is a surje
tion from S onto S/H.

Sin
e S is H-trivial, in this 
ase φ is a bije
tion from S onto the semigroup T .
Indeed φ is an isomorphism as

aφbφ = (La, Ra)(Lb, Rb) = (La, Rb) = (ab)φ.
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6. Sin
e a band B is a union of groups, B is a semilatti
e of 
ompletely

simple semigroups. Sin
e ea
h subgroup of S is trivial, it follows that ea
h of

these 
ompletely simple semigroups satis�es a = aba and so is a re
tangular

band, whi
h is to say that B is a semilatti
e of re
tangular bands.

7. Let φ : S → (Z,+) be de�ned by wφ = |w|x − 2|w|y , where |w|x, |w|y
denote the number of x′s and y′s respe
tively in the word w.

Before 
he
king that φ is an isomorphism, we verify that S is 
ommutative

and in order to show that, it is enough to 
he
k that x and y 
ommute with one

another. Now in S:y = y · xyx, so that xy = xyx · yx = yx. We 
on
lude any

w ∈ S has a representation in the form xayb (a, b ≥ 0).
First, φ is well-de�ned: this follows as the word xyx is su
h that (xyx)φ = 0.

Also φ is a morphism as

(w1w2)φ = |w1w2|x − 2|w1w2|y = |w1|x + |w2|x − 2|w1|y − 2|w2|y

= (|w1|x − 2|w|y) + (|w2|x − 2|w2|y) = w1φ+ w2φ.

Next, φ is onto as any integer may be written (not uniquely) in the form n−2m
(n ≥ 0,m ≥ 0). Then (xnym)φ = n− 2m.

And φ is one-to-one . Suppose that w1φ = w2φ. We may write w1 = xa1yb1 ,
w2 = xa2yb2 . Assume without loss of generality that a1 ≤ a2 so we may write

a2 = a1 + t say. Then

a1 − 2b1 = a1 + t− 2b2 ⇒ b2 = b1 +
t

2
.

Hen
e t = 2s for some s ≥ 0. But then

w1 = w1(xyx)
s = xa1+2syb1+s = w2.

Therefore φ is indeed an isomorphism, as required.

8(a) Observe that for any n ∈ N0
we have nαβ = (n + 1)β = n so that

αβ = ε, the identity mapping. However 0βα = max{−1, 0}α = 0α = 0+ 1 = 1,
so that βα 6= ε. For the �nal assertion we need to 
he
k that the mapping from

M to S whereby aφ = α and bφ = β indu
es a homomorphism φ from M to

S, meaning that for any word w = a1 · · · ak ∈ M (ai ∈ {a, b}) we may de�ned

wφ = a1φ · · · akφ, as from this it follows that S is a homomorphi
 image of M .

Now two words w and z in the alphabet {a, b} represent equal members of M
if and only if we may pass from w to z by inserting or deleting 
opies of the

word ab = 1 a �nite number of times. It follows by indu
tion on the number

of transitions that we need only 
onsider the 
ase where the transition is of

the form w = uv 7→ uabv = z. However sin
e aφbφ = αβ = ε, this follows

immediately.

(b) To show that any member of M may be expressed uniquely in the form

bman (m,n ≥ 0) it is enough to show that any member of M of the form

bkalbpaq (k, l, p, q ≥ 0) has the required form. However, sin
e ab = 1 the term

albp = al−p
if l ≥ p in whi
h 
ase our produ
t simpli�es to bkal−p+q, whi
h is of
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the stated form. On the other hand if p ≤ l we get albp = bp−l
and our produ
t

be
omes bk+p−laq, as required.
To show uniqueness, suppose that bkal = bman say. Then βkαl = βmαn

and so (0)βkαl = l = (0)βmαn = n, so that l = n. Multiplying both sides on

the right by βl
then gives βk = βm. Hen
e kβk = 0 = kβm

, when
e k ≤ m.

By a symmetri
 argument, m ≤ k also and so k = m, and the form of the

produ
t is unique. It follows that that the homomorphism from M onto S
indu
ed by a 7→ α and b 7→ β, is an isomorphism as (bman)φ = (bkal)φ is to say

that βmαn = βkαl
, when
e, by what we have just proved, m = k and n = l.

Therefore S is a faithful representation of the bi
y
li
 monoid M .

9(a) Consider the produ
t bkal · bman. First, if l ≤ m the produ
t be
omes

bkbm−lan = bk+m−lan. On the other hand, if m ≤ l the produ
t simpli�es to

bkal−man = bkal−m+n
. In both 
ases the produ
t is des
ribed by the formula

bkal · bman = biaj , where i = k +m−min{l,m}, j = l + n−min(l,m).

(b) Next, by the previous produ
t formula in M we have (bman)2 = bman if

and only ifm = m+m−min(m,n) and n = n+n−min(m,n), whi
h respe
tively
give the inequalities m ≤ n and n ≤ m. Therefore bman ∈ E(M) if and only if

m = n.

10(a) Take any two members biam and bian of the set {biaj : 0 ≤ j} i ≥ 0}.
If m ≤ n then we have biam · an−m = bian. On the other hand, if n ≤ m then

biambm−n = biam−(m−n) = bian. In either 
ase we see follows that biam≤Rb
ian,

and so by symmetry that biamRbian. Conversely suppose that bkai ≤R bman

so that bkal = bman · biaj say. It then follows by Question 9(a) that k =
m+ i−min(i, n) ≤ m. It follows that if bkaiRbman then k = m. This all serves

to show that the set Rbi = {biaj : 0 ≤ j}, as 
laimed.

Next take any two members bkaj and bmaj of the set {biaj : 0 ≤ i} j ≥ 0.
If k ≤ m then we have bm−kbkaj = bmaj . On the other hand, if m ≤ k
then ak−mbmaj = akbj . It follows similarly to the previous paragraph that

bkajLbmaj and therefore Laj = {biaj : 0 ≤ i}, as 
laimed. Now suppose that

x = biajHbman = y. Then we have yRbmRx and xLajLy, when
e it follows

that i = m and j = n. Therefore M is H-trivial.

Finally for any two members x = biaj and y = bman in M we have

biajLbmajRbman and so xDy and therefore M is bisimple.

(b) We have from part (a) thatM is a bisimple monoid, when
eM is regular

(as it has idempotents, in parti
ular the identity ofM). Indeed the idempotents

of M form a 
hain as for any two idempotents e = bmam and f = bnan, with
m ≤ n we have

ef = bmam · bnan = bmbn−man = bnan = f = bnan−mam = bnanbmam = fe.

This shows e ≤ f if and only if m ≤ n, from whi
h it follows that E(M) is an
in�nite des
ending 
hain with maximum element 1 = b0a0. In parti
ular it now

follows that M is a bisimple inverse monoid.
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Problem Set 9

1(a) Sin
e SaS = S for all a ∈ S \ {0} and S2 6= 0, it follows that Sn 6= {0}
for all n ≥ 1. Sin
e S it �nite, it follows that E(S) 
ontains at least one non-zero
idempotent. Again by �niteness, some non-zero idempotent e is 0-minimal in

the natural partial oder, whi
h is to say that e is a primitive idempotent.

(b) Sin
e S is 0- simple, S has a unique non-zero J -
lass. Sin
e S is �nite,

J = D, when
e it follows that S has a unique non-zero D-
lass D. Then we

have by part (a) that D 
ontains an idempotent e and so D = De is a regular

D-
lass. Therefore S is regular.

2(a) If ab 6= 0 then aDT
S1abDT

S1 b. It follows that rank(a) = rank(ab) =
rank(b) so that Xa is a transversal of ab and Xab = Xb, whi
h is to say that

aRT
S1abLT

S1 b. Sin
e S is regular, if follows that aRabLb in S.
(b) It follows that if ab 6= 0 that La ∩Rb 
ontains an idempotent, and so is

a group H-
lass.

3(a) Let e be the identity of H1,1 so that eqλ = qλ and rie = ri. It follows
by Greens lemma that φi,λ is a bije
tion from H1,1, onto Hi,λ.

(b) By part (a) there is a one-to-one 
orresponden
e between the triples

(a; i, λ) and the members of S via the bije
tion (a; i, λ) 7→ aφi,λ = riaqλ.
(
) Take any two members of Hi,λ, x = riaqλ y = rjbqµ say. Then

xy = ri(aqλrjb)qµ (1)

We now seek to represent the multipli
ation of S in terms of the triples of part

(b). If xy 6= 0 then Hj,µis a group so that qλrµ 6= 0 as this produ
t lies in the

group H1,1. By (1) it follows that

(a; i, λ)(b; j, µ) = (c; i, µ)

where c = aqλrjµ. On the other hand, xy = 0 if and only if qλrj = 0, whi
h
o

urs if and only if Hj,µ is not a group. In this 
ase (qλri; i, µ) = (0; i, µ) = 0.
Hen
e, in either 
ase, we may represent multipli
ation in S in terms of the


orresponding triples via the rule:

(a; i, λ)(b; j, µ) = (apλ,ib; i, µ), where pλ,j = qλrj .

4(a) Sin
e apλ,jb ∈ G0
, we have a binary operation on the set of triples in

whi
h any produ
t involving the 
lass of 0, whi
h 
onsists of all triples of the

form (0; i, λ), equals 0. It just remains to show that the produ
t is asso
iative.

Hen
e 
onsider a typi
al produ
t of the form:

((a; i, λ)(b; j, µ))(c; k, ν) = (apλ,jb; i, µ)(c; k, ν) = (apλ,jbpµ,kc; i, ν)

= (a; i, λ)(bpµ,kc; j, ν) = (a; i, λ)((b; j, µ)(c; k, ν)),
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showing that our produ
t is asso
iative and so M0[G, I,Λ, P ] is a semigroup.

(b) Suppose that row λ of the Λ× I matrix P was a row of zeros. Then for

any x = (a; i, λ) and any y = (b; j, µ) we have

xy = (apλ,jb; i, µ) = (0; i, µ) = 0

as pλ,j = 0. In parti
ular, there is no y ∈ S su
h that xyx = x so that x is not

regular. Similarly if 
olumn i of P 
onsisted only of zeros we have

xy = (apλ,jb; i, µ) = (0; i, µ) = 0

as pλ,j = 0 and agains x is not regular. Therefore if S is regular then P is

regular, meaning that P has no zero row or zero 
olumn. Conversely, suppose

that every row and every 
olumn of P 
ontains at least one non-zero entry. Let

x = (a; i, λ) 6= 0 say. We wish to �nd y = (b; j, µ) ∈ S su
h that x = xyx in

order to 
on
lude that x, and so S, is a regular semigroup. Now

xyx = (apλ,jbpµ,ia; i, λ);

by hypothesis, we may 
hoose µ and j so that pλ,j 6= 0 (as row λ of P has a

non-zero entry) and pµ,i 6= 0 (as 
olumn i of P has a non-zero entry). We now

put apλ,jbpµ,ia = a, whi
h has a unique solution in

b = p−1
λ,ja

−1p−1
µ,i ∈ G.

This identi�es an inverse for x and thus 
ompletes the proof that S is regular if

and only if P is a regular matrix.

(
) By Question 1, any �nite 0-simple semigroup S is regular. Hen
e by

Question 4(b) S is isomorphi
 to a regular Rees matrix semigroup.

5(a) Let b ∈ eS \{0} and write e = xby, for some x, y ∈ S1
, whi
h is possible

as S is 0-simple and b 6= 0. Then 
onsider f = byexe. We have, sin
e eb = b
that

f2 = byexe · byexe = bye(xby)exe = bye3xe = byexe = f

and so f ∈ E(S). Note that by Question 1(b) of Set 3, f ≤ e is equivalent to
f = fef , and this is the 
ase as:

fef = byexe · e · byexe = (byexe)2 = f2 = f.

(b) Sin
e e is a primitive idempotent and f ≤ e, this implies either that

f = 0 or f = e. However

xfby = (x · by)exe · by = e2xeby = exeby = exby = e2 = e.

If f = 0 this would give that e = 0, whi
h is not the 
ase. Therefore e = f .
(
) Sin
e e ∈ R we have R ∪ {0} ⊆ eS. Conversely take any b ∈ eS \ {0}

so that e = eb. By part (b) we have e = f = byexe, showing that e ∈ bS also,

when
e eS ⊆ bS2 = bS and sin
e bS ⊆ eS2 = eS it follows that bRe. Therefore
R ∪ {0} = eS.
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(d) Suppose that R′
were a non-zero right ideal of S with R′ ⊆ R ∪ {0}.

Take any a ∈ R′ \ {0} and x ∈ R. We have xRa and thus x = au ∈ R′
, whi
h

shows that R ⊆ R′
. Therefore if follows that R′ = R ∪ {0}. Therefore R ∪ {0}

is a 0-minimal right ideal of S.

6(a) Now S = SeS = S(R∪{0}). Hen
e for any x ∈ S we have x ∈ c(R∪{0})
for some c ∈ S so that x = cr for some r ∈ R ∪ {0}. If x = 0 then Rx = {0}
and we take c = 0 to 
on
lude that Rx ∪ {0} = c(R ∪ {0}) = ceS. Otherwise
assume that x 6= 0 and take any y ∈ Rx so that y ∈ c(R ∪ {0}S ⊆ c(R ∪ {0}).
Then Rx ∪ {0} ⊆ c(R ∪ {0}).

Conversely, let y = cs for some s ∈ R ∪ {0}. Clearly if s = 0 then y = 0 and

y ∈ c(R ∪ {0}). Otherwise rRs and sin
e R is a left 
ongruen
e it follows that

x = crRcs = y and so y ∈ Rx ∪ {0} in the general 
ase as well. Therefore for

any x ∈ S there exists c ∈ S su
h that Rx ∪ {0} = c(R ∪ {0}) = ceS.
(b) By part (a), we may write Rx ∪ {0} as ceS for some c ∈ S. Take any

y = ces for some s ∈ S. Then es ∈ R∪{0} so by the minimality of the right ideal

R∪{0} we have that esS = R∪{0} so that yS = cesS = c(R∪{0}) = Rx∪{0},
thereby showing that Rx ∪{0} is a 0-minimal right ideal for any x ∈ S \ {0}, as
required.

7(a) Let a, b ∈ S \ {0}. Then aSb 6= {0} for otherwise we would dedu
e that

S = {0} as follows:

S = S2 = SaS · SbS = S(aSb)S = S{0}S = {0}.

Take any c ∈ aSb \ {0}. Sin
e c ∈ aS ∩ Sb we have, by Question 6 and its dual,

that aS ∪{0} and Sb∪{0} are respe
tively right and left minimal ideals so that

aRcLb, whi
h is to say that aDb, so that S is 0-bisimple. The non-zero D-
lass
D has a (primitive) idempotent and so D is regular.

(b) If ab 6= 0 then Rab ≤ Ra and Lba ≤ Lb, when
e by 0-minimality of right

and left prin
ipal ideals in S it follows that aRabLb, as required.
(
) Given part (b), the 
onnstru
tion of the Rees matrix semigroup repre-

sentation of a 
ompletely 0-simple semigroup (as in Questions 2 and 3) may now

be repeated as for the �nite 0-simple 
ase, resulting in a representation of S in

the form M0[H1,1; I,Λ, P ] as before.

8. Without loss of generality, we show that the row and 
olumn indexed by

the symbol 1, 
an be taken to have the required form. Sin
e H1,1 is a group, we

may put r1 = q1 = e, so p1,1 = q1r1 = e2 = e. We need to show that we may


hoose the other ri and qλ su
h that q1ri = e if Hri,1is a group, and qλr1 = e if
H1,qλ is a group. (If the H-
lasses in question are not groups, 
hoi
es may be

made arbitrarily and the produ
t and 
orresponding matrix entry is 0).
However if H = Hri,1 is a group, it follows by Green's Lemma that λq1 |H

is a bije
tion onto H1,1, from whi
h it follows that there exists ri ∈ Hri,1 su
h

that q1ri = e. Dually qλ 
an be 
hosen so that qλr1 = e.

9(i) Let e, f are ea
h non-zero idempotents of S and suppose that e ≤ f so

that e = ef = fe. Sin
e ef 6= 0 it follows by Question 7 we have efLfRfe,
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whene eHf , whi
h implies that e = f. It follows that no two distin
t non-zero

idempotents are 
omparable in the natural partial order, and therefore every

non-zero idempotent of S is primitive.

(ii) Let aHb and let c ∈ S. Then either ac = bc = 0 or ac, bc ∈ Ra ∩
Lb. In either 
ase, acHbc. The dual argument to this shows that H is also

a left 
ongruen
e, and therefore H is a 
ongruen
e on a 
ompletely 0-simple

semigroup.

(iii) Let ρ be a 
ongruen
e on S. Suppose that (0, a) ∈ ρ with a 6= 0. Take
any b ∈ S so there exists x, y ∈ S su
h that b = xay so the bρ = xρaρyρ = 0ρ.
Hen
e ρ is the universal 
ongruen
e and S/ρ is trivial. Sin
e any non-trivial

homomophi
 image is isomorphi
 to S/ρ for some 
ongruen
e ρ on S, we 
ontinue
under the hypothesis that no su
h a exists. But then the equation bρ = xρaρyρ
shows that S/ρ is 0-simple. Finally take any two non-zero idempotents eρ, fρ.
Sin
e S is regular we may appeal to Lallement's lemma, to allow the assumption

that e, f ∈ E(S). If eρ = eρfρ = fρeρ then we have eρ = (ef)ρ = (fe)ρ. Hen
e
(fe)ρ = (f2e)ρ = fρ(fe)ρ = fρ(ef)ρ = (fef)ρ. It follows that ef, fe 6= 0
so that He, Hf , Hef , Hfe are all non-zero groups. But then fef ∈ Hf . Hen
e

eρ = (fef)ρHfρ and so eρ and fρ are H-related idempotents in S/ρ so that

eρ = fρ. It follows that eρ is a primitive idempotent in S/ρ and therefore S/ρ
is indeed a 
ompletely 0-simple semigroup.

10. Clearly S = M0[G, I, I; ∆] is a regular 0-simple semigroup. Suppose

that x = (a; i, λ) ∈ E(S). Now x2 6= 0 implies that i = λ and a2 = a so

that a = e, the identity of G and 
onversely (e, i, i) ∈ E(S). What is more

(e; i, i)(e, j, j) = (e, j, j)(e, i, i) = 0 unless i = j. In parti
ular idempotents


ommute with ea
h other so that S is an inverse semigroup.

Conversely suppose that S =M0[G, I,Λ, P ] is an inverse semigroup, so that

P is a 
ertainly a regular matrix. Let Ri and Lλ denote the respe
tive R- and

L-
lass of S de�ned by i ∈ I and λ ∈ Λ respe
tively. The mapping that maps

i 7→ λ where Ri∩Lλ is a group is a bije
tion from I to Λ as ea
h R- and L-
lass
of S 
ontains a unique idempotent. Hen
e we may take Λ = I and so P is an

I × I square regular matrix. Furthermore, we may insist that Hi,i is the unique

group H-
lass in Ri ∩ Li.

Choose ri ∈ Hi,1 arbitrarily. Then, again by Green's Lemma we may 
hoose

qi ∈ H1,i su
h that qiri = e (remembering that Hi,i is a group). With these


hoi
es we have that ∆ is then the identity matrix, as spe
i�ed.

Problem Set 10

1. Suppose that S is a 0-dire
t union of 
ompletely 0-simple semigroups and

let e, f ∈ E(S) for f 6= 0 and suppose that e ≤ f . If eJ f then e and f are

members of the same 0-
ompletely simple semigroup so that e 6= 0 and so f ≤ e
also and so e and f are primitive. Otherwiseef = 0 and so e = 0 and f is
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primitive. We 
on
lude that all non-zero idempotents of S are primitive.

Conversely suppose that S is regular with all non-zero idempotents are prim-

itive. Take any two non-zero J -
lasses, whi
h 
an be denoted by Je and Jf for

some e, f ∈ E(S) as S is regular. Suppose that {0} 6= Jf ≤ Je (e, f ∈ E). Then
f = xey say; put g = eyfxe. Now

g2 = eyfxe · eyfxe = eyfxeyfxe = eyf3xe = eyfxe = g.

Next note that eg = ge = g and if g = 0 then 0 = xgy = xeyfxey = f3 = f ,
whi
h is not the 
ase. Thus we have g ≤ e so that g = e as e is primitive.

Therefore Je ≤ Jf and so Je = Jf . Hen
e no two distin
t non-zero J -
lasses J1
and J2 are 
omparable, when
e J1J2 = {0}. Ea
h subsemigroup Je∪{0} is then
0-simple with a primitive idempotent e and so is 
ompletely 0-simple. Therefore

S is a 0-disjoint union of 
ompletely 0-simple semigroups. (We almost must

admit the possibility that S is 
ompletely simple, and so has no zero element.)

2. (i) ⇒ (ii) Suppose that S is 
ompletely simple. Let a = (x; i, λ), b =
(y; jµ) and suppose that aba = a when
e xpλ,jypµ,ix = x ⇔ xpλ,j = p−1

µ,iy
−1
.

Certainly we have babHb and indeedbab = (ypµ,ixpλ,jy; j, µ). But

ypµ,ixpλ,jy = ypµ,ip
−1
µ,iy

−1y = y

so that bab = b.
(i) ⇒(iii) Sin
e S is 
ompletely simple we have xaLaRax it follows that if

ax = bx and ya = yb then aHb. Let x = (u; k, σ), a = (r; i, λ), b = (s; i, λ).
Then ax = bx implies that rpλ,ku = spλ,ku ⇒ r = s and so a = b. Therefore S
is weakly 
an
ellative.

(iii) ⇒(i) Suppose that S is regular and weakly 
an
ellative. Suppose that

e ≤ f for e, f ∈ E(S). Then e = ef = fe. Hen
e e2 = ef = fe. Putting

e = a, b = f and x = y = e we have ax = e2 = fe = bx and ya = e2 = ef = yb.
Hen
e by weak 
an
ellativity we have a = b, whi
h is to say that e = f . Hen
e
every idempotent is primitive. By Question 1, it follows that S is a 0-dire
t
union of 
ompletely simple semigroups. However, if S has a zero 0 and a ∈ S
then a0 = 02 = 0 = 0a and weak 
an
ellativity implies that a = 0. Hen
e it

follows that S is in fa
t 
ompletely simple.

(iii) ⇒(ii) Let a = aba. Then b · a = bab · a and a · b = a · bab so by weak


an
ellativity it follows that b = bab.
(ii) implies (i) Suppose that P (a) = V (a) for all a in the regular non-trivial

semigroup S and that S has two 
omparable non-zero idempotents, e ≤ f say.

Then e = efe so that f ∈ P (e) = V (e) and then f = fef = e. It follows

that all non-zero idempotents in S are primitive. By above we then have that

S0
is a 0-disjoint union of 
ompletely 0-simple semigroups. Moreover 0 must

be adjoined for if 0 ∈ S, we have 0 = 0e0 for all e ∈ S when
e by hypothesis

e ∈ V (0) so that e = 0, from whi
h it would follows that S = {0}. Therefore S
is 
ompletely simple.

3. Let S = G ×R be the dire
t produ
t of a group with identity element e
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and a re
tangular band R. Let (g, r), (h, s) ∈ G×R. Then

(g−1, s)(g, r)(h, s) = (g−1gh, srs) = (h, s)

thus showing that (h, s) ≤J (g, r) and by symmetry the opposite inequality

also holds and so S is simple. Next, the idempotents of S are exa
tly the

members of S of the form (e, a) (a ∈ R). Suppose that (e, a) ≤ (e, b) in the

natural partial order on E(S). Then (e, a) = (e.a)(e, b) = (e, ab) and (e, a) =
(e, b)(e, a) = (e, ba), when
e it follows that ab = ba for all a, b ∈ R. Sin
e

R is nowhere 
ommutative, this implies that a = b and so S is simple with a

primitive idempotent and so is 
ompletely simple. Finally S is also orthodox as

(e, a)(e, b) = (e, ab) ∈ E(S) so the produ
t of two idempotents is idempotent.

Comment Alternatively, it is easy to show that in general the dire
t produ
t

of 
ompletely simple semigroups is 
ompletely simple. We 
an then apply this

to G×R.
Conversely suppose that S is a 
ompletely simple orthodox semigroup S =

M [G, I,Λ, P ]. As in Question 8 of Set 9 we may 
hoose H1,1 = G. We may

also �nd a suitable sandwi
h matrix P by 
hoosing ri = ei,1 and qλ = e1,λ,
where ei,1 and e1,λ are the respe
tive identity elements of the groups Hi,1 and

H1,λ This 
hoi
e 
an be made for any 
ompletely simple semigroup but under

the additional assumption of orthodoxy we get pλ,i = qλri = e1,λei,1 = e, the
identity element of the group G = H1,1 and this holds for all i ∈ I and λ ∈ Λ.
But then

(a; i, λ)(b; j, µ) = (apλ,jb; i, µ) = (aeb; i, µ) = (ab; i, µ).

It now follows that S is isomorphi
 to the re
tangular group T = G × R
where R is the re
tangular band de�ned on I × Λ: spe
i�
ally et φ : S → T
be the mapping whereby (a; i, λ)φ = (a, (i, λ)). Then φ is 
learly a bije
tion

between the two semigroups. We just need to show that φ is a homomorphism

in order to 
omplete the proof and this now follows immediately:

((a; i, λ)(b; j, µ))φ = (ab; i, µ)φ = (ab; (i, µ)) = (a; (i, j))(b; j, µ)) = (a; i, λ)φ(b; j, µ)φ.

4. Suppose that S is a 0-re
tangular band and take x, y ∈ S. If xyx 6= 0
then xHxyx but sin
e H is trivial in S it follows that xyx = x, thus establishing
(i). As for (ii), take x, y ∈ S \ {0} and suppose that xSy = {0}. Sin
e S = SyS
this gives that {0} = xSy = xSyS = xS, whi
h 
ontradi
ts that x ∈ Reg(S).
Therefore xSy = {0} implies 0 ∈ {x, y}.

Conversely suppose that S satis�es the given pair of 
onditions (i) and (ii).

Take any x ∈ S \ {0}. Then by (ii) xSx 6= {0} so that there exists y ∈ S
su
h that xyx 6= 0 when
e xyx = x by (i). In parti
ular, this shows that S is

regular. Let e, f ∈ E(S) \ {0} with e ≤ f . Then e = fef = f by (i). It follows

that all non-zero idempotents of S are primitive and so S is a 0-dire
t union
of 
ompletely 0-simple semigroups. Suppose that x ∈ S \ {0} and y 6∈ Jx for

some y ∈ S. Then xSy = 0, when
e by (ii) if follows that y = 0 and so S is


ompletely 0-simple.
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Finally let G be a non-zero subgroup of S with identity element e and let

a ∈ G. Then a = eae 6= 0, when
e a = eae = e by (i). Hen
e all subgroups of S
are trivial, and so S is therefore a 0-re
tangular band.

5. Throughout let x, y, z ∈ R>0
.

(i)

(x ◦ y) ◦ z =
√

x2 + y2 ◦ z =

√

(
√

x2 + y2)2 + z2 =
√

x2 + y2 + z2

=

√

x2 + (
√

y2 + z2)2 = x ◦ (
√

y2 + z2) = x ◦ (y ◦ z).

(ii)

(x ◦ y) ◦ z = (
xy

x+ y
◦ z) =

xyz
x+y

xy
x+y

+ z
=

xyz

xy + xz + yz
=

xyz
y+z

x+ yz
y+z

= x ◦ (y ◦ z);

or we note that

xy

x+ y
= (

1

x
+

1

y
)−1

so that

(x ◦ y) ◦ z = (
( 1

x
+

1

y
)−1)−1 +

1

z
))−1 = (

1

x
+

1

y
+

1

z
)−1 = ((

1

x
+ (

1

y
+

1

z
)−1)−1

= x ◦ (y ◦ z).

(iii) Note that ex+ey−2 > 0 as x, y > 0 so that ln(ex+ey−2) is well-de�ned.
Then

(x◦y)◦z = ln(ex+ey−2)◦z = ln(eln(e
x+ey−2)+ez−2) = ln(ex+ey−2+ez−2)

= ln(ex−2+(ey+ez−2)) = ln(ex+eln(e
y+ez−2)−2) = x◦(ln(ey+ez−2)) = x◦(y◦z).

6(a) The general 
he
k for asso
iativity of ◦ is as follows:

(x ◦ y) ◦ z = f−1(f(f−1(f(x) + f(y))) + f(z)) = f−1((f(x) + f(y) + f(z))

= f−1((f(x) + (f(y) + f(z))) = f−1(f(x) + f(f(−1(f(y) + f(z))) = x ◦ (y ◦ z).

(b) Hen
e both (S,+) and (S, ◦) are semigroups. Indeed the permutation f :
(S, ◦) → (S,+) is not only a bije
tion but an isomorphism as

f(x ◦ y) = f(f−1(f(x) + f(y)) = f(x) + f(y).

(
) In 6(a) we take f(x) = x2 as our bije
tion on R+
for then we get x ◦ y =

√

x2 + y2. As for (ii), we take f(x) = x−1 = f−1(x), as then x ◦ y = ( 1
x
+ 1

y
)−1

.

Comment Note that this operation arises when resistan
es are added in par-

allel 
ir
uits, an operation that is 
learly seen to be asso
iative in that physi
al

situation.

For (iii), let f(x) = ex − 1, a bije
tion on R+
as the rule de�nes a one-to-

one 
ontinuous fun
tion on R≥0
that is stri
tly in
reasing and unbounded with
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minimum f(0) = 0. We 
an therefore de�ne a semigroup operation on R≥0

(giving a semigroup isomorphi
 to (R≥0,+) with f : R≥0 → R≥0
an isomor-

phism) by the rule:x ◦ y = f−1(f(x) + f(y)). In this 
ase f−1 : R+ → R+
with

f−1(x) = ln(x + 1). Then for any x, y ∈ R+
we have

x ◦ y = ln((ex − 1) + (ey − 1) + 1) = ln(ex + ey − 1) (2)

⇒ f(x ◦ y) = eln(e
x+ey−1) − 1 = ex + ey − 2. (3)

Comment In parti
ular we see ea
h of these semigroups is a 
opy of the

semigroup of positive real numbers under addition.

8(a) If the homomorphism φ exists then it must satisfy xφ = xα for all

x ∈ X . Therefore φ must be de�ned by

(x1 · · ·xn)φ = x1φ · · ·xnφ = x1α · · ·xnα.

It follows that in order to 
omplete the proof it su�
es to show that if two

words u = x1 · · ·xn = y1 · · · ym = v (xi, yj ∈ X) are equal in FX then uφ = vφ.
However u = v if and only if m = n and xi = yi for all 1 ≤ i ≤ n so this follows

immediately.

(b) Let S be any semigroup and letX be any generating set of S (for instan
e,

we may take X = S). By (a) there is a homomorphism φ : FX → S su
h that

xφ = x for all x ∈ X . Sin
e 〈X〉 = S, it follows that φ is also surje
tive.

Therefore every semigroup S is the homomorphi
 image of the free semigroup

FX for any generating set X of S.
Comment We say that the homomorphism φ is the homomorphism indu
ed

by the in
lusion mapping ι : X → S.
(
) We have inje
tions ι1 : X → FX and ι2 : X → G. Hen
e there are

unique homomorphisms φ1 : FX → G and φ2 : G → FX su
h that ι1φ1 = ι2
and ι2φ2 = ι1. But then ι1 = ι1φ1φ2 and so φ1φ2 is the unique homomorphism

α : FX → FX su
h that ι1α = ι1. However, sin
e the identity mapping ε on FX


learly has this property, it follows that φ1φ2 = ε. By symmetry, φ2φ1 is the

identity mapping on G so that φ1 and φ2 are then mutually inverse mappings,

whi
h are homomorphisms, and therefore isomorphisms between FX and G.
Therefore FX is unique up to isomorphism.

8. In general, Uφ−1
is a subsemigroup of S. Let V be a subsemigroup

of Uφ−1
of mimimum 
ardinality su
h that V φ = U . Let v ∈ V so that

vφ = u ∈ U . Then vV is a subsemigroup of V . Hen
e (vV )φ = vφV φ = uU = U
as U is right simple sin
e U is a group. Sin
e |vV | ≤ |V | and sin
e |V | is the
minimum 
ardinal of subsemigroups of S that maps onto U under φ, it follows
that |vV | = |V | and so vV = V by �niteness. By symmetry it follows equally

that V v = V so that V is indeed a group, as required.

9(a) We have a = xy(xyxy)′xyx and b = y(xyxy)′xy and so

aba = xy(xyxy)′xyx · y(xyxy)′xy · xy(xyxy)′xyx = xy(xyxy)′xyx = a;

bab = y(xyxy)′xy · xy(xyxy)′xyx · y(xyxy)′xy = y(xyxy)′xy = b,
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whi
h is to say that (a, b) ∈ V (S).
(b) Now sin
e (xy)φ = (cd)φ = ((cdcd))φ = (xyxy)φ, and so we obtain:

aφ = (xy(xyxy)′xyx)φ = (xyxy(xyxy)′xyxyx)φ = (xyxy)φxφ = (xyx)φ = cdc = c;

bφ = (y(xyxy)′xy)φ = (y(xyxy)(xyxy)′(xyxy))φ = (yxyxy)φ = d(cd)2 = d.

(
) In parti
ular, if c = d = f ∈ E(T ) we have that a, b ∈ V (S) are su
h

that aφ = bφ = f . But then ab = e ∈ E(S) and

eφ = (ab)φ = aφbφ = f2 = f.

10. Let n ≥ 0 and 
onsider

(−n)α = (n− 2n)α = nα+ (−2n)α = nβ + (−2n)α

(−2n+ 3n)β + (−2n)α = (−2n)β + (3n)β + (−2n)α

= (−2n)β + (3n)α+ (−2n)α = (−2n)β + (3n− 2n)α

= (−2n)β + nα = (−2n)β + nβ = (−2n+ n)β = (−n)β.

It follows that α and β agree on all integers and so α = β.
Comment Let ι : (N,+) → (Z,+) be the in
lusion mapping where xι =

x. It follows that if α, β : Z → X are semigroup homomorphisms su
h that

ια = ιβ then α = β. In general if γ : S → T is a homomorphism su
h

that whenever α, β : T → X are su
h that γα = γβ then α = β we say

that su
h a left 
an
ellable homomorphism is an epimorphism. Certainly any

surje
tive homomorphism is an epimorphism but, as this example shows, not

every epimorphism is surje
tive. This is so in the 
ategory of Semigroups but

in the 
ategory of Groups, all epimorphisms are ne
essarily surje
tive.
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